2017高考试题分类汇编之三角函数

合集下载

2017年全国高考文科数学试题分类汇编之三角函数

2017年全国高考文科数学试题分类汇编之三角函数

2017年全国高考文科数学试题分类汇编之三角函数一、选择题:1.函数f(x)=sin(2x+π/3)的最小正周期为(B)2π2.已知cosx=π/3,则cos2x=(D)-1/23.已知sinα-cosα=4/√2,则sin2α=(C)9/74.函数y=3sin2x+cos2x最小正周期为(B)π5.函数f(x)=5sin(x+π/11)+6的最大值为(A)5/36.设函数f(x)=cos(x+π/3),则下列结论错误的是(D)f(x)的一个零点为x=8π/37.设函数f(x)=2sin(ωx+ϕ),x∈R,其中ω>0,|ϕ|<π,若f(x)的最小正周期大于2π,则(C)ω=2π/3,ϕ=-π/38.函数y=sin2x/(1-cosx)的部分图像大致为(B)V形二、填空题:9.若XXX(α-π/4)=1/6,则tanα=(5/6)10.已知α∈(0,π/2),tanα=2,则cos(α-π/4)=(1/√10)11.函数f(x)=2cosx+sinx的最大值为(2√5)12.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若sinα=1/3,则sinβ=(-1/3)三、解答题:13.已知函数f(x)=3cos(2x-π/4)。

1)f(x)的最小正周期为π/2;2)当x∈[-π/3,π/2]时,f(x)≥-2√2/3.14.已知向量a=(cosx,sinx),b=(3,-3),x∈[0,π]。

1)若a//b,则x=π/4或5π/4;2)记f(x)=a·b,当x=π/4时,f(x)取最大值6√2;当x=5π/4时,f(x)取最小值-6√2.15.已知函数f(x)=sin2x-cos2x-2/3sinxcosx(x∈R)。

1)f(2π)的值为-8/3;2)f(x)的最大值为1,当x=π/4或5π/4时取到;f(x)的最小值为-5/3,当x=3π/4或7π/4时取到.求函数f(x)的最小正周期和单调递增区间。

2017年高考三角函数试题

2017年高考三角函数试题

2017年高考三角函数试题D5:答案:25解析:∵f (x )=sin x -2cos x 5x -φ),其中sin φ=55,cos φ=55.当x -φ=2k π+π2(k ∈Z)时,f (x )取最大值. 即θ-φ=2k π+π2(k ∈Z),θ=2k π+π2+φ(k ∈Z). ∴cos θ=πcos 2ϕ⎛⎫+ ⎪⎝⎭=-sin φ=55-.6:(2014·全国新课标卷Ⅰ,文7)在函数①y =cos|2x |,②y =|cosx |,③y =cos ⎝⎛⎭⎪⎪⎫2x +π6,④y =tan ⎝ ⎛⎭⎪⎪⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③答案.A [解析] 函数y =cos|2x |=cos 2x ,其最小正周期为π,①正确;将函数y =cos x 的图像中位于x 轴上方的图像不变,位于x 轴下方的图像对称地翻转至x 轴上方,即可得到y =|cos x |的图像,所以其最小天正周期也为π,②正确;函数y =cos ⎝⎛⎭⎪⎪⎫2x +π6的最小正周期为π,③正确;函数y=tan ⎝⎛⎭⎪⎪⎫2x -π4的最小正周期为π2,④不正确. 7:(16年新课标3,文7)若tanθ=31,则cos2θ=( D ) (A )45-(B )15-(C )15(D )458:(2013课标全国Ⅱ,文16)函数y =cos(2x +φ)(-π≤φ<π)的图像向右平移π2个单位后,与函数y =πsin 23x ⎛⎫+ ⎪⎝⎭的图像重合,则φ=__________.8:答案:5π6解析:y =cos(2x +φ)向右平移π2个单位得,πcos 22y x ϕ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦=cos(2x -π+φ)=ππsin 2π++=sin 222x x ϕϕ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭,而它与函数πsin 23y x ⎛⎫=+ ⎪⎝⎭的图像重合,令2x +φ-π2=2x +π3+2k π,k ∈Z , 得5π+2π6k ϕ=,k ∈Z. 又-π≤φ<π,∴5π6ϕ=.9:(16年新课标3,文科14)函数y =sin x –cos x 的图像可由函数y =2sin x 的图像至少向右平移___3π___个单位长度得到. 9:答案:5π610:(16年新课标2,文科3)函数的部分图像如图所示,则 ( A )=sin()y A x ωϕ+(A )(B ) (C ) (D ) 11:(2013课标全国Ⅰ,文9)函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为( ).11: 答案:C解析:由f (x )=(1-cos x )sin x 知其为奇函数.可排除B .当x ∈π0,2⎛⎤ ⎥⎝⎦时,f (x )>0,排除A. 当x ∈(0,π)时,f ′(x )=sin 2x +cos x (1-cos x )=-2cos 2x +cos x +1.2sin(2)6y x π=-2sin(2)3y x π=-2sin(2+)6y x π=2sin(2+)3y x π=令f ′(x )=0,得2π3x =. 故极值点为2π3x =,可排除D ,故选C. 12:(16年新课标1:文科6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为( B ) (A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4) (D )y =2sin(2x –π3) 两角和与差的正弦、余弦、正切1:(2014·新课标2,文科14)函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________.[解析] f (x )=sin(x +φ)-2sin φcos x =sin x cos φ+cos x sin φ-2sin φcos x =sin x cos φ-cos x sin φ=sin(x -φ),其最大值为1.2:(2014·全国新课标卷Ⅰ,文科2) 若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos2α>0答案:C [解析]因为sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α>0,所以选C. 3:(2013课标全国Ⅱ,文6)已知sin 2α=23,则2πcos 4α⎛⎫+ ⎪⎝⎭=( ).A .16B .13C .12D .23答案:A解析:由半角公式可得,2πcos 4α⎛⎫+⎪⎝⎭=π21cos 211sin 21232226αα⎛⎫++- ⎪-⎝⎭===.4:(16年新课标3,文科11)函数的最大值为( B )(A )4 (B )5 (C )6 (D )75:(16年新课标1,文科14)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=. 5: 答案:54-解三角形17.(2012课标全国1,文17) 中,内角A .B .C 成等差数列,其对边满足,求.【命题意图】: 本试题主要考查了解三角形的运用。

2017年三角函数高考真题

2017年三角函数高考真题
(1)求 cos B ; (2)若 a c 6 , ABC 面积为 2,求 b.
8【. 2017年新课标Ⅲ卷,17】ABC 的内角A,B,C的对边分别为a,b,c,已知 sin A a 2 7 ,b2.
(1)求c; (2)设 D 为 BC 边上一点,且 AD AC ,求 △ABD 的面积.
3 cos A 0 ,
A. f (x) 的一个周期为 2π
B. y f (x) 的图像关于直线 x 8π 对称 3
C.
f
(x
)
的一个零点为
x
π 6
D.
f
(x)

(π 2
,
π)
单调递减
3.【2017 年新课标Ⅱ卷,14】函数 f x sin2 x
3
cos
x
3 4

x
0,
2
)的最大值


4. 【2017 年新课标Ⅱ卷,文 13】函数 f (x) 2 cos x sin x 的最大值为
.
5. (【 2017 年 新 课 标 Ⅱ 卷 , 文 16 】 △ABC 的 内 角 A, B, C 的 对 边 分 别 为 a, b, c , 若 2bcosB=acosC+ccosA,则 B= 6.【2017 年新课标Ⅰ卷,17】△ABC 的内角 A,B,C 的对边分别为 a,b,c,已知△ABC
2017 年 高考真题(三角)

1.【2017 年新课标Ⅰ卷,9】已知曲线 C1:y=cos x,C2:y=sin (2x+ ),则下面结正确的
3
是( )
π A.把 C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 6

2017年高考全国名校试题数学分项汇编专题04 三角函数与解三角形(原卷版)

2017年高考全国名校试题数学分项汇编专题04 三角函数与解三角形(原卷版)

一、填空题1. 【2016高考冲刺卷(9)【江苏卷】】已知()23tantan 1,sin 3sin 222ααβαβ+==+,则()tan αβ+=2. 【2016高考冲刺卷(7)【江苏卷】】直线3=y 与曲线)0(sin 2>=ωωx y 相距最近的两个交点间距离为6π,则x y ωsin 2=的最小正周期为 . 3. 【2016高考冲刺卷(6)【江苏卷】】已知θ是第三象限角,且52cos 2sin -=-θθ,则=+θθcos sin4. 【2016高考冲刺卷(5)【江苏卷】】已知312sin =α,则⎪⎭⎫ ⎝⎛-4cos 2πα=_____▲____.5. 【2016高考冲刺卷(3)【江苏卷】】将函数()sin(),(0,)22f x x ππωϕωϕ=+>-<<图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移4π个单位长度得到sin y x =的图象,则()6f π= .6. 【2016高考冲刺卷(1)【江苏卷】】若α、β均为锐角,且1cos 17α=,47cos()51αβ+=-,则cos β= .7. 【江苏省苏中三市(南通、扬州、泰州)2016届高三第二次调研测试数学试题】若将函数)4sin(πω+=x y 的图象向左平移6π个单位长度后,与函数)4cos(πω+=x y 的图象重合,则正数ω的最小值为_____________.8. 【江苏省南京市2016届高三年级第三次学情调研适应性测试数学】将函数f (x )=sin(2x +θ)()22ππθ-<<的图象向右平移φ(0<φ<π)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点3)P ,则φ的值为 ▲ .9. 【2016高考冲刺卷(2)【江苏卷】】已知函数f (x )=|sin |x -kx (x ≥0,k ∈R )有且只有三个零点,设此三个零点中的最大值为0x ,则200(1)sin 2x x x += ▲ . 10. 【2016高考押题卷(3)【江苏卷】】已知函数b a x b x a x f ,(cos sin )(+=为常数,且R x a ∈≠,0),若函数)4(π+=x f y 是偶函数,则)4(π-f 的值为 .11. 【2016高考押题卷(3)【江苏卷】】设α为锐角,若31)6sin(=-πα,则αcos 的值为 . 12. 【2016高考押题卷(3)【江苏卷】】如图,在平面四边形ABCD 中,若090,2,2,1=∠===ACD DC AD BC AB ,则对角线BD 的最大值为 .13. 【2016高考押题卷(1)【江苏卷】】将函数()3cos sin y x x x =+?¡的图像向左平移()0m m >个单位长度后,所得的图像关于y 轴对称,则m 的最小值是_______. 14. 【2016年第四次全国大联考【江苏卷】】已知10sin 2cos αα+=,那么tan2α的值为_______.15. 【2016年第三次全国大联考【江苏卷】】已知]4,4[ππθ-∈,且314cos -=θ,则=--+)4(sin )4(sin 44πθπθ .16. 【 2016年第二次全国大联考(江苏卷)】已知251sin tan(),(,)72ααβαπ=+=∈π,那么tan β的值为_______.二、解答题1. 【 2016年第二次全国大联考(江苏卷)】(本小题满分14分)在ABC △中,角CB A 、、分别是边c b a 、、的对角,且b a 23=, (Ⅰ)若ο60=B ,求C sin 的值; (Ⅱ)若2cos 3C=,求sin()A B -的值. 2. 【 2016年第二次全国大联考(江苏卷)】(本小题满分16分)如图,290,,3OC km AOB OCD πθ=∠=∠=,点O 处为一雷达站,测控范围为一个圆形区域(含边界),雷达开机时测控半径r 随时间t变化函数为3r =,且半径增大到81km 时不再变化.一架无人侦察机从C 点处开始沿CD 方向飞行,其飞行速度为15/min km .(Ⅰ) 当无人侦察机在CD 上飞行t 分钟至点E 时,试用t 和θ表示无人侦察机到O 点的距离OE ;(Ⅱ)若无人侦察机在C 点处雷达就开始开机,且4πθ=,则雷达是否能测控到无人侦察机?请说明理由.3. 【2016年第三次全国大联考【江苏卷】】(本小题满分14分)在平面直角坐标系xOy 中,设锐角α的始边与x 轴的非负半轴重合,终边与单位圆交于点11(,)P x y ,将射线OP 绕坐标原点O 按逆时针方向旋转2π后与单位圆交于点22(,)Q x y . 记12()f y y α=+.OC DEABθ(Ⅰ)求函数()f α的值域;(Ⅱ)设ABC ∆的角,,A B C 所对的边分别为,,a b c ,若()2f C =,且2a =,1c =,求b的值.4. 【2016年第四次全国大联考【江苏卷】】(本小题满分14分)在ABC ∆中,角C B A 、、分别是边c b a 、、的对角,且(cos ,sin ),(cos ,sin ),cos2,sin sin 3sin sin A A B B C A B A B =-=⋅=+=m n m n ,(Ⅰ)求角C 的值;(Ⅱ)若3c =,求ABC ∆的面积.5. 【2016年第四次全国大联考【江苏卷】】(本小题满分14分)如图,等边三角形OAB 的边长为4km.现在线段OB 上取一点D (不含线段OB 端点)建发电站向,A B 两点供电.如果线段DB 上每公里建设费用为a 万元(a 为正常数),线段AD 上每公里建设费用为3a 万元,设ADO θ∠=,建设总费用为S 万元.(Ⅰ) 写出S 关于θ的函数关系式,并指出θ的取值范围; (Ⅱ)AD 等于多少时,可使建设总费用S 最少?6. 【2016年第一次全国大联考【江苏卷】】(本小题满分14分)已知角α终边逆时针旋转6π与单位圆交于点31010(), 且2tan()5αβ+=. (1)求sin(2)6πα+的值,(2)求tan(2)3πβ-的值.xy P QOα7. 【2016高考押题卷(1)【江苏卷】】(本小题满分14分)如图,两座建筑物AB ,CD 的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9m 和15m ,从建筑物AB 的顶部A 看建筑物CD 的张角45CAD ∠=o. (1)求BC 的长度;(2)在线段BC 上取一点P (点P 与点B ,C 不重合),从点P 看这两座建筑物的张角分别为APB α∠=,DPC β∠=,问点P 在何处时,tan()αβ+最小?8. 【2016高考押题卷(3)【江苏卷】】(本小题满分14分)已知ABC ∆的面积是30,内角C B A ,,所对边长分别是c b a ,,,且144-=⋅. (1)求A cos 的值;(2)若4=-b c ,求a 的值.9. 【2016高考押题卷(2)【江苏卷】】(本小题满分14分) 已知函数2()sin(2)cos 6f x x x π=+-.(1)求()f x 的最小正周期及2[,]123x ππ∈时()f x 的值域;(2)在△ABC 中,角A 、B 、C 所对的边为c b a ,,,其中角C 满足423)4(-=+πC f ,若ABC S ∆,2=c ,,求)(,b a b a >的值.10. 【江苏省扬州中学2015—2016学年第二学期质量检测】(本小题满分14分)设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =,且B 为钝角. (1)证明:2B A π-=; (2)求sin sin A C +的取值范围.11. 【2016高考冲刺卷(4)【江苏卷】】(本小题满分14分)已知函数()2sin cos()3f x x x ωωπ=+(0ω>)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求()f x 在区间[,]62ππ-上的最大值和最小值.12. 【南京市2016届高三年级第三次模拟考试】(本小题满分14分)在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边.若向量m =(a ,cos A ),向量n =(cos C ,c ),且m ·n =3b cos B . (1)求cos B 的值;(2)若a ,b ,c 成等比数列,求11tan tanCA +的值. 13. 【2016高考冲刺卷(1)【江苏卷】】(本小题满分14分)已知ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,满足sin sin sin sin b a B Cc B A--=+. ⑴求角A 的值;⑵若a ,c ,b 成等差数列,试判断ABC ∆的形状.14. 【2016高考冲刺卷(3)【江苏卷】】(本小题满分14分)若A B C 、、为ABC ∆的三内角,且其对边分别为a b c 、、.若向量2(cos ,cos 1)22A A m =-u r ,向量(1,cos 1)2A n =+r ,且21m n ⋅=-u r r.(1)求A 的值;(2)若a =S =b c +的值.15. 【2016高考冲刺卷(5)【江苏卷】】(本题满分14分)已知函数2()2sin cos f x x x x =+.(1)求函数()f x 的最小正周期和单调减区间;(2)已知ABC ∆的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中7a =,若锐角A 满足()26A f π-=sin sin 14B C +=,求bc 的值. 16. 【2016高考冲刺卷(6)【江苏卷】】在△ABC 中,角A 、B 、C 的对边分别为c b a ,,,已知A C B cos 1)cos(-=-,且c a b ,,成等比数列.(1)求C B sin sin ⋅之值; (2)求角A 的大小; (3)求C B tan tan +的值。

2011—2017年新课标全国卷1理科数学分类汇编——4.三角函数、解三角形

2011—2017年新课标全国卷1理科数学分类汇编——4.三角函数、解三角形

4.三角函数、解三角形一、选择题【2017,9】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【2016,12】已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5【2015,8】函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k ππ-+∈Z B .13(2,2),44k k k ππ-+∈Z C .13(,),44k k k -+∈Z D .13(2,2),44k k k -+∈Z【2015,2】sin 20cos10cos160sin10-=( )A .BC .12-D .12【2014,6】如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( )【2014,8】设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ) A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【2012,9】已知0ω>,函数()sin()4f x x πω=+在(2π,π)上单调递减,则ω的取值范围是( ) A .[12,54] B .[12,34] C .(0,12] D .(0,2]【2011,5】已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=A .45-B .35-C .35D .45【2011,11】设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )A .()f x 在0,2π⎛⎫⎪⎝⎭单调递减 B .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 C .()f x 在0,2π⎛⎫⎪⎝⎭单调递增 D .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 二、填空题【2015,16】在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 . 【2014,16】已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 . 【2013,15】设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________.【2011,16】在ABC V 中,60,B AC ==2AB BC +的最大值为 . 三、解答题【2017,17】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长【2016,17】ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知c A b B a C =+)cos cos (cos 2. (Ⅰ)求C ;(Ⅱ)若7=c ,ABC ∆的面积为233,求ABC ∆的周长.【2013,17】如图,在△ABC 中,∠ABC =90°,AB BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求P A ;(2)若∠APB =150°,求tan ∠PBA .【2012,17】已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,cos sin 0a C C b c --=.(1)求A ;(2)若2a =,△ABC b ,c .3.三角函数、解三角形(解析版)一、选择题【2017,9】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【解析】1:cos C y x =,22π:sin 23⎛⎫=+ ⎪⎝⎭C y x ,首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,即112πππsin sin 2sin 2224⎛⎫⎛⎫⎛⎫=+→=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C 上各坐短它原y x y x x 点横标缩来2ππsin 2sin 233⎛⎫⎛⎫−−→=+=+ ⎪ ⎪⎝⎭⎝⎭y x x . 注意ω的系数,在右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x , 根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π12.故选D ; 【2016,12】已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5【解析】:由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩则21k ω=+,其中k ∈Z ,()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤,接下来用排除法:若π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭,()f x 在π3π,1844⎛⎫ ⎪⎝⎭递增,在3π5π,4436⎛⎫ ⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调;若π9,4ωϕ==,此时π()sin 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减.故选B .【2015,8】函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k ππ-+∈Z B .13(2,2),44k k k ππ-+∈ZC .13(,),44k k k -+∈ZD .13(2,2),44k k k -+∈Z解析:由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k πππππ<+<+∈Z ,解得124k -<x <324k +,k ∈Z ,故单调减区间为(124k -,324k +),k ∈Z ,故选D . 【2015,2】sin 20cos10cos160sin10-=( )A.2-B.2C .12-D .12解析:sin 20cos10cos160sin10sin 20cos10cos 20sin10sin30-=+=,选D .. 【2014,6】如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( )【解析】:如图:过M 作MD ⊥OP 于D,则 PM=sin x ,OM=cos x ,在Rt OMP ∆中,MD=cos sin 1x x OM PM OP =cos sin x x =1sin 22x =,∴()f x 1sin 2(0)2x x π=≤≤,选B. 【2014,8】设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【解析】∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B【2012,9】已知0ω>,函数()sin()4f x x πω=+在(2π,π)上单调递减,则ω的取值范围是( ) A .[12,54] B .[12,34] C .(0,12] D .(0,2]【解析】因为0ω>,2x ππ<<,所以2444x ππππωωωπ⋅+<+<⋅+,因为函数()sin()4f x x πω=+在(2π,π)上单调递减,所以242342πππωππωπ⎧⋅+≥⎪⎪⎨⎪⋅+≤⎪⎩,解得1524ω≤≤,故选择A. 【2011,11】设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( ) A .()f x 在0,2π⎛⎫⎪⎝⎭单调递减 B .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 C .()f x 在0,2π⎛⎫⎪⎝⎭单调递增 D .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 解析:())4f x x πωϕ=++,所以2ω=,又f(x)为偶函数,,424k k k z πππϕπϕπ∴+=+⇒=+∈,())2f x x x π∴=+=,选A.【2011,5】已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=A .45-B .35-C .35D .45解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B.二、填空题【2015,16】在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 .解析: 如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合于E 点时,AB 最长,在BCE ∆中,75B C ∠=∠=,30E ∠=,2BC =,由正弦定理可得o osin 30sin 75BC BE=,解得BE ;平移AD ,当D 与C 重合时,AB 最短,此时在BCF ∆中,75B BFC ∠=∠=,30FCB ∠=,由正弦定理知o osin 30sin 75BF BC=,解得BF =AB 的取值范围为.【2014,16】已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .【解析】:由2a =且 (2)(sin sin )()sin b A B c b C +-=-,即()(sin sin )()sin a b A B c b C +-=-,由及正弦定理得:()()()a b a b c b c +-=-,∴222b c a bc +-=,故2221c o s 22b c a A bc +-==,∴060A ∠=,∴224b c bc +-=,224b c bc bc =+-≥,∴1sin 2ABC S bc A ∆=≤ 【2013,15】设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________.解析:f (x )=sin x -2cos xx x ⎫⎪⎭,令cos αsin α=则f (x )α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x )即θ=2k π+π2-α(k ∈Z ),所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α==【2011,16】在ABC V 中,60,B AC ==2AB BC +的最大值为 .解析:00120120A C C A +=⇒=-,0(0,120)A ∈,22sin sin sin BC ACBC A A B==⇒=022sin 2sin(120)sin sin sin AB ACAB C A A A C B==⇒==-=+;2AB BC ∴+=5sin ))A A A A ϕϕ+=+=+,故最大值是三、解答题【2017,17】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长【解析】(1)∵ABC △面积23sin a S A =.且1sin 2S bc A =,∴21sin 3sin 2a bc A A =,∴223sin 2a bc A =,∵由正弦定理得223sin sin sin sin 2A B C A =,由sin 0A ≠得2sin sin 3B C =.(2)由(1)得2sin sin 3B C =,1cos cos 6B C =,∵πA B C ++=, ∴()()1cos cos πcos sin sinC cos cos 2A B C B C B B C =--=-+=-=,又∵()0πA ∈,,∴60A =︒,sin A =,1cos 2A =,由余弦定理得2229a b c bc =+-= ①由正弦定理得sin sin a b B A =⋅,sin sin a c C A =⋅,∴22sin sin 8sin a bc B C A=⋅= ②由①②得b c +=∴3a b c ++=+ABC △周长为3+【2016,17】ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知c A b B a C =+)cos cos (cos 2.(Ⅰ)求C ;(Ⅱ)若7=c ,ABC ∆的面积为233,求ABC ∆的周长. 【解析】⑴ ()2cos cos cos C a B b A c +=,由正弦定理得:()2cos sin cos sin cos sin C A B B A C ⋅+⋅=()2cos sin sin C A B C ⋅+=,∵πA B C ++=,()0πA B C ∈、、,,∴()sin sin 0A B C +=> ∴2cos 1C =,1cos 2C =,∵()0πC ∈,,∴π3C =⑵ 由余弦定理得:2222cos c a b ab C =+-⋅,221722a b ab =+-⋅,()237a b ab +-=1sin 2S ab C =⋅==,∴6ab =,∴()2187a b +-=,5a b +=∴ABC △周长为5a b c ++=【2013,17】如图,在△ABC 中,∠ABC =90°,AB BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB=12,求P A;(2)若∠APB=150°,求tan∠PBA.解:(1)由已知得∠PBC=60°,所以∠PBA=30°.在△PBA中,由余弦定理得P A2=11732cos 30424+-︒=,故P A(2)设∠PBA=α,由已知得PB=sin α,在△PBAsinsin(30)αα=︒-,α=4sin α,所以tan α=4,即tan∠PBA=4.【2012,17】已知a,b,c分别为△ABC三个内角A,B,C的对边,cos sin0a C Cb c--=.(1)求A;(2)若2a=,△ABCb,c.【解析】(1)根据正弦定理RCcBbAa2sinsinsin===,得ARa s i n2=,BRb sin2=,CRc sin2=,因为cos sin0a C Cb c--=,所以0sin2sin2sin)sin2(3cos)sin2(=--+CRBRCARCAR,即0sinsinsinsin3cossin=--+CBCACA,(1)由三角形内角和定理,得CACACAB sincoscossin)sin(sin+=+=,代入(1)式得0sinsincoscossinsinsin3cossin=---+CCACACACA,化简得CCACA sinsincossinsin3=-,因为0sin≠C,所以1cossin3=-AA,即21)6sin(=-πA,而π<<A0,6566πππ<-<-A,从而66ππ=-A,解得3π=A.(2)若2a=,△ABC1)得3π=A,则⎪⎪⎩⎪⎪⎨⎧==-+=43cos233sin21222abccbbcππ,化简得⎩⎨⎧=+=8422cbbc,从而解得2=b,2=c.。

湖北省各地2017届高三最新考试数学理试题分类汇编:三角函数 含答案 精品

湖北省各地2017届高三最新考试数学理试题分类汇编:三角函数 含答案 精品

湖北省各地2017届高三最新考试数学理试题分类汇编三角函数2017.02一、选择、填空题1、(黄冈市2017届高三上学期期末)已知函数()()()sin 2cos 0y x x πϕπϕϕπ=+-+<<的图象关于直线1x =对称,则sin 2ϕ= A.35 B. 35- C. 45 D. 45- 2、(荆、荆、襄、宜四地七校考试联盟2017届高三2月联考)已知α为第四象限角,1sin cos 5αα+=,则tan 2α的值为 A.12-B.12C.13- D.13 3、(荆门市2017届高三元月调考)若将函数1π()sin(2)23f x x =+图象上的每一个点都向左平移π3个单位,得到()g x 的图象, 则函数()g x 的单调递增区间为A .ππ[π,π]()44k k k Z -+∈B .π3π[π,π]()44k k k Z ++∈C .2ππ[π,π]()36k k k Z --∈D .π5π[π,π]()1212k k k Z -+∈ 4、(荆州市五县市区2017届高三上学期期末)计算sin 46cos16cos314sin16⋅-⋅=AB.2CD .125、(天门、仙桃、潜江市2017届高三上学期期末联合考试)已知1tan()42πα+=,且02πα-<<, 则22sin sin 2cos()4ααπα+-等于A. B.C.D6、(武汉市2017届高三毕业生二月调研考)已知函数()()17sin cos 0326f x x x ππωωω⎛⎫⎛⎫=+--> ⎪ ⎪⎝⎭⎝⎭的最小正周期为2π,则6f π⎛⎫-= ⎪⎝⎭A.34 B. 327、(武汉市武昌区2017届高三1月调研)在锐角ABC ∆中,角,,A B C 的对边分别为a ,b ,c ,若2sin a b C =,则tan tan tan A B C ++的最小值是( )A .4 B..8、(襄阳市2017届高三1月调研)已知2sin cos 2sin ,sin 22sin ,θθαθβ+==,则 A. cos 2cos βα= B. 22cos 2cos βα= C. cos 22cos 2βα= D. cos 22cos 2βα=-9、(襄阳市优质高中2017届高三1月联考)已知函数()()()()()sin ,0cos ,0x x f x x x αβ+≤⎧⎪⎨->⎪⎩是偶函数,则下列结论可能成立的是 A. ,48ππαβ==B. 2,36ππαβ== C. ,36ππαβ== D. 52,63ππαβ== 10、(孝感市七校教学联盟2017届高三上学期期末)下列命题中正确的是( )A .函数y sin x =,[]0,2x π∈是奇函数B .函数y sin26x π=-())在区间-63ππ⎡⎤⎢⎥⎣⎦,上单调递减 C .函数y 2sin(2)cos 2()36x x x R ππ⎛⎫=--+∈ ⎪⎝⎭的一条对称轴方程是6x π= D .函数y sin cos x x ππ=的最小正周期为2,且它的最大值为111、(湖北省部分重点中学2017届高三上学期第二次联考)已知()s i n2017c o s 201766f x x x ππ⎛⎫⎛⎫=++- ⎪⎪⎝⎭⎝⎭的最大值为A,若存在实数12,x x 使得对任意实数x 总有()()()12f x f x f x ≤≤成立,则12A x x -的最小值为 A.2017πB.22017π C. 42017π D.4034π12、(荆州中学2017届高三1月质量检测)已知角θ的顶点与原点重合,始边与x 轴正半轴重合,终边在直线3y x =上,则sin(2)3πθ+=( )A .310--B . 410--C .310-D .410- 13、(荆门市2017届高三元月调考)在ABC △中,角,,A B C 的对边分别为,,a b c ,且2cos 2c B a b =+,若ABC △的面积为S =,则ab 的最小值为 ▲ .14、(荆州市五县市区2017届高三上学期期末)已知1tan()42πα-=,则sin cos sin cos αααα+-的值为A .1/2B .2C .2 2D .-215、(武汉市2017届高三毕业生二月调研考)在ABC ∆中,角60C =,且t an t a n 122A B+=,则sinsin 22A B⋅= . 16、(武汉市武昌区2017届高三1月调研)函数()sin 25sin 2f x x x π⎛⎫=+- ⎪⎝⎭的最大值为 .二、解答题1、(黄冈市2017届高三上学期期末) 函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图像如图所示,将()y f x =的图象向右平移4π个单位长度后得到函数()y g x =的图象. (1)求函数()y g x =的解析式; (2)在ABC ∆中,角A,B,C 满足22sin 123A B g C π+⎛⎫=++ ⎪⎝⎭,且其外接圆的半径R=2,求ABC ∆的面积的最大值.2、(荆、荆、襄、宜四地七校考试联盟2017届高三2月联考)已知函数3c o s s i n 2s i n 32)(2-+=x x x x f ,11[,]324x ππ∈. (Ⅰ)求函数)(x f 的值域;(Ⅱ)已知锐角ABC ∆的两边长分别为函数)(x f 的最大值与最小值,且ABC ∆的外接圆半径为423,求ABC ∆的面积.3、(荆门市2017届高三元月调考) 已知a ,b ,c 分别为锐角△ABC 三个内角A ,B ,C 的对边,且(a +b )(sinA -sinB )=(c -b )sinC (Ⅰ)求∠A 的大小;(Ⅱ)若f (x 2cos cos 222x x x⋅+,求f (B )的取值范围.4、(荆州市五县市区2017届高三上学期期末)已知函数3c o s s i n 2s i n 32)(2-+=x x x x f ,11[,]324x ππ∈. (Ⅰ)求函数)(x f 的值域;(Ⅱ)已知锐角ABC ∆的两边长分别为函数)(x f 的最大值与最小值,且ABC ∆的外接圆半径为423,求ABC ∆的面积.5、(天门、仙桃、潜江市2017届高三上学期期末联合考试)已知函数()sin cos f x ax x x =+,且()f x 在4x π=. (Ⅰ)求a 的值,并讨论()f x 在[,]ππ-上的单调性;(Ⅱ)设函数1()ln(1),01xg x mx x x-=++≥+,其中0m >,若对任意的1[0,)x ∈+∞总存在2[0,]2x π∈,使得12()()g x f x ≥成立,求m 的取值范围.6、(襄阳市2017届高三1月调研)已知函数()22sin cos .f x x x x =+ (1)求函数()f x 的单调区间; (2)当,33x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值和最小值.7、(襄阳市优质高中2017届高三1月联考)在ABC ∆中,角,,A B C 的的对边分别为,,a b c (1)若,,a b c 成等比数列,12cos 13B =,求cos cos sin sin A CA C+的值;(2)若,,A B C 成等差数列,且2b =,设A α=,ABC ∆的周长为l ,求()l f α=的最大值.8、(湖北省部分重点中学2017届高三上学期第二次联考)在ABC ∆中,角,,A B C 的对边分别是,,a b c ,若1cos .2b c a C -= (1)求角A ;(2)若()43,b c bc a +==ABC ∆的面积S .9、(荆州中学2017届高三1月质量检测)已知231()cos cos 224f x x x x =+-. (Ⅰ)求()y f x =的最小正周期T 及单调递增区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若5(),14f A a ==,求ABC ∆面积的最大值.参考答案一、选择、填空题1、D2、C3、B4、D5、A6、A7、C8、C9、B10、B 11、B 12、C13、1214、B1516、14.4二、解答题1、(Ⅰ)由图知,解得∵∴,即由于,因此……………………3分∴∴即函数的解析式为………………6分(Ⅱ)∵∴∵,即,所以或1(舍),……8分由正弦定理得,解得由余弦定理得∴,(当且仅当a =b 等号成立)∴∴的面积最大值为.……………………12分2、(Ⅰ)2()2sin cos 2sin(2)3f x x x x x π=+=-……….3分又117,2,sin(2)132433123x x x ππππππ≤≤∴≤-≤≤-≤ ∴函数()f x的值域为⎤⎦ ……………………………………6分(Ⅱ)依题意不妨设2,a b ABC ==∆的外接圆半径r =,sin 2323a b A B r r ======……………………8分1cos 3A B ==sin sin()sin cos cos sin C A B A B A B =+=+=…………………..10分11sin 2223ABC S ab C ∆∴==⨯=分 3、解:(1)因为()(sin sin )()sin .a b A B c b C +-=-由正弦定理有()()()a b a b c b c +-=- 即有222b c a bc +-=.由余弦定理得2221cos 222b c a bc A bc bc +-===,60A ∴=︒ …………6分 (2)由题,21()cos cos sin 22262B B B f B B π⎛⎫=+=++ ⎪⎝⎭, 且在锐角ABC ∆中,62B ππ<<,2363B πππ<+<sin 16B π⎛⎫<+≤ ⎪⎝⎭,()f B ∴的取值范围是32⎤⎥⎝⎦.…………12分4、(Ⅰ)2()2sin cos 2sin(2)3f x x x x x π=+=-……….3分又117,2,sin(2)132433123x x x ππππππ≤≤∴≤-≤≤-≤ ∴函数()f x的值域为⎤⎦ ……………………………………6分(Ⅱ)依题意不妨设2,a b ABC ==∆的外接圆半径r =,sin 2222a b A B r r ======分1cos 3A B ==sin sin()sin cos cos sin C A B A B A B =+=+=…………………..10分11sin 222ABC S ab C ∆∴==⨯=分 5、 【解析】(Ⅰ)∵()sin cos sin (1)sin cos f x a x ax x x a x ax x '=+-=-+ ………………1分222()(1)44f a a πππ'=-+=∴1a =,()cos f x x x '=………………………………………………………3分 当()0f x '>时,2x ππ-<<-或02x π<<当()0f x '<时,02x π-<<或2x ππ<<∴()f x 在(,),(0,)22πππ--上单调递增;在(,0),(,)22πππ-上单调递减 (6)分(Ⅱ)当[0,]2x π∈时,()f x 单调递增,∴min ()(0)1f x f ==,则只需()1g x ≥在[0,)x ∈+∞上恒成立即可 (7)分222()()(0,0)(1)(1)m m x m g x x m mx x -+'=≥>++①当2m ≥时,20m m-≥ ∴()0g x '≥在[0,)+∞上恒成立, 即()g x 在[0,)+∞上单调递增 又(0)1g =,∴()1g x ≥∴()1g x ≥在[0,)+∞上恒成立,故2m ≥时成立;………………………9分 ②当02m <<,x ∈时,()0g x '<,此时()g x 单调递减 ∴()(0)1g x g <=,故02m <<时不成立....................................11分 综上所述,m 的取值范围是[2,)+∞ (12)分6、(Ⅰ)解:错误!未找到引用源。

(完整word)(完整word版)2017年高考数学理试题分类汇编:三角函数,推荐文档

(完整word)(完整word版)2017年高考数学理试题分类汇编:三角函数,推荐文档

2017年高考数学理试题分类汇编:三角函数二填空选择题【答案】【答案】【解析】1. (2017年天津卷文)设函数f(X )2sin( x ),x R ,其中o’ 丨兀若 f(5n )2,f0,且f(x)的 最小正周期大2 n ,则2 3 1 3n12 11 n 24(B ) (D)2 3 1 311 n 72 7n 24【解析】由题意得58 11 82匕k2,其中k i ,k 2所以3(k 22kJ -,又 T —23,所以1,所以2k 1,由|也,故选A .2. (2017年天津卷理 )设函数f(x) 2si n(R ,其中)0,且f (x)的最小正周期大于2 ,则(A )12 (B )12 24(D)24【解析】由题意81182k 1 k2所以 2k 11 12 ,3.( 2017年全国川卷文22,其中 k 1,k 2 Z,所以故选A.ABC 内角 3(k2A, B,C 的对边分别为a,b,c ,已知2kJ ,又T 0■,所以015根据正弦定理有:sin 600sin B2 n已知曲线 C 1: y =cos x ,C 2: y =sin (2x +),则下面结论正确的是3冗A •把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2450 A7504.(2017年新课标I ) 9.A.4B.2C.D.B .把C 1上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移n 个单位长度,得到曲线12 C 2C . 把C 1上各点的横坐标缩短到原来的1倍, 2纵坐标不变, 再把得到的曲线向右平移n个单位长度,得到曲线6C 2D . 把C 上各点的横坐标缩短到原来的1倍, 2纵坐标不变, 再把得到的曲线向左平移n个单位长度,得到曲线12C2【答案】D6.(2017年浙江卷)14 .已知△ABC , AB = AC =4 , BC =2.点D 为AB 延长线上一点,BD=2,连结CD ,贝U △BDC 的面积是 _____ cos Z BDC = _____ ,8.( 2017年新课标n 文)16.△ ABC 的内角 A,B,C 的对边分别为 a,b,c 若2b cosB= a cosC+c cosA,则B=— 39. ( 2017年新课标n 文)3.函数f x = sin ( 2x+—)的最小正周期为 (C )3【解析】f x 1 cos 2 x , 3cosx3 cos 2x \ 3 cosx -44cosx乜21, x 0,:那么cosx 0,1,当 cosx3时函数取得最大值222【答案】11.【解析】取 BC 中点E , DC 中点F , 由题意:AE BC,BF CD , .15 △ ABE 中,BE 1DBC1DBC 1cos ABCcos一 ,siL 1—AB 44:164SA BCD5. ( 2017年新课标n 卷理)14•函数f x .2sin x 3 cosx 0,2的最大值是-BD BC sin DBC .2 22又 cos DBC 1 2s in DBF1, sin DBF 410 4cos BDC sin DBF综上可得,△ BCD 面积为cos BDC-10 47.(2017年新课标n 文).13函数f x =2cosxsinx 的最大值为10.(2017年浙江卷)11.我国古代数学家刘徽创立的“割圆术”可以估算圆周率 n,理论上能把n 的值计算到任意精度.【解析】本题选择D 选项.4]! tan( -)ta^ 1 丄 4 4 614.(2017年江苏卷 5. tan()若15. (2017年新课标I 文)11 . △ABC 的内角A 、B 、C 的对边分别为 a 、b 、c 。

2017年高考数学—三角函数(解答+答案)

2017年高考数学—三角函数(解答+答案)

2017年高考数学—三角函数(解答+答案)1.(17全国1理17.(12分))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin sin B C ;(2)若6cos cos 1,3B C a ==,求△ABC 的周长.2.(17全国2理17.(12分))ABC ∆的内角A B C 、、所对的边分别为,,a b c ,已知2sin()8sin 2B AC +=, (1)求cos B ;(2)若6a c +=,ABC ∆的面积为2,求b .3.(17全国3理17.(12分))ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin 0,2A A a b +===(1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.4.(17北京理(15)(本小题13分))在ABC ∆中,360,7A c a ∠==o(Ⅰ)求sin C 的值;(Ⅱ)若7a =,求ABC ∆的面积.已知函数())2sin cos 3f x x x x π=--(Ⅰ)求()f x 的最小正周期; (Ⅱ)求证:当[,]44x ππ∈-时,1()2f x ≥-6.(17山东理16)设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<.已知()06f π=. (Ⅰ)求ω;(Ⅱ)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的最小值.7.(17山东文(17)(本小题满分12分))在△ABC 中,角A,B,C 的对边分别为a,b,c,已知b=3,6AB AC =-u u r u u u rg ,3ABC S ∆=,求A 和a 。

8.(17天津理15.(本小题满分13分))在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =. (Ⅰ)求b 和sin A 的值; (Ⅱ)求πsin(2)4A +的值.在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A b B =,2225()ac a b c =--.(I )求cos A 的值; (II )求sin(2)B A -的值.10.(17浙江18.(本题满分14分))已知函数22()sin cos 23sin cos ()f x x x x x x R =--∈(Ⅰ)求2()3f π的值. (Ⅱ)求()f x 的最小正周期及单调递增区间.11.(17江苏16. (本小题满分14分))已知向量(cos ,sin ),(3,3),[0,]a x x b x π==-∈. (1)若//a b ,求x 的值; (2)记,求()f x 的最大值和最小值以及对应x 的值参考答案:1.解:(1)由题设得21sin 23sin a ac B A =,即1sin 23sin ac B A=由正弦定理得1sin sin sin 23sin AC B A =故2sin sin 3B C =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年高考试题分类汇编之三角函数
一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(2017新课标Ⅲ文数)已知4
sin cos 3
αα-=
,则sin 2α=( ) 9
7.-A
.B 29
-
.C 29
.
D 79
2.(2017新课标Ⅰ文数)ABC ∆的内角C B A ,,的对边分别为.,,c b a 已知
sin sin (sin cos )0B A C C +-=,,2,2==c a 则=c ( )
.A π12
.
B π6
.
C π4
.
D π3
3.(2017新课标Ⅲ文数)函数)6
cos()3sin(51)(π
π-++=
x x x f 的最大值为( ) .
A 6
5
1.B
.
C 35
.
D 15
4.(2017天津理)设函数()2sin()f x x ωϕ=+,R x ∈,其中0ω>,||ϕ<π.
若5(
)28f π=,()08
f 11π=,且()f x 的最小正周期大于2π,则( ) .A 23
ω=,12ϕπ=
.B 23ω=,12ϕ11π
=-
.C 1
3
ω=,24ϕ11π=-
.D 13
ω=,24ϕ7π
= 5.(2017山东理)在锐角三角形C ∆AB 中,角C B A ,,的对边分别为a ,b ,c .且满 足()sin 12cosC 2sin cosC cos sinC B +=A +A ,则下列等式成立的是( )
.A 2a b = .B 2b a = B A C 2.= A B D 2.=
6.(2017新课标Ⅲ理数)设函数)3
cos()(π
+
=x x f ,则下列结论错误的是( )
.A )(x f 的一个周期为π2-
.B y =f (x )的图像关于直线x =
83
π
对称
.C f (x +π)的一个零点为x =6
π
.D f (x )在(
2
π
,π)单调递减 7.(2017天津文)设函数()2sin(),f x x x ωϕ=+∈R ,其中0,||πωϕ><.若
5π11π(
)2,()0,88
f f ==且()f x 的最小正周期大于2π,则( ) .A 2π,312ωϕ== .B 211π,312ωϕ==- .C 111π,324ωϕ==- .D 17π,324ωϕ==
8.(2017新课标Ⅰ理数)已知曲线)3
22sin(:,cos :21π
+==x y C x y C ,则下面结论正确的是( )
.A 把1C 上各点的横坐标伸长到原来的2倍,
纵坐标不变,再把得到的曲线向右平移π
6
个单位长度,得到曲线2C
.B 把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移
π12
个单位长度,得到曲线2C
.C 把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π
6
个单位长度,得到曲线2C
.D 把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移
π
12
个单位长度,得到曲线2C
二、填空题(将正确的答案填在题中横线上)
9.(2017北京文)在平面直角坐标系xoy 中,角与角均以ox 为始边,它们的终边关于
y 轴对称.若3
1sin =α,则=βsin _________.(理)=___________.
10.(2017新课标Ⅰ文数)已知π(0)2
a ∈,,2tan =α,则π
cos ()4α-=__________.
11.(2017新课标Ⅱ文).ABC △的内角,,A B C 的对边分别为,,a b c ,
αβcos()αβ-
若2cos cos cos b B a C c A =+,则B = . 12.(2017江苏)若则 .
13.(2017新课标Ⅲ文数)ABC ∆的内角C B A ,,的对边分别为.,,c b a 已知
3,6,600===c b C ,则=A _________.
14.(2017
新课标Ⅱ理)函数2
3()sin 4f x x x =-
([0,])2
x π
∈的最大值是_______.
15.(2017浙江)已知ABC ∆,.2,4===BC AC AB 点D 为AB 延长线上一点,2=BD ,
连结CD ,则BDC ∆的面积是______,=∠BDC cos _______. 三、解答题(应写出必要的文字说明、证明过程或演算步骤)
16.(2017北京文)已知函数.
(I ))(x f 的最小正周期; (II )求证:当时,.
17.(2017山东文)在ABC △中,角C B A ,,的对边分别为c b a ,,,已知3=b ,
6AB AC ⋅=-,3ABC S =△,求A 和a .
18.(2017天津文)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知
sin 4sin a A B =
,222)ac a b c =--.
(I )求cos A 的值; (II )求sin(2)B A -的值.
π1
tan(),46
α-=tan α
=())2sin cos 3
f x x -
x x π
=-[,]44x ππ
∈-
()1
2
f x ≥-
19.(2017北京理)在ABC △中,.7
3,600
a c A =
=∠ (Ⅰ)求C sin 的值; (Ⅱ)若7=a ,求ABC △的面积.
20.(2017新课标Ⅱ理)
ABC △的内角,,A B C 的对边分别为,,a b c ,已知()2
sin 8sin 2
B A
C +=. (1)求cos B ; (2)若6a c +=,ABC △的面积为2,求b .
21.(2017新课标Ⅲ理数)
ABC △的内角,,A B C 的对边分别为,,a b c ,已知.2,72,0cos 3sin ===+b a A A
(1)求c ; (2)设D 为BC 边上一点,且AC AD ⊥,求ABD ∆的面积.
22.(2017山东理)设函数()sin()sin()62
f x x x π
π
ωω=-
+-,其中03ω<<.已知()06
f π
=.
(Ⅰ)求ω;
(Ⅱ)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4
π
个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的最小值.
23.(2017新课标Ⅰ理数)
ABC △的内角,,A B C 的对边分别为,,a b c ,已知ABC △的面积为
2
3sin a A
(1)求C B sin sin ; (2)若3,1cos cos 6==a C B ,求ABC △的周长.
24.(2017江苏)已知向量
(1)若b a //,求x 的值;
(2)记,求的最大值和最小值以及对应的的值.
25.(2017浙江)已知函数).(cos sin 32cos sin )(2
2R x x x x x x f ∈--=
(Ⅰ)求的值. (Ⅱ)求的最小正周期及单调递增区间.
26.(2017天津理)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >

(cos ,sin ),(3,[0,π].x x x ==∈a b ()f x =⋅a b ()f x x 2(
)3
f π
()f x
5,6a c ==,3
sin 5
B =
. 求(Ⅰ)求b 和sin A 的值; (Ⅱ)求πsin(2)4A +的值.。

相关文档
最新文档