动态路由协议RIP、OSPF配置
通信系统实验网络路由协议配置实验报告

网络路由协议配置实验报告实验目的1.把握RIP动态路由协议的配置和测试方式。
2.把握OSPF路由协议配置和测试方式。
实验原理动态路由协议动态路由是网络中的路由器之间彼此通信,传递路由信息,利用收到的路由信息更新路由器表的进程。
它能实时地适应网络结构的转变。
若是路由更新信息说明发生了网络转变,路由选择软件就会从头计算路由,并发出新的路由更新信息。
这些信息通过各个网络,引发各路由重视新启动其路由算法,并更新各自的路由表以动态地反映网络拓扑转变。
动态路由适用于网络规模大、网络拓扑复杂的网络。
固然,各类动态路由协议会不同程度地占用网络带宽和CPU资源。
依照是不是在一个自治域内部利用,动态路由协议分为内部网关协议(IGP)和外部网关协议(EGP)。
那个地址的自治域指一个具有统一治理机构、统一路由策略的网络。
自治域内部采纳的路由选择协议称为内部网关协议,经常使用的有RIP、OSPF;外部网关协议要紧用于多个自治域之间的路由选择,经常使用的是BGP和BGP-4。
RIP1RIP1是一种内部网关协议。
RIP1要紧用在利用同类技术与大小适度的网络。
因此通过速度转变不大的接线连接,RIP1比较适用于简单的校园网和区域网,但并非适用于复杂网络的情形。
RIP1特点:1.仅和相邻的路由器互换信息。
若是两个路由器之间的通信不通过另外一个路由器,那么这两个路由器是相邻的。
RIP1协议规定,不相邻的路由器之间不互换信息。
2.路由器互换的信息是当前本路由器所明白的全数信息。
即自己的路由表。
3.按固按时刻互换路由信息,如,每隔30秒,然后路由器依照收到的路由信息更新路由表。
4. RIP1消息通过广播地址进行发送,利用UDP 协议的520端口。
5. RIP1是一种有类路由协议,不支持不持续子网设计。
RIP1的气宇制度:距离确实是通往目的站点所需通过的链路数,取值为1~15,数值16表示无穷大。
RIP2RIP2由RIP1 而来,属于RIP1 协议的补充协议,具有RIP1协议的大体特性。
rip协议与ospf协议

rip协议与ospf协议协议名称:RIP协议与OSPF协议协议概述:RIP(Routing Information Protocol)和OSPF(Open Shortest Path First)是两种常用的动态路由协议,用于在计算机网络中实现路由选择和数据包转发。
本协议旨在详细介绍RIP协议和OSPF协议的定义、特点、工作原理、应用场景以及优缺点。
一、RIP协议1. 定义:RIP协议是一种距离向量路由协议,用于在小型网络中实现动态路由选择。
它通过交换路由信息来确定最佳路径,并使用跳数(hop count)作为度量标准。
2. 特点:- RIP协议使用UDP协议进行路由信息的交换,使用端口号520。
- RIP协议支持最大15跳的路由,超过15跳的路由会被认为是不可达。
- RIP协议每30秒广播一次路由表,以更新网络中的路由信息。
- RIP协议使用跳数作为度量标准,即选择跳数最少的路径作为最佳路径。
3. 工作原理:- RIP协议通过路由器之间的RIP消息交换来更新路由表。
- 路由器会周期性地广播自己的路由表给相邻的路由器,同时接收相邻路由器发送的路由表。
- 路由器根据接收到的路由表更新自己的路由表,并选择最佳路径。
- 当网络拓扑发生变化时,路由器会重新计算路由表。
4. 应用场景:- RIP协议适用于小型网络环境,如家庭网络、办公室网络等。
- 由于RIP协议的简单性和易于配置,它在一些简单的网络中仍然广泛使用。
5. 优缺点:- 优点:RIP协议配置简单,适用于小型网络环境,具有较好的兼容性。
- 缺点:RIP协议的收敛速度较慢,对于大型网络环境不适用,且容易产生路由环路。
二、OSPF协议1. 定义:OSPF协议是一种链路状态路由协议,用于在大型网络中实现动态路由选择。
它通过交换链路状态信息来确定最佳路径,并使用带宽、延迟等作为度量标准。
2. 特点:- OSPF协议使用IP协议进行路由信息的交换,使用标准的IP协议号89。
动态路由配置实验报告

1. 了解动态路由协议的基本原理和工作机制;2. 掌握RIP和OSPF两种动态路由协议的配置方法;3. 通过实验,提高网络配置和故障排查能力。
二、实验环境1. 路由器:2台Cisco 2960系列路由器;2. 计算机客户端:2台PC机;3. 网线:2根直通网线,2根交叉网线;4. 路由器配置软件:Tera Term或PuTTY。
三、实验拓扑实验拓扑图如下:```+------+ +------+ +------+| PC1 |---->| R1 |---->| R2 |---->| PC2 |+------+ +------+ +------+```四、实验步骤1. 配置PC1和PC2的IP地址、子网掩码和默认网关;2. 配置R1和R2的接口IP地址、子网掩码和默认网关;3. 配置R1和R2的RIP动态路由协议;4. 验证PC1和PC2之间的连通性;5. 配置OSPF动态路由协议,验证网络连通性;6. 修改R1或R2的配置,观察网络连通性变化,分析故障原因。
1. 配置PC1和PC2的IP地址、子网掩码和默认网关PC1的IP地址:192.168.1.1,子网掩码:255.255.255.0,默认网关:192.168.1.2PC2的IP地址:192.168.2.1,子网掩码:255.255.255.0,默认网关:192.168.2.22. 配置R1和R2的接口IP地址、子网掩码和默认网关R1的接口配置如下:R1(config)#interface FastEthernet0/0R1(config-if)#ip address 192.168.1.2 255.255.255.0R1(config-if)#no shutdownR1的接口配置如下:R2(config)#interface FastEthernet0/0R2(config-if)#ip address 192.168.2.2 255.255.255.0R2(config-if)#no shutdown3. 配置R1和R2的RIP动态路由协议R1的RIP配置如下:R1(config)#router ripR1(config-router)#network 192.168.1.0R1(config-router)#network 192.168.2.0R2的RIP配置如下:R2(config)#router ripR2(config-router)#network 192.168.1.0R2(config-router)#network 192.168.2.04. 验证PC1和PC2之间的连通性在PC1上ping PC2的IP地址,发现无法ping通。
动态路由-----OSPF协议原理与单区域实验配置

动态路由-----OSPF协议原理与单区域实验配置⼀.OSPF协议的介绍1.OSPF的概述OSPF(Open Shortest Path First)是⼀个内部⽹关协议(Interior Gateway Protocol,简称IGP)。
与RIP相对,OSPF是链路状态路协议,⽽RIP是距离向量路由协议。
链路是路由器接⼝的另⼀种说法,因此OSPF也称为接⼝状态路由协议。
OSPF通过路由器之间通告⽹络接⼝的状态来建⽴链路状态数据库,⽣成最短路径树,每个OSPF路由器使⽤这些最短路径构造路由表。
⽹络,OSPFv3⽤在⽹络。
可⽤于⼤型⽹络。
OSPF路由器收集其所在⽹络区域上各路由器的连接状态信息,即链路状态信息(Link-State),⽣成链路状态数据库(Link-State Database)。
路由器掌握了该区域上所有路由器的链路状态信息,也就等于了解了整个⽹络的拓扑状况。
OSPF路由器利⽤“最短路径优先算法(Shortest Path First, SPF)”,独⽴地计算出到达任意⽬的地的路由。
在OSPF协议下的路由器⼯作流程:2.OSPF的区域简介外部AS:⼀般来讲是运⾏另⼀个路由选择协议的区域,⽐如RIP,EIGRP等。
⾻⼲区域:Area 0,所有区域都必须(⼀般情况下)通过⾻⼲区域进⾏区域间的路由。
标准区域:同上,即最普通的区域。
末梢区域:Stub Area,不接收外部AS(AS代表同⼀路由协议下的路由区域)的路由信息。
完全末梢区域:Totally Stub Area,不接收外部AS的路由信息,同时也不接收本AS中其他Area的。
⾮纯末梢区域:NSSA(Not-So-Stub-Area),允许接收外部AS中以类型7的LSA发送的路由信息,并且ABR将类型7的LSA转换成类型5的LSA 在本AS内进⾏发送...3.OSPF的五种路由器DR:指定路由器,⼀个区域中的主路由器,当其他路由发数据给它时,指定路由器负责通知所有路由器。
动态路由协议:RIP与OSPF

动态路由协议:RIP 与OSPF1. 动态路由特点:减少管理任务、增加网络带宽。
2. 动态路由协议概述:路由器之间用来交换信息的语言。
3. 度量值:带宽、跳数、负载、时延、可靠性、成本。
4. 收敛:使所有路由表都达到一致状态的过程动态路由分类:自治系统(AS )内部网关协议(EIGRP 、RIP 、OSPF 、IGP )外部网关协议(EGP )按照路由执行的算法分类:距离矢量路由协议(RIP )链路状态路由协议(OSPF )两种结合(EIFRP )RIP :RIP 是距离矢量路由协议。
RIP 基本概念:定期更新(30秒)、邻居、广播更新、全路由表更新 RIP 最大跳数为15跳,16跳为不可达RIP 使用水平分割,防止路由环路:从一个接口学习到的路由信息,不再从这个接口发出去RIPv1:有类路由、RIPv2:无类路由OSPF :OSPF 是链路状态路由协议。
Router ID 是OSPF 区域内唯一标识路由器的IP 地址。
Router ID 选取规则:先选取路由器lookback 接口上最高的IP 地址,如果没有lookback 接口,就选取物理接口上的最高IP 地址。
也可以使用Router-id 命令手动指定。
OSPF 有三张表:邻接关系表、链路状态数据库、路由表》》首先建立邻接关系,然后建立链路数据库,最后通过SPF 算法算出最短路径树,最终形成路由表 OSPF 的度量值为COST (代价):COST=10^8/BW接口类型 代价(108/BW )Fast Ethernet 1Ethernet 1056K 1785OSPF 和RIP 的比较:OSPF RIP v1 RIP v2链路状态路由协议 距离矢量路由协议没有跳数的限制 RIP 的15跳限制,超过15跳的路由被认为不可达支持可变长子网掩码 (VLSM ) 不支持可变长子网掩码(VLSM ) 支持可变长子网掩码(VLSM )收敛速度快 收敛速度慢使用组播发送链路状态更新,在链路状态变化时使用触发更新,提高了带宽的利周期性广播整个路由表,在低速链路及广域网中应用将产生很大问题用率OSPF区域:为了适应大型的网络,OSPF在AS内划分多个区域,每个OSPF路由器只维护所在区域的完整链路状态信息。
IPV4静态路由,动态rip,ospf配置实验报告

一、实验目的了解静态路由和动态路由(RIP、OSPF)的配置与运行过程,会运用静态路由、动态路由配置与连接多台路由器。
二、实验内容(一)实验资源、工具和准备工作。
(二)按照5.2、5.3的配置步骤,设置路由器名称、IP地址、静态路由、动态路由(RIP、OSPF)。
保存配置文件。
重新启动路由器,调试网络,直至3台路由器互连成功。
三、实验步骤IPV4静态路由配置:Router>enableRouter#conf tRouter(config)#hostname R1R1(config)#interface fa0/0R1(config-if)#ip address 192.168.1.1 255.255.255.0R1(config-if)#exitR1(config)#interface Se2/0R1(config-if)#ip address 172.16.1.1 255.255.255.252R1(config-if)#clock rate 64000R1(config-if)#exitR1(config)#interface Se3/0R1(config-if)#ip address 172.16.3.2 255.255.255.252R1(config-if)#clock rate 64000R1(config-if)#exitR1(config)#ip route 192.168.2.0 255.255.255.0 172.16.1.2 R1(config)#ip route 192.168.3.0 255.255.255.0 172.16.3.1 R1(config)#exitR1#wrRouter>enableRouter#conf tRouter(config)#hostname R2R2(config)#interface fa0/0R2(config-if)#ip address 192.168.2.1 255.255.255.0R2(config-if)#exitR2(config)#interface Se2/0R2(config-if)#ip address 172.16.1.2 255.255.255.252R2(config-if)#clock rate 64000R2(config-if)#exitR2(config)#interface Se3/0R2(config-if)#ip address 172.16.2.1 255.255.255.252R2(config-if)#clock rate 64000R2(config-if)#exitR2(config)#ip route 192.168.1.0 255.255.255.0 172.16.1.1 R2(config)#ip route 192.168.3.0 255.255.255.0 172.16.2.2 R2(config)#exitR2#wrRouter>enableRouter#conf tRouter(config)#hostname R3R3(config)#interface fa0/0R3(config-if)#ip address 192.168.3.1 255.255.255.0R3(config-if)#exitR3(config)#interface Se2/0R3(config-if)#ip address 172.16.3.1 255.255.255.252R3(config-if)#clock rate 64000R3(config-if)#exitR3(config)#interface Se3/0R3(config-if)#ip address 172.16.2.2 255.255.255.252R3(config-if)#clock rate 64000R3(config-if)#exitR3(config)#ip route 192.168.1.0 255.255.255.0 172.16.3.2 R3(config)#ip route 192.168.2.0 255.255.255.0 172.16.2.1 R3(config)#exitR3#wrIPV4动态RIP协议配置:Router>enableRouter#conf tRouter(config)#hostname R1R1(config)#interface fa0/0R1(config-if)#ip address 192.168.1.1 255.255.255.0R1(config-if)#exitR1(config)#interface Se2/0R1(config-if)#ip address 172.16.1.1 255.255.255.252R1(config-if)#clock rate 64000R1(config-if)#exitR1(config)#interface Se3/0R1(config-if)#ip address 172.16.3.2 255.255.255.252R1(config-if)#clock rate 64000R1(config-if)#exitR1(config)#router ripR1(config-router)#network 192.168.1.0R1(config-router)#network 172.16.1.0R1(config-router)#network 172.16.3.0R1(config-router)#exitR1(config)#exitR1#wrRouter>enableRouter#conf tRouter(config)#hostname R2R2(config)#interface fa0/0R2(config-if)#ip address 192.168.2.1 255.255.255.0R2(config-if)#exitR2(config)#interface Se2/0R2(config-if)#ip address 172.16.1.2 255.255.255.252R2(config-if)#clock rate 64000R2(config-if)#exitR2(config)#interface Se3/0R2(config-if)#ip address 172.16.2.1 255.255.255.252R2(config-if)#clock rate 64000R2(config-if)#exitR2(config)#router ripR2(config-router)#network 192.168.2.0R2(config-router)#network 172.16.1.0R2(config-router)#network 172.16.2.0R2(config-router)#exitR2(config)#exitR2#wrRouter>enableRouter#conf tRouter(config)#hostname R3R3(config)#interface fa0/0R3(config-if)#ip address 192.168.3.1 255.255.255.0 R3(config-if)#exitR3(config)#interface Se2/0R3(config-if)#ip address 172.16.3.1 255.255.255.252 R3(config-if)#clock rate 64000R3(config-if)#exitR3(config)#interface Se3/0R3(config-if)#ip address 172.16.2.2 255.255.255.252 R3(config-if)#clock rate 64000R3(config-if)#exitR3(config)#router ripR3(config-router)#network 192.168.3.0R3(config-router)#network 172.16.3.0R3(config-router)#network 172.16.2.0R3(config-router)#exitR3(config)#exitR3#wrIPV4动态ospf协议配置:Router>enableRouter#conf tRouter(config)#hostname R1R1(config)#interface fa0/0R1(config-if)#ip address 192.168.1.1 255.255.255.0 R1(config-if)#exitR1(config)#interface Se2/0R1(config-if)#ip address 172.16.1.1 255.255.255.252 R1(config-if)#clock rate 64000R1(config-if)#exitR1(config)#interface Se3/0R1(config-if)#ip address 172.16.3.2 255.255.255.252 R1(config-if)#clock rate 64000R1(config-if)#exitR1(config)#router ospf 100R1(config-router)#router-id 192.168.1.0R1(config-router)#network 192.168.1.0 255.255.255.0 area 0 R1(config-router)#network 172.16.1.0 255.255.255.252 area 0 R1(config-router)#network 172.16.3.0 255.255.255.252 area 0 R1(config-router)#exitR1(config)#exitR1#wrRouter>enableRouter#conf tRouter(config)#hostname R2R2(config)#interface fa0/0R2(config-if)#ip address 192.168.2.1 255.255.255.0R2(config-if)#exitR2(config)#interface Se2/0R2(config-if)#ip address 172.16.1.2 255.255.255.252R2(config-if)#clock rate 64000R2(config-if)#exitR2(config)#interface Se3/0R2(config-if)#ip address 172.16.2.1 255.255.255.252R2(config-if)#clock rate 64000R2(config-if)#exitR2(config)#router ospf 100R2(config-router)#router-id 192.168.2.0R2(config-router)#network 192.168.2.0 255.255.255.0 area 0 R2(config-router)#network 172.16.1.0 255.255.255.252 area 0 R2(config-router)#network 172.16.2.0 255.255.255.252 area 0 R2(config-router)#exitR2(config)#exitR2#wrRouter>enableRouter#conf tRouter(config)#hostname R3R3(config)#interface fa0/0R3(config-if)#ip address 192.168.3.1 255.255.255.0R3(config-if)#exitR3(config)#interface Se2/0R3(config-if)#ip address 172.16.3.1 255.255.255.252R3(config-if)#clock rate 64000R3(config-if)#exitR3(config)#interface Se3/0R3(config-if)#ip address 172.16.2.2 255.255.255.252R3(config-if)#clock rate 64000R3(config-if)#exitR3(config)#router ospf 100R3(config-router)#router-id 192.168.3.0R3(config-router)#network 192.168.3.0 255.255.255.0 area 0 R3(config-router)#network 172.16.2.0 255.255.255.252 area 0 R3(config-router)#network 172.16.3.0 255.255.255.252 area 0 R3(config-router)#exitR3(config)#exitR3#wr四、体会和总结。
实训十六、RIP、OSPF动态路由协议的配置

OSPF缺点
配置相对复杂,需要一定的网络知识;对路由器的性能要 求较高。
不同场景下协议选择建议
小型网络
对于规模较小、结构简单的 网络,可以选择RIP协议, 因为其配置简单,易于实现 和维护。
中大型网络
对于规模较大、结构复杂的 网络,建议选择OSPF协议 。OSPF协议能够避免路由 环路问题,支持多区域划分 和多种路由类型,适用于大 型网络。
OSPF特点:无环路、收敛快、扩展性强、支持VLSM和CIDR、支持认证 等。
OSPF区域:OSPF协议通过将自治系统划分为不同的区域(Area)来优 化网络性能,减少资源消耗。
OSPF工作原理
建立邻居关系
OSPF路由器通过发送Hello报文 来发现、建立和维护邻居关系。
交换链路状态信息
每台OSPF路由器都会生成一条 LSA(链路状态广播),包含路 由器上所有直连网段的信息。这 些LSA会被泛洪到整个OSPF区域
RIP报文使用UDP进行传输,目的 端口号为520。在传输过程中, RIP报文会被封装在IP数据报中, 并通过互联网进行传输。
03 OSPF动态路由协议
OSPF协议概述
OSPF(Open Shortest Path First,开放最短路径优先)协议:是一种 基于链路状态的内部网关协议(IGP),用于在单一自治系统(AS)内 决策路由。
LSR(Link State Request)报文:用 于向邻居路由器请求 特定的LSA信息。
LSU(Link State Update)报文:用于 向邻居路由器发送 LSA信息或对LSR报文 的响应。
LSAck(Link State Acknowledgment) 报文:用于对收到的 LSA信息进行确认。
交换机动态路由RIPOSPF实验报告

交换机动态路由RIPOSPF实验报告一、引言动态路由协议是计算机网络中的重要组成部分,它负责实现网络之间的路由选择和转发功能。
RIPOSPF(Routing Information Protocol Open Shortest Path First)动态路由协议是一种基于开放最短路径优先算法的协议,用于在交换机网络中实现动态路由功能。
本实验旨在通过搭建网络拓扑,配置RIPOSPF协议并进行实际测试,验证其性能和可行性。
二、实验环境1.硬件环境:使用3台交换机,每台交换机具有4个端口,用于连接不同网络设备。
2.软件环境:搭建基于RIPOSPF协议的动态路由实验环境,使用Tcl脚本进行配置和控制。
三、实验步骤1.网络拓扑设计根据实验需求,设计一个适当的网络拓扑,包括多台交换机和端设备,使其形成一个较复杂的网络结构。
确保每台交换机都能与其他交换机进行通信。
2.配置RIPOSPF协议在每个交换机上配置RIPOSPF协议,包括路由器ID、网络连接、接口地址等。
确保配置的信息准确无误。
3.启动RIPOSPF协议使用Tcl脚本进行RIPOSPF协议的启动和控制,确保协议能够正常运行。
观察控制台输出,确保没有错误消息。
4.测试网络连通性在实验环境中添加一些端设备,通过ping命令测试不同网络设备之间的连通性。
观察ping结果,验证RIPOSPF协议是否能够正确选择路由。
5.模拟故障状况在实验过程中,模拟网络故障,例如断开某个网络连接或关闭某台交换机。
观察RIPOSPF协议的表现,验证其具备故障恢复和自适应能力。
6.性能评估通过实际测试和观察,评估RIPOSPF协议在实验环境中的性能。
可以统计路由更新时间、网络收敛时间等指标,分析协议的可靠性和实用性。
四、实验结果与分析在本次实验中,成功搭建了基于RIPOSPF协议的动态路由网络,实现了交换机之间的路由选择和通信功能。
经过测试,RIPOSPF协议表现出较好的性能和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二动态路由协议RIP、OSPF配置
一、实验目的
(1)掌握RIP、OSPF协议的配置方法
(2)掌握查看RIP、OSPF协议产生的路由
(3)熟悉广域网电缆的连接方式
二、实验内容:
(一)动态路由协议RIP配置-三层交换机
1绘制拓扑图
2配置PC的IP、掩码、网关
分别:PC1 192.168.1.2 255.255.255.0 192.168.1.1
PC2 192.168.2.2 255.255.255.0 192.168.2.1
3.三层交换机配置
(1)划分VLAN,将接口划分到对应的VLAN中
(2)配置每个虚接口(VLAN)的IP
(3)配置RIP
4 R1上的配置
(1)配置配置两个接口的IP和串口时钟
(2)配置RIP协议:发布直连路由
5.R2上的配置
(1)配置配置两个接口的IP
(2)配置RIP协议:发布直连路由
6测试
1、分别在R1R2上查看路由表
2、在PC1中ping PC2
三、实验步骤
1绘制拓扑图
2配置PC的IP、掩码、网关
分别:PC1 192.168.1.2 255.255.255.0 192.168.1.1
PC2 192.168.2.2 255.255.255.0 192.168.2.1
3.三层交换机配置
(1)划分VLAN,将接口划分到对应的VLAN中(2)配置每个虚接口(VLAN)的IP
(3)配置RIP
(3)配置RIP协议:发布直连路由
4 R1上的配置
(1)配置配置两个接口的IP和串口时钟
(2)配置RIP协议:发布直连路由
5.R2上的配置
(1)配置配置两个接口的IP (2)配置RIP协议:发布直连路由
6测试
四、实验感想
这次试验掌握了RIP、OSPF协议的配置方法,同时也熟悉了广域网电缆的连接方式。
老师通过课堂演示和详细的讲解,再结合发的视频解析,我们对这次的实验掌握的比较好。
这让我体会到,只要认真去做,肯下功夫,对问题仔细分析,拿出不懂就问的精神,自己遇到的问题都可以解决。