5基坑变形分析
基坑开挖对临近建筑和管线的变形影响分析及控制措施

基坑开挖对临近建筑和管线的变形影响分析及控制措施基坑开挖对临近建筑和管线的变形影响分析及控制措施一、引言基坑开挖是建设过程中不可避免的一项重要工作,然而,基坑开挖所带来的变形效应对周围建筑和管线可能造成不可逆转的损害。
因此,在进行基坑开挖工程时,需要进行全面的变形影响分析,并采取相应的控制措施,以保证周围建筑和管道的安全和稳定。
二、基坑开挖的变形影响1. 地面沉降基坑开挖对地表会产生一定的沉降,其程度与开挖深度、土壤性质、开挖方法等有关。
地面沉降可能导致临近建筑物的沉降,影响其结构的安全性。
2. 水平位移基坑开挖时,土体的侧向支护被破坏,土体会发生水平位移。
当基坑距离临近建筑物较近时,水平位移会导致建筑物的倾斜或位移,对建筑物结构的安全产生威胁。
3. 地下水位变化基坑开挖过程中,地下水位会发生变化,可能导致周围土体的湿度改变。
如果周围建筑物没有采取防水措施,地下水位变化可能导致结构潮湿、渗漏等问题。
4. 管线破坏基坑开挖可能破坏临近地下的管线(如给水管、燃气管道等),导致管道破裂,影响周围居民的正常供水、供气。
三、基坑开挖变形影响分析针对基坑开挖对临近建筑和管线的变形影响,需要进行详细的工程分析。
通过地质、土壤勘察,确定基坑周围土层的性质和强度,以及潜在地下水位的变化。
运用数值模拟方法,模拟基坑开挖对土体和周围建筑物的变形效应。
四、基坑开挖变形影响控制措施1. 合理设计基坑支护结构采取合适的基坑支护结构,如钢支撑、混凝土搅拌桩等,以提供地面和周围建筑物所需的支撑。
2. 控制开挖速度和深度合理控制开挖速度和深度,避免过大的变形效应。
3. 加强监测在基坑开挖过程中,对临近建筑物和管线进行监测,及时发现和处理异常情况。
4. 采取水平位移控制措施对于临近建筑物,可以采取补充支护、增加地下排水等措施来控制水平位移。
5. 采取防水措施对于临近建筑物地下室或地下管道,应采取防水措施,防止地下水位变化对结构造成影响。
浅谈基坑开挖变形原因及其控制措施

浅谈基坑开挖变形原因及其控制措施摘要:基坑开挖在现代城市建设中越来越常见,因基坑开挖过程中的变形导致坍塌的事故时有发生,文章通过对基坑开挖的方法、支护形式的总结,分析基坑开挖过程中变形的形式和原因,提出防止和减少变形的控制措施,为指导实际施工提供依据。
关键词:基坑开挖;变形;控制1.引言近年来,随着城市的高速发展,基础设施建设快步推进,土地资源日益匮乏,土木建筑、交通运输等行业的构造物越来越向高、深处发展,高层建筑、地下工程越来越多,城市、公路桥梁桥台断面尺寸越来越大,导致基坑开挖断面越来越大,越挖越深,施工过程中的安全风险也越大。
最近几年,媒体公开报道的基坑开挖变形坍塌致人死亡事故非常多,因此分析基坑开挖变形的原因,研究其控制办法,显得十分重要。
2.常见基坑开挖方法及支护形式2.1常见基坑开挖方法在日常施工中,我们需要根据基坑断面大小、开挖深度、支护形式、周边环境等因素综合选择开挖方法,常常采取人工开挖和机械开挖相结合的方式,常见的开挖方法有:放坡分层开挖,有支撑逐层开挖、盆式开挖等。
(1)放坡分层开挖:根据基坑土质情况按照一定深度进行逐层开挖,这种开挖方式施工方便,工效高,经济效益好,适合于四周空旷、能满足放坡要求的场地,在城市或人口密集地区往往不适合。
(2)有支撑逐层开挖:在基坑内先施工好支撑,然后逐层开挖,这种开挖方式安全性较高,对周围构造物影响较小,不需要有很大场地,可用于场地狭小、土质较差的情况,对于设置内支撑的基坑,往往施工较慢、且运土较为困难。
(3)盆式开挖:先分层开挖基坑中间部分的土方,形成盆式,然后在已挖部分施做混凝土工程,再逐层用水平支撑或斜撑对四周进行支撑开挖,这种开挖方式支撑用量相对较小,特别适合于基坑面积较大,但支撑或拉锚作业困难且无法放坡的基坑。
2.2常见基坑支护形式在日常施工中,放坡分层开挖,对基坑周边环境及土质要求较高,许多基坑开挖难以实现,往往需要采取施做围护结构的方式进行开挖。
基坑支护结构内力变形监测分析

基坑支护结构内力变形监测分析摘要当前我国各地频繁出现深大基坑工程,为此我们要有效地控制基坑周围地层位移,同时基坑内力变形控制要求越来越严格。
本文首先概述了基坑支护结构内力变形监测要求,论述了基坑支护结构内力变形的控制措施,最后提出了相关配套措施,同时基坑工程的支护体系设计与施工和土方开挖都要因地制宜。
关键词基坑工程;支护结构;内力变形随着现代化城市进程的不断扩张,我国的基坑工作也在不断的增加,同时也伴随着风险和质量的不断增加。
而基坑工作是一项综合性很强的系统工程,它包括了基坑支护体系的设计施工和土方开挖,这就要求各个部门的技术人员之间要进行密切的配合。
同时基坑工程在每个地方表现出来的差异性也不一样,受到各个方面因素的影响,每个基坑的变形情况也不同,而其中一个很大的影响因素就是开挖地区的土体物理性状。
1 基坑支护结构内力变形监测要求基坑的变形现象主要体现在在3个方面,支护墙体的变形、基坑底部的突起以及地表不同程度的沉降。
其中对支护结构变形的预测是作为基坑变形的一项最常见的预测,因为基坑支护墙墙体的变形就会导致墙体的的外侧地面发生变化,促使基坑内的位移和底部土体的拱起。
由于受到地质水以及各方面的影响就使得我们在实验室内而得到的支护机构应力变形等数据域实际测量工作中得到的数据还是有很大的差距的。
为看了让实际检测的数据和实验得要的理论数据相一致,我们就可以从实际的检测到的数据用反分析的方法去修改计算机模型中的一些参数,再根据这些参数,运用正分析的方面从而计算出下一个施工阶段的数据。
2 基坑支护结构内力变形的控制措施2.1 控制要求基坑变形主要控制方法主要为加深、加刚、加固、降水、随挖随撑,增加维护结构和支撑的刚度,增加围护结构的入土深度,加固被动区土体,控制降水减少开挖时间,随挖随撑,缩短暴露。
2.2 控制措施2.2.1 冻结+排桩支护技术地基冻结排装桩伐法顾名思义就是将两种技术互相结合取长补短,是一种大胆的技术创新,将含有水的地基坑的封水结构,利用排桩和内部的支撑系统来作为受力层用来抵抗水土带来的压力。
基坑变形的特征

基坑变形的特征主要包括以下几个方面:
1. 水平方向上的位移:这主要是因为围护墙体的被动土压力作用以及受周围环境影响造成的。
由于重力等的作用会导致墙体下沉,进一步导致周边地面的相应变化。
2. 竖向方面的变形:主要表现为坑底的回弹。
在开挖深基坑的过程中破坏了地下原有的力学平衡系统,会产生一定的空隙积聚现象,造成基底标高的下降和地基的隆起。
3. 时间因素影响:随着时间的推移,尤其是在雨水浸泡的影响下,很可能会导致滑坡等现象发生。
4. 支护结构的变形:对于连带的支护结构也会有相应的变性表现出现。
比如角撑被压弯或者是锚杆头段向下倾斜的现象也会有所体现。
5. 安全隐患问题:如果控制不当或者操作不规范的话,还会产生有毒气味的冒出或坍塌等情况的发生。
6. 监测位置的影响:由于监测位置的不同,其反映出的数据也有所区别,且可能出现误差但总体趋势保持一致。
7. 其他特性:对于一些特殊性质的工程可能会出现其他的一些特性如蠕变、应力释放等。
以上是基坑变形的特征,具体情形会根据工程条件、地质条件、施工方法和管理水平等多种因素有所不同。
因此,
在进行基坑施工时,需要采取有效的措施来控制变形,保证施工安全和质量。
基坑变形检测报告

基坑变形检测报告1. 引言本报告旨在对基坑变形进行检测分析,为工程施工提供可靠的数据支持。
基坑变形是指土壤在基坑开挖或施工过程中发生的变形现象,对工程的稳定性和安全性具有重要影响。
通过本次检测,我们将对基坑变形进行全面评估,并提出相应的建议。
2. 检测目标本次基坑变形检测的目标为:•确定基坑变形的类型和程度;•分析基坑变形的原因;•判定基坑变形对工程的影响;•提出相应的控制和修复措施。
3. 检测方法基坑变形检测通常采用以下方法:3.1 地下水位监测地下水位监测可以通过安装水位计等设备实时监测基坑周边地下水位的变化。
地下水位的上升或下降可能导致基坑变形,因此及时监测和控制地下水位是至关重要的。
3.2 地下水位压力监测地下水位压力监测是通过设置孔隙水压力计等设备监测地下水位压力的变化。
地下水位压力的变化可以对基坑变形进行预测和评估,从而采取相应的措施。
3.3 周边建筑物变形监测通过安装变形监测仪器,如测斜仪、水准仪等,监测周边建筑物的变形情况。
基坑变形可能引起周边建筑物的沉降或倾斜,因此及时监测周边建筑物的变形能够提前发现问题并采取措施。
3.4 基坑边坡变形监测利用边坡位移监测仪器,如测斜仪、全站仪等,对基坑边坡的变形进行实时监测。
基坑边坡的变形可能导致坡体滑动或坍塌,因此对边坡变形进行及时监测是必要的。
4. 检测结果分析根据以上检测方法,我们对基坑变形进行了全面的监测和分析。
根据数据和观察结果,我们得出以下结论:•基坑周边地下水位呈上升趋势,可能导致基坑变形;•地下水位压力表明地下水位压力较大,对基坑稳定性造成潜在威胁;•周边建筑物出现微小的沉降和倾斜,可能与基坑变形有关;•基坑边坡存在局部滑动和变形现象。
5. 影响分析基于对检测结果的分析,我们对基坑变形对工程的影响进行了评估,并提出以下结论:•基坑变形可能导致周边建筑物的沉降和倾斜,影响其结构安全;•基坑边坡的滑动和变形可能引发土方坍塌,对工程施工安全构成威胁;•地下水位的上升和压力的增大可能导致基坑的不稳定,进而影响整个工程的稳定性。
深基坑工程施工变形的监测和分析

深基坑工程施工变形的监测和分析摘要:变形监测是利用专用的仪器和方法来持续观测变形结构的变形现象,对其变形状态进行分析,并预测其发展动态的各项工作。
实施变形监测的主要目的就是在各种荷载和外力作用下,明确变形体的形状、大小以及位置变化的空间状态以及时间特点。
在精密工程实际测量过程中,最常见的变形体有:深基坑、大坝、高层建筑物、隧道以及地铁等。
通过实施变形监测可以掌握和精准科学地分析变形体各部位的实际变形情况,进而做出提前预报,这对于整个工程质量控制和施工管理来讲,十分重要。
基于此,本文将对深基坑工程施工变形的监测进行分析。
关键词:深基坑工程;施工变形;变形监测1 基坑工程变形监测概述基坑工程变形监测首先应该确定监测对象及监测项目两部分,基坑工程结构不同、所处环境不同,变形监测的侧重点也不同。
确定合理有效的监测对象、监测项目,既能起到监测预警的作用,又能提高监测效率、节省监测成本,是基坑工程变形监测的关键控制点。
基坑工程变形监测对象一般包括基坑支护结构本身,基坑周边土体、地下水、地下管线以及基坑周边建(构)筑物、重要道路等等;监测项目一般包括位移监测(水平位移和竖向位移)、倾斜监测、土压力监测、地下水位监测、内力监测等等。
监测对象和监测项目的最终确定一般应遵循如下程序:首先根据基坑工程专项设计方案中对变形监测部分的设计要求,收集本项目相关地质、勘察、周边环境等资料,结合相关规范规定,初步确定监测对象及监测项目、并编制本项目基坑工程初步变形监测方案;然后组织专业技术人员现场实地踏勘,实地检核变形监测方案技术指标及条件因素,对于存在与现场条件不符、或有遗漏、有安全隐患部分等需进行基坑工程变形监测方案修编,做到监测方案与实际相符,真正起到基坑工程变形监测预警作用,保证监测成本合理高效;再将包含监测对象、监测项目在内的监测方案、监测成本预算提交建设单位,组织设计单位、专家等进行技术、成本等论证;最后根据论证意见再对包含监测对象、监测项目在内的监测方案进行修改审批,经审批的监测方案即可作为监测依据进行基坑工程监测工作。
《2024年软土地区深基坑施工引起的变形及控制研究》范文

《软土地区深基坑施工引起的变形及控制研究》篇一一、引言随着城市化进程的加速,高层建筑、地铁等大型基础设施的建设日益增多,深基坑施工在软土地区的应用也愈发普遍。
然而,软土地区地质条件复杂,深基坑施工容易引起周边环境的变形,进而影响建筑物的稳定性和安全性。
因此,对软土地区深基坑施工引起的变形及控制进行研究,对于保障工程质量和安全具有重要意义。
二、软土地区深基坑施工变形机理1. 软土特性软土地区土质疏松、含水量高、压缩性大、强度低等特点,使得深基坑施工过程中容易发生变形。
在施工前,必须对地质条件进行详细的勘察和了解。
2. 变形机理深基坑施工过程中,由于土方开挖、支撑结构施工等因素,使得基坑周围土体发生应力重分布,进而导致土体位移、隆起、坍塌等变形现象。
这些变形现象不仅影响基坑本身的稳定性,还可能对周边建筑物、道路、管线等造成损害。
三、深基坑施工变形控制措施1. 合理设计支护结构支护结构是控制深基坑变形的重要措施。
设计时需根据地质条件、基坑深度、周边环境等因素,选择合适的支护结构类型和参数。
同时,应确保支护结构具有足够的强度和刚度,以承受土方开挖和支撑结构施工过程中的荷载。
2. 优化施工工艺施工过程中应采取分步开挖、及时支撑等措施,以减小土体应力重分布的范围和速度。
同时,应控制每步开挖的深度和宽度,避免过大过快的开挖导致土体失稳。
在支撑结构施工时,应确保支撑结构的施工质量,使其能够及时有效地承受荷载。
3. 监测与反馈在深基坑施工过程中,应进行实时监测,包括基坑变形监测、支护结构受力监测、周边环境变化监测等。
通过监测数据及时反馈施工过程中的问题,以便采取相应的措施进行调整和优化。
同时,应建立完善的预警机制,一旦发现变形超过允许范围,应立即停止施工并采取紧急措施。
四、实例分析以某软土地区深基坑工程为例,通过采用合理的支护结构设计、优化施工工艺以及实施严格的监测与反馈措施,成功地控制了深基坑施工过程中的变形。
基坑坍塌常见原因分析及预防措施(2)

基坑坍塌常见原因分析及预防措施(2)基坑坍塌常见原因分析及预防措施4.支护结构施工质量不符合设计要求因基坑支护结构是建筑施工过程中的一项临时设施,目前许多施工单位对其施工质量重视不够,护壁施工单位的施工行为没有得到有效的'约束,不按设计方案施工的现象时有发生,造成支护结构的施工质量达不到设计要求,存在坑壁坍塌隐患。
如某工程采用土钉墙作基坑支护,设计土钉间距为1.2m,施工单位施工时却将土钉间距扩大至1.8m,降低了支护结构的强度,护壁开裂,出现了坍塌的先兆。
二、防止基坑坍塌的措施1.选择适合的基坑坑壁形式基坑施工前,首先应按照规范的要求,依据基坑坑壁破坏后可能造成后果的严重性确定基坑坑壁的安全等级,然后根据坑壁安全等级、基坑周边环境、开挖深度、工程地质与水文地质、施工作业设备和施工季节的条件等因素选择坑壁的形式。
当基坑顶部无重要建(构)筑物,场地有放坡条件且基坑深度≤l0m 时,可以优先采用坡率法。
采用坡率法时,关键是要确定正确的坡率允许值。
一般坑壁的坡率允许值可按工程类比的原则并结合已有稳定边坡的坡率值分析确定。
如:土质均匀良好的硬塑粘性土,当坡高小于5m时,坡率允许值可确定为:1:1.00~1:1.25。
若坑壁土质较软或基坑顶部边缘附近有较大荷载,坡率允许值还必须采用圆弧滑动法进行稳定性分析确定。
当施工场地不能满足设计坡率值的要求时,应对坑壁采取支护措施;选择支护结构,首先要确定基坑坑壁的安全等级。
按照规范的要求,坑壁的安全等级按其损坏后可能造成的破坏后果的严重性、坑壁类型和基坑深度等因素,确定为一、二、三级。
坑壁安全等级一、二级适合采用挖孔灌注桩护壁,坑壁安全等级二、三级适合采用土钉墙护壁。
2.加强对土方开挖的监控基坑土方一般采用机械挖运,开挖前,应根据基坑坑壁形式、降排水要求等制定开挖方案,并对机械操作人员进行交底。
开挖时,应有技术人员在场,对开挖深度、坑壁坡度进行监控,防止超挖。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
欧章煜等的坑外土体沉降模式
PIZ:主要影响区
1.6地面影响范围
? Peck:对于砂土及硬黏土,其沉降槽影响范围为 2倍开挖深度,对于软黏土,影响范围则为 2-4倍 的开挖深度。
? Clough & O'Rourke:对于砂土、软到中等硬 度黏土,沉降区域范围为 2倍的开挖深度;对于硬 黏土,沉降区域范围为 3倍的开挖深度。
(2)地面超载大;
变形;
(3)插入比过小,被动区支挡结 (2)不利于主体工程
构物向基坑前移(踢脚); 地下部分的施工;
(4)坑底开挖减载土体回弹; (3)增加主体工程的
(5)坑底下承压水的扬压力使坑 工后沉降;
底土层突涌;
(4)破坏内支撑结构
(6)基坑暴露时间长,产生过大 (5)使预先施工的工
的蠕变变形。
1.1坑外地面沉降与水平位移
序号 类型
主要原因
主要危害
1 坑外地面沉 (1)支挡结构发生水平位移;
(1)使相邻的建(构)
降
(2)基坑降水使土层固结沉降;
筑物不均匀沉降;
(3)桩、墙施工的钻孔、开槽; (4)坑边地面堆土、堆载、交通运输
(2)使地面、路面和市 政管线塌陷与开裂。
(5)由于降水或锚杆钻孔引起饱和砂土
程桩上浮。
1.3支护结构位移
序号 类型
主要原因
主要危害
4
支挡结构侧 (1)支挡墙及锚杆(内支 (1)是坑外地面沉降和水平
向位移
撑)变形;
位移的主要原因;
(2)超挖及支撑 (锚固 )不 (2)增加了主体工程地下部
及时;分施工的困难; Nhomakorabea(3)插入比小;
(3)使支挡结构物开裂和破 坏
5
支挡结构竖 (1)由于基坑开挖使土体 (1)影响支护结构的稳定性;
? (1)土层特点及地下水条件; ? (2)基坑的几何形状及尺寸; ? (3)围护墙与支撑的性能; ? (4)围护墙刚度及插入深度; ? (5)支撑的横向与竖向间距.
(1)土层特点及地下水条件
? 软弱土层的影响。地下水位以及渗流也将 对基坑变形产生影响,尤其是当承压水头 较大时,将对坑底隆起产生重要的影响;
颗粒流失;
(6)坑底流土;
(7)坑底隆起;。
2 坑外地面水 (1) 支挡结构发生水平位移;
对使相邻的建(构)筑
平位移 (2) 桩、墙施工的钻孔、开槽;
物和市政管线与开
(3) 坑边地面堆土、堆载、交通运输
裂与错位。
。
1.2坑底隆起
序号
3
类型
主要原因
主要危害
坑底隆起 (1)坑底地基土承载力不足; (1)引起坑外土体的
开挖前降水影响
? 某地下连续墙围护地铁车 站基坑
? 开挖前10天,在基坑内进 行降水,结果地下连续墙 侧移,侧移情况
? 由图可知,随着降水的开 展,地下连续墙发生了悬 臂式的位移,墙顶最大位 移达到了9.7mm,
? 可见基坑开挖前的降水对 地连墙的位移产生了明显 的影响。
2.2基坑开挖过程中的变形影响因素
2.基坑变形的影响因素
? 2.1基坑开挖前的变形影响因素; ? 2.2基坑开挖过程中的变形影响因素; ? 2.3基坑开挖完成后的变形影响因素.
2.1基坑开挖前的变形影响因素 (1) 围护墙施工影响
? 挤土式:钢板桩、预制桩等桩墙; ? 非挤土式:钻孔或者掏槽的桩墙;
?地连墙施工对周边土体位移的影响程度,主要与沟槽的宽 度、深度及长度,以及泥浆护壁效果紧密相关。
? Hsieh et al. 和Ou et al.: 将三角形和凹槽型的沉 降影响范围分 为主影响区域和次影响区域 ,其中 主影响区域的范围为 2倍的开挖深度,而次影响区 域为主影响区域之外的 2倍开挖深度。
沉降影响范围-日本
1.7基坑平面内的水平位移
长条形基坑的变形性状
坑外土体位移曲线
基坑阳角的空间效应
? 在条件允许的情况下,尽可能避开对基坑 施工或建(构)筑物承载不利的地层及地 下水条件。
(2)基坑的几何形状及尺寸
? 基坑的几何形状的影响,主要体现为基坑 的空间效应,如长条形基坑、不规则基坑 的阳角等均表现出特殊的变形特点;
? 基坑开挖深度的大小直接影响原状土体的 应力变化;
? 大面积基坑的开挖对基坑的变形有更大的 影响。
向位移
回弹,引起向上位移; (2)影响周边土体变形。
(2)由于孔底和槽底沉渣
使桩、墙向下位移;
(3)基坑降水、坑边堆载 的负摩阻力。
1.4基坑围护墙的变形形式
(a)弓形 (b)上正弯,下反弯(c)前倾型 (d)踢脚型 (a)主要表现在深厚软土层中,且当有支撑的围护墙埋入坑 底以下深度不太大时最为常见, (b)当围护墙插入深度大,且采用内支撑时; (c)无支撑的悬臂挡墙结构; (d)基坑位于深厚淤泥中,且墙体插入深度不大时。
?由于地连墙成槽施工引起的土体的位移占整个基坑开挖变 形总量的比例很小,但是在一些工程中,地连墙成槽施工引 发的沉降量却占总沉降量的40%-50%。
?其水平位移及沉降影响范围一般为1.5-2.0倍的槽深,
?最大的沉降值可达0.05%-0.15%倍的槽深,
?最大水平位移一般小于0.07%倍的槽深。
连续墙施工引发地表沉降包络图
1.5坑外地面沉降曲线
Peck的统计数据
?其中I区地表沉降最小,最大沉降小于1%H(H为最终的基 坑开挖深度),适用于砂土和软-硬粘土。 ?II区和III区根据坑底以下软土的厚度及坑底抗隆起稳定系数 而定,最大沉降可达1-3 %H。主要采用排桩和板桩等刚度 较小的支护结构,
Clough & O'Rourke (1990)墙后 地表沉降的分布模式
基坑的变形分析
清华大学 岩土工程研究所 李广信
目录
? 基坑变形的种类与形态; ? 基坑变形的影响因素; ? 支挡结构的变形计算; ? 坑外土体位移的预测; ? 坑底隆起的估算; ? 数值计算方法.
1.基坑变形的种类与形态
? 围护结构变形:水平与 竖向;
? 坑底隆起; ? 基坑周围土体的位移:
沉降与水平位移:
1.8开挖过程中的墙后土体的水平位移
? 第一道支撑的位置对基坑 的变形有重要意义;
? 在第一道支撑未架设时, 围护墙处于悬臂状态,当 悬臂长度过大时,围护墙 的变形将较大;
? 当墙顶的位移发生后,在 后续的开挖工序中基本保 持不变,
? 合理控制第一道支撑的架 设位置,控制未支撑的开 挖深度,对于控制基坑的 变形有着重要的作用。