缓蚀剂

合集下载

缓蚀剂储存要求

缓蚀剂储存要求

缓蚀剂储存要求详细解析缓蚀剂,作为一种能够有效抑制或减缓金属腐蚀的化学物质,被广泛应用于石油、化工、电力、冶金等众多领域。

为了确保缓蚀剂的性能稳定、安全有效,其储存环节显得尤为关键。

以下将对缓蚀剂的储存要求进行详细解析。

一、储存环境的基本要求干燥性:缓蚀剂储存的首要条件是保持环境的干燥。

湿度过高容易导致缓蚀剂吸湿受潮,进而影响其使用效果。

因此,储存场所应具有良好的通风条件,避免潮湿、渗水等现象。

避光性:部分缓蚀剂在光照下会发生光化学反应,导致性能降低或失效。

因此,储存场所应避免阳光直射,最好选择阴凉、避光的地方。

清洁度:储存环境应保持整洁,避免灰尘、污垢等污染物进入缓蚀剂中,影响其纯净度和使用效果。

二、储存容器的选择密封性:缓蚀剂储存容器应具有良好的密封性能,以防止空气、水分等外部物质进入容器内部,与缓蚀剂发生反应。

耐腐蚀性:由于缓蚀剂本身具有一定的化学活性,因此储存容器应选用耐腐蚀材料制成,如塑料、玻璃、陶瓷等。

避免使用金属容器,以免与缓蚀剂发生化学反应。

避光性:对于光敏性缓蚀剂,储存容器应具有避光性能,如采用棕色玻璃瓶等。

三、储存温度的控制常温储存:大多数缓蚀剂可在常温下储存,但应避免极端高温或低温环境。

温度过高会加速缓蚀剂的老化、分解等过程,而温度过低则可能导致其结晶、凝固等现象。

特殊温度要求:对于部分特殊缓蚀剂,如低温储存型、高温储存型等,应根据其性能要求选择相应的储存温度。

例如,低温储存型缓蚀剂应储存在冰箱或冷库中,以保持其低温稳定性。

四、储存期限的管理有效期:缓蚀剂具有一定的使用有效期,超过有效期后其性能可能会发生变化。

因此,在储存过程中应定期检查缓蚀剂的有效期,并按照“先进先出”的原则进行使用,确保在有效期内使用完毕。

定期检查:储存期间应定期对缓蚀剂进行检查,包括外观、颜色、气味等方面的变化。

如发现异常情况,应及时处理或更换。

五、安全储存措施防火防爆:缓蚀剂可能含有易燃、易爆成分,因此在储存过程中应严格遵守防火防爆规定。

水系统缓蚀剂技术参数

水系统缓蚀剂技术参数

水系统缓蚀剂技术参数
水系统缓蚀剂是用于防止金属腐蚀的一种化学品,它可以添加
到水系统中,以减少或阻止金属表面的腐蚀。

缓蚀剂的技术参数包
括但不限于以下几个方面:
1. 成分,缓蚀剂的主要成分通常包括有机磷化合物、缓蚀剂助
剂等,不同的产品可能含有不同的成分,需要查看具体产品说明书
或技术资料。

2. pH值,缓蚀剂适用的水系统的pH范围,一般来说,缓蚀剂
对水的pH值有一定的要求,需要在一定的范围内才能发挥最佳效果。

3. 浓度,缓蚀剂在水系统中的推荐投加浓度,通常以ppm(百
万分之一)或者mg/L(毫克/升)为单位。

4. 温度范围,缓蚀剂适用的水温范围,不同的缓蚀剂可能在不
同的温度下有不同的效果。

5. 使用方法,缓蚀剂的投加方法、频率等,以及与其他水处理
剂的配合使用情况。

6. 性能指标,包括缓蚀效果、持久时间、对水质的影响等性能
参数。

7. 安全注意事项,缓蚀剂的安全使用方法、防护措施、应急处
理等。

需要注意的是,不同的水系统缓蚀剂可能具有不同的技术参数,使用前应仔细阅读产品说明书或者咨询相关的技术人员,以确保正
确的使用和达到预期的效果。

高温缓蚀剂分类标准

高温缓蚀剂分类标准

高温缓蚀剂分类标准全文共四篇示例,供读者参考第一篇示例:高温缓蚀剂(High Temperature Corrosion Inhibitors)是一类专门用于抑制金属在高温环境下发生腐蚀的化学品。

在工业生产中,金属部件常常需要在高温环境下运行,但高温环境对金属材料具有腐蚀性,容易导致设备损坏和生产中断。

使用高温缓蚀剂是一种有效的方法来保护金属表面,延长设备的使用寿命。

根据其化学成分和作用机理的不同,高温缓蚀剂可以被分为多个分类。

以下是一些常见的高温缓蚀剂分类标准:一、按照化学成分分类:1. 有机高温缓蚀剂:主要成分是含氮或含硫的有机物,如有机硫化物、有机胺类等。

这类高温缓蚀剂通过与金属表面形成保护膜或络合物来阻止金属与氧气等腐蚀介质接触,减缓金属的腐蚀速度。

2. 金属盐类高温缓蚀剂:主要成分是某些金属的盐类,如铬盐、钼盐、锌盐等。

这类高温缓蚀剂可以在金属表面形成一层致密的氧化膜,阻止氧气等腐蚀介质与金属发生反应。

3. 离子高温缓蚀剂:主要成分是一些具有缓蚀性能的离子,如铁离子、铜离子等。

这类高温缓蚀剂可以在金属表面形成一层保护膜或络合物,减少金属的腐蚀。

三、按照适用温度范围分类:1. 低温高温缓蚀剂:适用于高温环境下金属的缓蚀。

这类高温缓蚀剂可以在较高温度下形成稳定的保护膜或阻隔层,有效抑制金属的腐蚀。

2. 高温高温缓蚀剂:适用于极高温度环境下金属的缓蚀。

这类高温缓蚀剂具有较高的耐热性能,可以在极高温度下形成稳定的保护膜或阻隔层,有效抑制金属的腐蚀。

高温缓蚀剂是一类重要的化学品,对于保护金属在高温环境下的腐蚀具有重要作用。

选择适合的高温缓蚀剂可以有效延长设备的使用寿命,提高生产效率。

在实际应用中,需要根据金属材料的种类、操作温度、腐蚀介质等因素,选择合适的高温缓蚀剂,并严格按照说明书使用,以确保其缓蚀效果和安全性。

第二篇示例:高温缓蚀剂是一种能够在高温下有效预防金属设备的腐蚀的化学品,通常被广泛应用于石油化工、航空航天、核电等领域。

纳米缓蚀剂

纳米缓蚀剂

纳米缓蚀剂
纳米缓蚀剂是一种新型的防腐蚀材料,具有非常优异的性能和广泛的应用前景。

纳米缓蚀剂可以有效地延缓金属材料的腐蚀速度,提高金属材料的耐蚀性,从而延长其使用寿命。

本文将从纳米缓蚀剂的原理、制备方法、应用领域等方面进行探讨。

一、纳米缓蚀剂的原理
纳米缓蚀剂是由纳米颗粒组成的,这些纳米颗粒具有较大的比表面积和特殊的表面活性,可以与金属表面形成一层保护膜,阻止腐蚀介质对金属的侵蚀。

此外,纳米缓蚀剂还可以通过阻断金属表面的电子传递过程,减少金属表面的阳极反应,从而达到缓蚀的效果。

制备纳米缓蚀剂的方法主要有物理法、化学法和生物法等。

物理法是通过机械、热处理等手段将金属材料制备成纳米颗粒,然后与金属表面接触形成保护膜。

化学法是通过溶剂、还原剂等化学物质将金属材料还原成纳米颗粒,然后制备成纳米缓蚀剂。

生物法则是利用微生物或生物体内的物质,通过生物合成的方式制备纳米缓蚀剂。

三、纳米缓蚀剂的应用领域
纳米缓蚀剂广泛应用于海洋工程、船舶建造、石油化工、航空航天等领域。

在海洋工程中,纳米缓蚀剂可以有效地保护海洋平台、海洋钻井设备等金属结构,延长其使用寿命。

在船舶建造领域,纳米
缓蚀剂可以减少船体的腐蚀速度,提高船体的抗腐蚀性能。

在石油化工领域,纳米缓蚀剂可以用于石油管道、石油储罐等设备的防腐蚀处理,提高设备的耐用性。

在航空航天领域,纳米缓蚀剂可以用于飞机、火箭等金属结构的防腐蚀处理,提高其使用寿命。

总的来说,纳米缓蚀剂作为一种新型的防腐蚀材料,具有非常广泛的应用前景。

随着科学技术的不断发展,纳米缓蚀剂将在未来得到更加广泛的应用,为人类的生产生活带来更多的便利和效益。

缓蚀剂工作原理

缓蚀剂工作原理

缓蚀剂工作原理
缓蚀剂工作原理:
缓蚀剂是一种添加在金属表面的化学物质,用于减缓金属腐蚀的速率。

其工作原理包括以下几个方面:
1. 阻断反应:缓蚀剂可以与金属表面形成一层保护膜,阻断氧、水或其他腐蚀剂与金属表面的接触。

这种保护膜可以防止腐蚀剂的侵入,减少金属表面的腐蚀反应。

2. 电化学作用:缓蚀剂可以通过改变金属表面的电化学性质来减缓腐蚀反应的进行。

例如,它们可以增加金属表面的极化电阻,降低金属与电解质之间的电导率,从而降低腐蚀电流的流动速率。

3. 缓解应力:缓蚀剂还可以通过减少金属表面的应力集中来减缓腐蚀反应。

例如,它们可以改变金属晶界的形态,使其更加均匀,从而减少应力集中。

4. 离子吸附:缓蚀剂可以通过与金属表面上的离子发生吸附作用,阻碍腐蚀反应的进行。

它们可以吸附在金属表面上,并改变腐蚀剂吸附或扩散的途径,从而延缓腐蚀的发生。

综上所述,缓蚀剂通过阻断反应、改变电化学性质、缓解应力和离子吸附等方式,减缓金属腐蚀的速率。

这些机制有时也可以相互作用,共同起到缓蚀的作用。

2--缓蚀剂

2--缓蚀剂

第2 章 缓蚀剂
第2 章 缓蚀剂
(2)酸性介质中的缓蚀剂 ) 该类缓蚀剂一般用于金属除锈及除氧化皮的酸洗过程中, 故称酸洗缓蚀剂。 该类缓蚀剂的作用是在酸溶解金属上的氧化皮、锈蚀产 物的同时,抑制酸对金属基体的溶解。酸洗缓蚀剂的缓蚀 效率按照下式计算:
不用缓蚀剂时的腐蚀速 度 − 使用缓蚀剂的腐蚀速度 不用缓蚀剂时的腐蚀速 度
第2 章 缓蚀剂
(3)油溶性缓蚀剂 ) 结构: 结构:油溶性缓蚀剂分子结构的特点是不对称性,一 般由极性和非极性的两个基团构成。常见的极性基团有
− OH ,−COOH ,− SO3 H ,− NH 2
它们与金属、水具有很强的亲和力;非极性基团主要 是烃基,具有亲油憎水性。因此,当油溶性缓蚀剂与金属 接触时,会发生缓蚀剂分子在油—金属界面的定向吸附。 — 作用机理: 作用机理:有两种理论 a:成膜理论:该理论认为,缓蚀剂分子吸附在金属表 :成膜理论: 面后,会与金属发生化学反应,生成难溶于水的钝化膜 (相膜),从而阻滞了腐蚀电池的电极过程。如BTA即属 于该类。
第2 章 缓蚀剂
一般金属为弱的电子接受体,称为软酸;而高价的金属阳 离子如Fe3+,AL3+成为硬酸,电负性较强的F、O、N化合 物中的阴离子为强的电子给予体,为硬碱,电负性较小的 S、P、Br、I等化合物的阴离子则为软碱。 硬酸与硬碱形成物理吸附,软酸与软碱形成化学吸附。 (B)化学吸附: 大部分有机缓蚀剂分子中,含有以氧、氮、硫、磷为 中心原子的极性基团,具有一定的供电子能力。两者可以 形成配位反应而发生化学吸附。该吸附具有明显的吸附选 择性。过程为不可逆,受温度影响小。化学吸附多为抑制 阳极反应。
第2 章 缓蚀剂
(2)阴极型缓蚀剂: )阴极型缓蚀剂: 酸式碳酸钙、聚磷酸盐、硫酸锌、砷离子、锑离子等, 能使阴极过程减慢,增大酸性溶液中氢析出的过电位,使 腐蚀电位向负移动。此类缓蚀剂是“安全型缓蚀剂” 作用过程:a成膜型阴极缓蚀剂,腐蚀过程在研究生成 的OH-与缓蚀剂反应生成的不溶性物质使金属表面形成膜 层,阻碍阴极反应。(硫酸锌,碳酸氢钙及镁,锰等钢铁 缓蚀剂);b增加氢离子放电过电位的缓蚀剂,在酸性溶 液中砷离子、锑离子等在金属表面析出时,提高了氢离子 放电的过电位而抑制氢离子的还原反应。 (3)混合型缓蚀剂: )混合型缓蚀剂: 同时抑制阳极反应及阴极反应,例如含氮、含硫以及 既含氮有含硫的有机化合物、琼脂、生物碱,硅酸钠,铝 酸钠等。

缓蚀剂处置方案

缓蚀剂处置方案

缓蚀剂处置方案
背景介绍
缓蚀剂是一种在金属表面形成被膜的化学物质,能够防止金属表面与空气、水等发生的化学反应,从而起到保护金属表面不受腐蚀的作用。

但是,缓蚀剂也会对环境造成一定的影响。

因此,在使用缓蚀剂的过程中,必须采取科学的处置方案,避免对环境造成过大的污染。

缓蚀剂的分类
缓蚀剂通常根据其所包含的活性元素不同进行分类,主要分为有机缓蚀剂和无机缓蚀剂。

有机缓蚀剂的活性元素主要是含有氮、硫、氧等元素的有机化合物,例如乙二胺四乙酸(EDTA)、亚硫酸等。

无机缓蚀剂的活性元素主要是金属离子,例如钙、锌、铝等。

缓蚀剂的处理方法
缓蚀剂被使用后,需要进行处理,以免对环境造成污染。

常见的缓蚀剂处理方法有以下几种:
活性炭吸附法
将废水通过活性炭床吸附,活性炭的孔径和表面积大,可吸附很多物质。

废水中所含的缓蚀剂分子可被活性炭吸附,使缓蚀剂被去除。

离子交换法
将废水通过离子交换树脂床,树脂对缓蚀剂吸附的能力较弱。

通过将废水中的离子和树脂中的离子进行交换,使得废水中的缓蚀剂被去除。

其他化学反应法
通过化学氧化、沉淀等化学反应将废水中的缓蚀剂转化为无毒、无害的物质,再进行排放。

总结
缓蚀剂是工业生产中必不可少的物质,但是使用过程中必须采取科学的处理方案,避免对环境造成危害。

以上介绍的处理方法只是一部分,具体处理方法应根据实际情况进行选择。

在使用缓蚀剂的过程中,更应该注重环保,遵守相关的规定,尽量减少对环境的影响。

常用缓蚀剂

常用缓蚀剂

常用缓蚀剂①若丁:若丁是由二邻苯酸脲、锭粉、食盐、平平加等组成的。

其配比(质量百分比)如下:二邻苯酸脲 26%食盐52%锭粉 l7%平平加(烷基聚氧乙烯醚) 5%若丁缓蚀剂适用于黑色金属及铜在硫酸、盐酸、磷酸、氢氟酸、柠檬酸中的清洗。

加入量为0.8%,对碳钢、铜的缓蚀率大于95%。

② SH-415缓蚀剂SH-415缓蚀剂由制药厂的下脚料制成,适用于蒸汽机车锅炉水垢的清洗。

在7%~9%盐酸和l%氢氟酸组成的清洗液中,加入量为0.5%。

③ SH-406缓蚀剂SH-406缓蚀剂由制药厂的下脚料、溶剂和助剂等组成,适用于低压锅炉盐酸除垢及20#碳钢盐酸酸洗,加入量为0.5%。

④ SH-416缓蚀剂.SH-416缓蚀剂由制药厂的下脚料制成,适用于大型直流锅炉及大、中、小汽包炉的酸洗。

加入量为0.3%。

表1-29所示为SH-416缓蚀剂在HF酸洗时的缓蚀效果。

⑤ IS-129缓蚀剂IS-129缓蚀剂由咪唑季铵盐、烷基醇聚氧乙烯醚等组成,适用于高、中、低压锅炉水垢的酸洗,加入量为0.3%。

⑥Lan-826缓蚀剂Lan-826缓蚀剂是多用型酸洗缓蚀剂,外观为淡黄色液体,相对密度l.06,微碱性,不燃烧。

为多用型酸洗缓蚀剂,既适用于氧化性酸,有适用于非氧化性酸;既适用于多种无机酸,又适用于多种有机酸,如加氨柠檬酸、加氨柠檬酸一氟化氢铵、氢氟酸、盐酸、硝酸、硝酸-氢氟酸、氨基磺酸、羟基乙酸、羟基乙酸-甲酸-氟化氢铵、EDTA、草酸、磷酸、醋酸、硫酸等清洗剂中可使用Lan~826。

Lan-826缓蚀剂具有优良的缓蚀效果,在一般酸洗条件下,腐蚀率不大于/a。

Lan-826能够有效抑制钢在酸洗时对氢的吸收和Fe3+对金属的腐蚀,使金属酸洗时不产生孔蚀。

Lan-826缓蚀剂用量少,费用低,操作简便,性能稳定,无臭无味,使用安全,特别是能避免误用缓蚀剂造成的危险。

Lan-826缓蚀剂适用于碳钢、低合金钢、不锈钢、铝等金属材料的清洗,可清除碳酸钙、氧化铁、硫酸钙、混合垢、硅质垢等垢型的污垢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

缓蚀剂的协同作用机理研究现状及发展方向学号:201106820 姓名:吉水苗摘要两种或多种缓性剂混合,其缓蚀效率得加强 (协同效应)或削弱(负协同效应)。

通过列举某些缓蚀剂协同效应实例,介绍了解释缓蚀剂协同效应机理的各种学说,并了解了其发展方向。

关键词缓蚀剂协同效应一.定义缓蚀剂anti-corrosive.corrosive inhibitor,是指以适当的浓度和形式存在于环境(介质)中时,可以防止或减缓材料腐蚀的化学物质或复合物,因此缓蚀剂也可以称为腐蚀抑制剂。

它的用量很小(0.1%~1%),但效果显著。

这种保护金属的方法称缓蚀剂保护。

缓蚀剂用于中性介质(锅炉用水、循环冷却水)、酸性介质(除锅垢的盐酸,电镀前镀件除锈用的酸浸溶液)和气体介质(气相缓蚀剂)。

单独一种缓蚀剂的缓蚀效果,比不上两种或多种缓蚀剂混合物的缓蚀效果,而且这种效果并不是简单的加合,而是相互促进的结果。

缓蚀作用因两种或多种缓蚀剂混用而得到加强的现象,称为缓蚀剂的协同效应(或协同作用 )。

如当几种缓蚀剂混用后,其缓蚀效率反而降低的现象,叫做负协同效应。

二.协同作用实例缓蚀剂协同作用的例子是很多的,如某些有机胺或有机碱的盐类(如季铵盐),作为缓蚀剂加到硫酸溶液中,对铁的腐蚀速度抑制并不很明显 ,若同时加入卤素离子,则缓蚀作用得到大大地加强。

有机胺也有类似的现象[1,2,3],不论是脂肪胺还是芳香胺对子铁在 H2SO4或HClO4溶液中的缓蚀效果都不很明显,但若加入少量卤化物,则表现出很好的缓蚀效果。

某些吡啶衍生物在有卤素离子存在的酸性介质中,也表现出良好的协同效应。

例如溴化n -癸基吡啶,在相同浓度下对阿姆可铁在NHCl和H2SO4中的缓蚀率分别为87.6%和70%。

显然 ,这是由于吡啶化合物与盐酸中的氯离子发挥了协同效应的结果。

吡啶类化合物是常用的酸性介质缓蚀剂,它们除了与卤素离子有协同效应外,与别的缓蚀剂混用,也常表现出明显的协同效应。

一些有机缓蚀剂不仅在卤素离子存在时可产生协同效应,其他阴离子如Hs-、CNS-、有机阴离子与之相配合 ,有时也表现出协同效应。

例如磺基水杨酸,对铁在 H2SO4中单独使用时,因它能减小氢的超电压 ,是腐蚀的激发剂,但如果加入一些四丁基铵 ,则能显著地增加氢超电压 ,使得电极反应减慢达几个数量级。

三.研究现状关于缓蚀剂的协同机理,是很多腐蚀研究工作者感兴趣的间题,但因为在该领域中的理论研究,远远落后于实际应用的发展,而且因为在腐蚀体系中,有几种缓蚀剂存在所带来的金属腐蚀过程的复杂性,所以很难有一个统一的理论能对协同效应机理作出满意的解释。

但目前比较多的人认为,在酸性介质中吸附型缓蚀剂产生的协同效应、是由于在金属表面吸附了某种带电荷的离子之后,在它上面再吸附另外一种离子,导致表面覆盖度增大 ,因而提高了缓蚀效果。

例如带正电荷的季铵离子在有卤素离子(Cl-、Br-、I- )存在时,就是由于带相反电荷离子,在金属表面上产生了相互吸引,使缓蚀剂的吸附,得到进一步加强。

目前人们从不同的角度,对协同效应的机理进行了研究 ,认为是由于以下一些原因引起的[8,10]。

1.零电荷电位的移动季铵盐的缓蚀作用,在有卤素离子存在情况下,得到了加强 ,可以用零电荷电位理论来解释。

所谓零电荷电位是指金属表面没有电荷时的电位(即 Eq=0),可通过测定毛细管曲线求得。

通常金属的腐蚀电位与Eq=0是不一致的,如金属具有比Eq=0更正的电位, 金属表面就带正电荷,比Eq=0更负的电位,就带负电荷。

四丁基铵阳离子[(C4H9)4N]+,是带正电的 ,所以在铁的表面难于吸附,但是如果溶液中含有I-、Cl-、Br-等负离子,则这些负离子首先被吸附,使它带上负电,其结果就有利于季胺盐的阳离子吸附到铁表面,从而使腐蚀受到抑制。

2.电极双电层微分电容降低缓蚀剂的协同作用也可以通过测定电极的双电层微分电容变化来解释[4]。

在H2SO4溶液中,添加[(C4H9)4N]+时,铁电极的微分电容基本上无变化,但是在溶液中加入I-,则电容立刻大幅度降低,这一现象说明单独的四丁基铵对于在H2SO4中的铁,只有很微弱的吸附作用,当加入I-时,就显出吸附大大地加强,因而增加了该缓蚀剂的缓蚀效果。

3.电极的极化电阻和界面电容明显改变应用交流阻抗技术[7,9]研究缓蚀剂发现当金属表面吸附了缓蚀剂之后,电极的极化电阻Rp 和界面电容Cd都有明显变化,即Rp,值增大,Cd值减小。

这表明在腐蚀反应进行时,电荷移动阻力增大,使腐蚀速度减小。

界面电容下降,是由于电极表面介电常数较大的水分子 ,被介电常数较小而体积较大的缓蚀剂分子所取代。

4.不同的吸附模型对有机胺类缓蚀剂的协同效应[11,12,13],国内外都进行了较多的研究有机胺如RNH2在酸性溶液中,一般认为它首先质子化,变成[RNH3]+ ,即有机阳离子,带正电荷,其性质与季胺阳离子相似,因此当有机胺类化合物与Cl-、Br-、I-,等阴离子在一起时,就产生协同效应。

村川等研究了胺类化合物在过氯酸溶液中与卤素离子产生的协同效应 ,提出了三种吸附模型。

他认为第一脂肪胺在溶液中形成有机胺阳离子以([NRH]+ 表示,NR代表胺分子)被吸附在为卤素离子X-覆盖的铁表面 ,发生所谓重叠吸附;而第三脂肪胺则是通过它的中心原子N的独对电子与铁的空电子轨道形成共价键,同时又与卤素离子一起发生所谓共吸附;某些有机酸与胺类化合物在一起所表现的协同效应 ,则是通过RCOO-与[NHR]+阳离子在金属表面上发生所谓静电共吸附。

5.腐蚀电化学行为发生明显改变曹楚南[2]等研究了在酸性介质中Cl-和有机胺对铁缓蚀的协同效应认为有机胺对铁腐蚀的电化学行为的影响,由于Cl-的存在而发生明显改变。

在没有Cl-时,有机胺仅仅阻滞铁的阳极过程 ,添加Cl-以后 ,则对铁的溶解过程和析氢的阴极过程都同时发生阻滞,因此 Cl-增强了有机胺的缓蚀效果。

以上是从吸附理论来说明缓蚀剂的协同效应.应当指出的是当金属表面为吸附物覆盖时,在所吸附的阳离子之间,可能出现库仑排斥力,然而,当同时吸附阳离子和阴离子时,则在这两种离子之间会产生静电引力,其结果会使形成的吸附膜更加紧密。

Antropor认为当阳离子和阴离子被同时吸附时,吸附等温线具有 s 形状 ,表明范德华力和库仑吸引力远远超过了库仑排斥力。

6.由于形成表面反应产物而使吸附膜加厚Putilova[15]为了解释喹啉、甲基苯胺等缓蚀剂的缓蚀机理,提出“表面反应产物”理论,认为由于缓蚀剂、金属离子和介质中的阴离子之间相互反应,可能在金属表面形成一层反应产物 ,它与金属表面粘结得很紧而且有非常小的溶解度,因此可以起着物理屏蔽层的作用,能阻止溶液中侵蚀性成份通达金属表面。

炔醇类化合物是一种常用的酸性介质缓蚀剂。

炔醇(例如丙炔醇、己炔醇)作为缓蚀剂的一个特点是能耐高温和浓盐酸。

因此,现在油、气田开发进行酸化压裂所用的商品缓蚀剂,其中多半含有炔醇类化合物。

炔醇类缓蚀剂与含氮有机物复合使用,其缓蚀性能特别显著,这也是由于发挥了协同效应的结果。

Potetaer[17]等提出吸附一聚合理论来说明炔醇的缓蚀作用机理,认为炔醇在铁表面的吸附,主要是通过它的三键中的二键与金属相互作用 ,使三键受到破坏,然后发生聚合。

Poling[18]用多次红外反射技术,证实了炔醇在钢铁表面形成的吸附膜是多层的聚合物膜,有时其膜厚可达几十个纳米。

炔醇与含氮有机物产生的协同效应,是由于二者在金属表面发生缩聚反应 ,生成的缩合物膜 ,具有更致密的性质,因而起着更好的物理屏蔽作用。

综上所述,对于缓蚀剂协同效应的现象,有许多地方还是只知其然而不知其所以然。

由于金属、缓蚀剂本身以及所接触的介质等情况的复杂性,对缓蚀剂协同效应的机理和原因,虽然人们从不同的角度进行了研究,但很难取得一致的见解。

因此,研究缓蚀剂协同效应的机理,仍然是目前摆在腐蚀理论工作者面前的一项意义重大的任务。

四.发展方向1.绿色环保进入新世纪,世界化学和化工学科的发展方向发生了重大的革命性的变革[5,7],其标志就是“绿色化学”概念的提出。

根据P.T.Anastas等的定义,绿色化学就是用化学的技术和方法,从根本上减少或消灭那些对人类健康或环境有害的原料、产物、副产物、溶剂和试剂等的产生和应用。

所谓绿色技术是指在绿色化学基础上发展起来的技术,是一门全新的从源头上彻底阻止污染的化学技术。

它可将污染控制在一定水平,即在化学品的制造和应用中降低和消除有毒有害物质。

它除了需要我们在过程末端控制废物外,还要求我们在化学品的生产过程中产生更少的废物甚至零排放。

其影响已迅速扩展到自然科学的各个学科,将给以化学过程有关学科带来革命性的变化,成为2l世纪学科前沿和重点研究方向。

随着社会、经济的发展和人类环保意识的提高,绿色化无疑将是21世纪缓蚀剂发展的中心战略。

设计新的、安全、绿色的缓蚀剂分子;设计符合战略的缓蚀剂生产条件、路径,已经越来越成为我们自然科学工作者研究的重点方向,绿色化学的目标就是要实现产品和工艺的低毒、高效和无污染,创造一个优良的循环经济型社会。

作为环境友好缓蚀剂,它应有以下特点:不仅要求其最终的产品对环境无毒、无害,而且在缓蚀剂的合成制备及使用过程中也应该尽量减少对环境的影响并降低生产成本,这里面包括合成原料的选择、工艺条件的优化以及使用过程中采用复配增效技术。

从可持续发展战略出发,根据绿色化学的概念,绿色化无疑是2l世纪缓蚀剂发展的中心战略。

缓蚀剂产品的绿色化,缓蚀剂生产用原材料和转化试剂的绿色化,缓蚀剂生产反应方式的绿色化,缓蚀剂生产反应条件的绿色化已经成为自然科学的学科前沿和重点研究开发方向。

2.复配协同效应缓蚀协同效应就是两种或多种缓蚀剂混合使用后所表现出的缓蚀率远远大于各种缓蚀剂单独使用时所表现的缓蚀率的简单加和,缓蚀剂技术的发展与缓蚀剂之间存在协同作用有密切的关系,许多工业应用的商品缓蚀剂都是利用协同作用研制成的多组分配方[14]。

利用缓蚀协同作用,可以用少量的缓蚀物质获得较好的效果,可以扩大缓蚀剂的寻求范围并解决单组分难以克服的困难。

当前乃至将来在工业过程中使用成功的缓蚀剂均由多种缓蚀剂复配而成,故缓蚀协同效应已成为各国研究的热点、重点和难点。

缓蚀协同作用体系的实例很多,至今人们通过大量的研究,发现许多缓蚀物质之间在特定的条件下都会产生缓蚀协同效应。

主要有以下几个方面:有机物与卤素离子之间,有机物间,金属离子和有机物间,钼酸盐与其它缓蚀剂,钨酸盐与其它缓蚀剂间,稀土离子和配体间。

然而,对于许多缓蚀协同体系往往只知其然而不知其所以然,即对于缓蚀协同机理还没完全弄清楚,给实际高效复配缓蚀剂的研制带来了巨大的障碍。

在今后的缓蚀协同效应体系研究中,应重点加强以下的研究工作:在缓蚀协同效应体系的筛选中,应以原料易得、价格低廉、对环境友好的缓蚀剂之间进行复配筛选;借助现代大型分析仪器和科学理论研究获得协同体系中各组分间以及与金属表面间的作用机理;更好的指导缓蚀剂之间的复配协同工作;对每类缓蚀协同效应体系应加强扩展性和系统性研究。

相关文档
最新文档