2011湖南常德中考数学

合集下载

2011中考数学真题解析3 有理数的加、减、乘、除、乘方(含答案)

2011中考数学真题解析3 有理数的加、减、乘、除、乘方(含答案)

(2012年1月最新最细)2011全国中考真题解析120考点汇编有理数的加、减、乘、除、乘方一、选择题1. (2011江苏连云港,13,3分)如图,是一个数值转换机.若输入数为3,则输出数是______.考点:有理数的混合运算。

专题:图表型。

分析:设输入的数为x ,根据图表可知,输出的数=(x 2﹣1)2+1,把x=3代入计算即可得输出的数.解答:解:设输 入的数为x ,根据题意可知,输出的数=(x 2﹣1)2+1.把x=3代入(x 2﹣1)2+1=(32﹣1)2+1=(9﹣1)2+1=82+1=65,即输出数是65. 故答案为65.点评:此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.解题关键是对号入座不要找错对应关系.2. (2011江苏苏州,1,3分)12()2⨯-的结果是A .-4B .-1C .1-D .3点评:考查了有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.输出数减去5点评:本题主要考查了有理数的除法,在解题时要根据有理数的除法法则分别计算是解题的关键.4. (2011•台湾2,4分)计算73+(﹣4)3之值为何( )A 、9B 、27C 、279D 、407考点:有理数的乘方。

专题:计算题。

分析:先根据有理数的乘方计算出各数,再根据有理数加法的法则进行计算即可. 解答:解:原式=343﹣64 =279. 故选C .点评:本题考查的是有理数的乘方,熟知有理数乘方的法则是解答此题的关键. 5. (2011•台湾14,4分)计算)(4-433221⨯++之值为何( )A 、﹣1B 、﹣611 C 、﹣512 D 、﹣323考点:有理数的混合运算。

专题:计算题。

分析:根据运算顺序,先算乘法运算,根据有理数的异号相乘的法则可知,两数相乘,异号的负,并把绝对值相乘,然后找出各分母的最小公倍数进行通分,然后根据分数的加减运算法则即可算出原式的值.解答:解:原式=)(3-3221++++(﹣3)=﹣611.故选B .点评:此题考查了有理数的混合运算,是一道基础题.学生做题时应注意运算顺序. 6.(2011台湾,2,4分)计算(-3)3+52-(-2)2之值为何( )A .2B .5C .-3D .-6考点:有理数的乘方。

2011湖南常德中考数学解析

2011湖南常德中考数学解析

x析式为 y=(x>0) .考点:待定系数法求反比例函数解析式。

 .10、(2011•常德)如图,是由四个相同的小正方体组成的立体图形,它的左视图是( )、、、、考点:科学记数法—表示较大的数。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1 370 000 000用科学记数法表示为1.37×109.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12、(2011•常德)在平面直角坐标系中,▱ABCD的顶点A、B、C的坐标分别是(0,0)、(3,0)、(4,2),则顶点D的坐标为( )A、(7,2)B、(5,4)C、(1,2)D、(2,1)考点:平行四边形的性质;坐标与图形性质。

分析:首先根据题意作图,然后由四边形ABCD是平行四边形,根据平行四边形的性质,即可求得顶点D 的坐标.解答:解:如图:∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵▱ABCD的顶点A、B、C的坐标分别是(0,0)、(3,0)、(4,2),∴顶点D的坐标为(1,2).故选C.点评:此题考查了平行四边形的性质.注意数形结合思想的应用是解此题的关键.13、(2011•常德)在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是( )A、李东夺冠的可能性较小B、李东和他的对手比赛10局时,他一定赢8局C、李东夺冠的可能性较大D、李东肯定会赢考点:概率的意义。

专题:应用题。

分析:根据概率的意义,反映的只是这一事件发生的可能性的大小,不一定发生也不一定不发生,依次分析可得答案.解答:解:根据题意,有人预测李东夺冠的可能性是80%,结合概率的意义,A、李东夺冠的可能性较大,故本选项错误;B、李东和他的对手比赛10局时,他可能赢8局,故本选项错误;C、李东夺冠的可能性较大,故本选项正确;D、李东可能会赢,故本选项错误.故选C.点评:本题主要考查了概率的意义:反映的只是这一事件发生的可能性的大小,难度较小.14、(2011•常德)已知圆锥底面圆的半径为6厘米,高为8厘米,则圆锥的侧面积为( )厘米2.A、48B、48πC、120πD、60π考点:圆锥的计算。

2011上中考模拟常德市三校联考数学卷

2011上中考模拟常德市三校联考数学卷

AFBCDE图12011年常德市初中毕业学业考试模拟试卷数学(问卷)一、填空题(本大题8个小题,每小题3分,满分24分) 1、-0.5的倒数为________.2、因式分解:=-a a 4223、如图1,已知直线110A B C D D C F =︒∥,∠,且A E A F =,则A ∠= .4、如果三角形的三边长分别为5 、6和7,那么连接这个三角形三边中点,所得的三角形的周长是5、化简2sin45°=6、如图2,△ABC 中,点D 在边AB 上,满足∠ACD =∠ABC ,若AC = 2,AD = 1,则AB = ________.7、如图3,从P 点引⊙O 的两切线PA 、PB ,A 、B 为切点,已知⊙O 的半径为2,∠P =60°, 则图中阴影部分的面积为 。

8、将杨辉三角中的每一个数都换成分数 ,得到一个如图4所示的分数三角形,称莱布尼茨三角形.若 用有序实数对(m,n)表示第m行,从左到右第n 个数,如(4,3)表示分数121.那么(6,2)表示的分数是 .二、填空题(本大题8个小题,每题3分,满分24分) 9、 五边形的内角和为( )A 、900B 、180oC 、 360oD 、 540o10、函数2x 1y -=中,自变量x 的取值范围是( )。

A 、x >0B 、x > 2C 、x ≠0D 、x ≠2 11、反比例函数y =1x的图象在( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限 12、甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为( )A .8.1×190-米B .8.1×180-米C .81×190-米D .0.81×17-米图3AB P O612131213141121 121 4111… … 图4第1行第2行第3行第4行D A B C图213、某人到瓷砖商店去买一种多边形形状的瓷砖,用来铺设无缝地板,他买的瓷砖形状不可以...是( ) A.正三角形 B.正方形 C.正六边形 D.正八边形14、下列平面图形都由小正方形组成,其中不能围成正方体的是( )15、根据下列表格中二次函数2y ax bx c=++的自变量x 与函数值y 的对应值,判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( )x6.176.186.196.202y ax bx c =++0.03-0.01-0.020.04A.6 6.17x << B.6.17 6.18x <<C.6.18 6.19x << D.6.19 6.20x <<16、矩形ABCD 中,8cm 6cm A D A B ==,.动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动,动点F 从点C 沿边CD 向点D 以1cm/s 的速度同时出发,运动至点D 停止.如图可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:2cm ),则y 与x 之间的函数关系用图象表示大致是下图中的( )三、(本大题2小题,每小题5分,满分10分) 17、计算:()160sin 23312+--⎪⎭⎫⎝⎛---18、先化简,再求值:)11(x -÷11222-+-x x x ,x =2.四、(本大题2个小题,每小题6分,满分 12分)19、小明同学看到路边上有人设摊玩“有奖掷币”游戏,规则是:交2元钱可以玩一次掷硬币游戏,每次同时掷两枚硬币,如果出现两枚硬币正面朝上,奖金5元;如果是其它情况,则没有奖金(每枚硬币落地只有正面朝上和反面朝上两种情况).小明拿不定主意究竟是玩还是不玩,请同学们帮帮忙! (1)求出中奖的概率;(2)如果有100人,每人玩一次这种游戏,大约有 人中奖,奖金共约是 元;设摊者约获利 元;(3)通过以上“有奖”游戏,你从中可得到什么启示?(A)(B) (D)(C) A D F C E HB(第16题图) O y (cm x (s) 48 16 4 6 A . O y (cm x (s) 48 16 4 6 B . O y (cm x (s) 48 16 4 6 C . O y (cm x (s) 4816 4 6 D .20、如图,在△ABC 和△ADE 中,点E 在BC 边上, ∠BAC=∠DAE ,∠B=∠D ,AB=AD. (1)求证:△ABC ≌△ADE ;(2)如果∠AEC=75°,将△ADE 绕着点A 旋转 一个锐角后与△ABC 重合,求这个旋转角的大小.五、(本大题2小题,每小题7分,满分14分)21、常德市近年来大力发展旅游业,吸引了众多外地游客前来观光旅游,某旅行社对2011年“五·一”期间接待的外地游客作了抽样调查.常德的首选旅游线路(五大黄金旅游线路)的调查结果如下图表:(1)此次共抽样调查了 人; (2)请将以上图表补充完整;(3)该旅行社预计五大黄金旅游线路今年“五·一”期间接待外地游客约20000人,请你估计外地游客首选太阳山健身游的人数约有多少人?22、如图,已知反比例函数k y x=与一次函数y x b =+的图象在第一象限相交于点(1,4)A k -+.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.六、(本大题2个小题,每个题8分,满分16分)23、在西安世园会期间,某商店决定购进A 、B 两种世园会纪念品销售.若购进A 种纪念品10件,B 种纪念品5件,需要1000元;若购进A 种纪念品5件,B 种纪念品3件,需要550元. (1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A 种纪念品的数 量不少于B 种纪念品数量的6倍,且不超过B 种纪念品数量的8倍,那么该商店共有几种进货方案?线路 频数 频率 桃花源风光游 90 0.30 太阳山健身游 75 渔樵村民俗游0.15 壶瓶山探险游 54 0.18 夹山寺考古游360.12桃花源 太阳山 渔樵村 壶瓶山 夹山寺 60 020 100 30 50 70 90 40 80 10 人数线路DBCEA24、为了缓解长沙市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB 高度是3m ,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60°和45°.求路况显示牌BC 的高度.七、(本大题2个小题,每小题10分,满分20分) 25、在平面直角坐标系中,已知抛物线经过A )0,4(-,B )4,0(-,C )0,2(三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.26、如图,在等边ABC ∆中,线段AM 为BC 边上的中线. 动点D 在直线..AM 上时,以CD 为一边且在CD 的下方作等边CDE ∆,连结BE .(1) 填空:______ACB ∠=度;(2) 当点D 在线段..AM 上(点D 不运动到点A )时,试求出BE AD的值;(3)若8=AB ,以点C 为圆心,以5为半径作⊙C 与直线BE 相交于点P 、Q 两点,在点D 运动的过程中(点D 与点A 重合除外),试求PQ 的长.第24题图MCBAOxyEB M ACDAB C 备用图(1)AB C备用图(2)。

2011中考数学真题解析111 原创好题、新题(含答案)

2011中考数学真题解析111 原创好题、新题(含答案)

(2012年1月最新最细)2011全国中考真题解析120考点汇编原创好题、新题一、选择题1.负数的引入是数学发展史上的一大飞跃,使数的家族得到了扩张,为人们认识世界提供了更多的工具.最早使用负数的国家是()A、中国B、印度C、英国D、法国【答案】A【考点】正数和负数.【分析】根据数学历史材料即可得出答案.【解答】解:中国是世界上最早认识和应用负数的国家,比西方早(一千多)年.负数最早记载于中国的《九章算术》(成书于公元一世纪)中,比国外早一千多年,故选A.【点评】此题主要考查了负数的来源,根据历史记载是解决问题的关键.2.(2011江苏南京,6,2分)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为a的值是()A、B、2C、D、2考点:一次函数综合题。

专题:综合题。

分析:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PO,P A.分别求出PD、DC,相加即可.解答:解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PO,P A.∵AE =12AB P A =2,PE .PD∵⊙P 的圆心是(2,a ),∴DC =2,∴a =PD +DC故选B .点评:本题综合考查了一次函数与几何知识的应用,题中运用圆与直线的关系以及直角三角形等知识求出线段的长是解题的关键.注意函数y =x 与x 轴的夹角是45°. 3. (2011内蒙古呼和浩特,9,3)如图所示,四边形ABCD 中,DC ∥AB ,BC=1,AB=AC=AD=2.则BD 的长为( )A. 14B. 15C. 23D. 32 考点:勾股定理.专题:计算题.分析:以A 为圆心,AB 长为半径作圆,延长BA 交⊙A 于F ,连接DF .在△BDF 中,由勾股定理即可求出BD 的长.解答:解:以A 为圆心,AB 长为半径作圆,延长BA 交⊙A 于F ,连接DF .可证∠FDB=90°,∠F=∠CBF ,点评:本题考查了勾股定理,解题的关键是作出以A 为圆心,AB 长为半径的圆,构建直角三角形,从而求解.4. (2011江苏扬州,8,3分)如图,在Rt △ABC 中,∠ACB=90º,∠A=30º,BC=2,将△ABC 绕点C 按顺时针方向旋转n 度后,得到△EDC ,此时,点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )A. 30,2B.60,2C. 60,D. 60,3考点:旋转的性质;含30度角的直角三角形。

2011年中考数学试题精选汇编《探索、规律性问题》

2011年中考数学试题精选汇编《探索、规律性问题》

2011年中考数学试题精选汇编《规律、探索、与规律性问题》一 选择题1. (2011浙江省,10,3分)如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”, 图A 3比图A 2多出4个“树枝”, 图A 4比图A 3多出8个“树枝”,……,照此规律,图A 6比图A 2多出“树枝”( )[来源:学,科,网Z,X,X,K]A.28B.56C.60D. 124【答案】C3. (2011广东肇庆,15,3分)如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n (n 是大于0的整数)个图形需要黑色棋子的个数是 ▲ .【答案】)2(+n n4. (2011内蒙古乌兰察布,18,4分)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形 有 个小圆. (用含 n 的代数式表示)【答案】(1)4n n ++或24n n ++5. (2011湖南益阳,16,8分)观察下列算式:① 1 × 3 - 22 = 3 - 4 = -1② 2 × 4 - 32= 8 - 9 = -1③ 3 × 5 - 42 = 15 - 16 = -1 ④ ……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;第1个图形第 2 个图形 第3个图形第 4 个图形第 18题图(3)你认为(2)中所写出的式子一定成立吗?并说明理由. 【答案】解:⑴246524251⨯-=-=-;⑵答案不唯一.如()()2211n n n +-+=-;⑶()()221n n n +-+ ()22221n n n n =+-++22221n n n n =+---1=-.6.(2011广东汕头,20,9分)如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数; (2)用含n 的代数式表示:第n 行的第一个数是 ,最后一个数是 ,第n 行共有 个数;(3)求第n 行各数之和. 【解】(1)64,8,15;(2)2(1)1n -+,2n ,21n -;(3)第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×7-13;类似的,第n 行各数之和等于2(21)(1)n n n --+=322331n n n -+-.二 填空题1. (2011四川绵阳18,4)观察上面的图形,它们是按一定规律排列的,依照此规律,第_____个图形共有120 个。

2011年全国各地中考数学真题分类汇编:第2章实数

2011年全国各地中考数学真题分类汇编:第2章实数

第2章 实数一、选择题1. (2011福建泉州,1,3分)如在实数0,32-,|-2|中,最小的是( ).A .32-B .C .0D .|-2|【答案】B2. (2011广东广州市,1,3分)四个数-5,-0.1,12,3中为无理数的是( ).A. -5B. -0.1C. 12D. 3【答案】D3. (2011山东滨州,1,3分)在实数π、13sin30°,无理数的个数为( ) A.1 B.2 C.3 D.4 【答案】B4. (2011福建泉州,2,3分)(-2)2的算术平方根是( ).A . 2B . ±2C .-2D .2【答案】A5. (2011四川成都,8,3分)已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是 (A)0>m (B)0<n (C)0<mn (D)0>-n m【答案】C6. (2011江苏苏州,1,3分)2×(-21)的结果是( ) A.-4 B.-1 C. -41 D.23【答案】B7. (2011山东济宁,1,3分)计算 ―1―2的结果是 A .-1 B .1 C .- 3 D .3 【答案】C8. (2011四川广安,2,3分)下列运算正确的是( )A .(1)1x x --+=+B =C 22=D .222()a b a b -=-【答案】C9. ( 2011重庆江津, 1,4分)2-3的值等于( )A.1B.-5C.5D.-1· 【答案】D ·10. (2011四川绵阳1,3)如计算:-1-2= A.-1 B.1 C.-3 D.3 【答案】C11. (2011山东滨州,10,3分)在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为 ( ) A.1,2 B.1,3 C.4,2 D.4,3 【答案】A12. (2011湖北鄂州,10,3分)计算()221222-+---1(-)=( ) A .2 B .-2 C .6 D .10【答案】A13. (2011山东菏泽,6,3分)定义一种运算☆,其规则为a ☆b =1a +1b,根据这个规则、计算2☆3的值是A . 56B . 15C .5D .6【答案】A14. (2011四川南充市,5,3分) 下列计算不正确的是( )(A )31222-+=- (B )21139⎛⎫-= ⎪⎝⎭ (C )33-= (D = 【答案】A15. (2011浙江温州,1,4分)计算:(一1)+2的结果是( ) A .-1 B .1 C .-3 D .3 【答案】B16. (2011浙江丽水,4,3分)有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ) A .+2 B .-3 C .+3 D .+4 【答案】A17. (2011台湾台北,2)计算(-3)3+52-(-2)2之值为何?A .2B . 5C .-3D .-6 【答案】D18. (2011台湾台北,11)计算45.247)6.1(÷÷--之值为何?A .-1.1B .-1.8C .-3.2D .-3.919. (2011台湾台北,19)若a 、b 两数满足a 567⨯3=103,a ÷103=b ,则b a ⨯之值为何?A .9656710B .9356710C .6356710 D .56710 【答案】C20.(2011四川乐山1,3分)小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为A .4℃B .9℃C .-1℃D .-9℃ 【答案】 C21. (2011湖北黄冈,10,3分)计算()221222-+---1(-)=( ) A .2 B .-2 C .6 D .10 【答案】A22. (2011湖北黄石,2,3分)黄石市2011年6月份某日一天的温差为11o C ,最高气温为t o C ,则最低气温可表示为A. (11+t )oCB.(11-t ) oCC.(t -11) oCD. (-t -11) oC 【答案】C23. (2011广东茂名,1,3分)计算:0)1(1---的结果正确..的是 A .0 B .1C .2D .2-【答案】D24. (2011山东德州1,3分)下列计算正确的是(A )088=--)( (B )1221=⨯)()(-- (C )011--=() (D )22-|-|= 【答案】B25. (2011河北,1,2分)计算03的结果是( ) A .3B .30C .1D .0【答案】C26. (2011湖南湘潭市,1,3分)下列等式成立是 A. 22=- B. 1)1(-=-- C.1÷31)3(=- D.632=⨯- 【答案】A27.(2011台湾全区,2)计算33)4(7-+之值为何? A .9 B . 27 C . 279 D . 407 【答案】C28. (2011台湾全区,12)12.判断312是96的几倍?A . 1B . (31)2 C . (31)6 D . (-6)229. (2011台湾全区,14)14.计算)4(433221-⨯++之值为何?A .-1B .-611C .-512D .-323 【答案】B30. (2011湖南常德,9,3分)下列计算错误的是( )A.020111=9=± C.1133-⎛⎫= ⎪⎝⎭D.4216=【答案】B31. (2011湖北襄阳,6,3分)下列说法正确的是A.0)2(π是无理数B.33是有理数 C.4是无理数 D.38-是有理数【答案】D32.(20011江苏镇江,1,2分)在下列实数中,无理数是( )13答案【 C 】33. (2011贵州贵阳,6,3分)如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是(第6题图)(A )2.5 (B )2 2 (C ) 3 (D ) 5 【答案】D34(2011湖北宜昌,5,3分)如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( )A . a < b B.a = b C. a > b D .ab > 0(第5题图)【答案】C35. (2011广东茂名,9,3分)对于实数a 、b ,给出以下三个判断: ①若b a =,则 b a =. ②若b a <,则 b a <.③若b a -=,则 22)(b a =-.其中正确的判断的个数是 A .3 B .2 C .1 D .0 【答案】C二、填空题1. (2011安徽,12,5分)根据里氏震级的定义,地震所释放的相对能量E 与震级n 的关系为E =10n ,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是 . 【答案】1002. (2011广东省,8,4分)按下面程序计算:输入x =3,则输出的答案是__ _ .【答案】263. (2011山东日照,13,4分)计算sin30°﹣2-= . 【答案】23-; 4. (2011四川南充市,11,3分)计算(π-3)0= . 【答案】15. (2011江西,9,3分)计算:-2-1= . 【答案】-36. (2011湖南常德,8,3分)先找规律,再填数:1111111111111111,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则 【答案】110067. (2011江苏连云港,13,3分)如图,是一个数值转换机.若输入数为3,则输出数是______.【答案】658. (2011江西南昌,9,3分)计算:-2-1= . 【答案】-39. (2011湖南怀化,11,3分)定义新运算:对任意实数a 、b ,都有ab=a 2-b,例如,32=32-2=7,那么21=_____________. 【答案】310.(2011安徽,14,5分)定义运算a b=a (1-b ),下面给出了关于这种运算的几个结论:( )2-1 输出数 减去5①2✞(-2)=6 ②a ✞b= b ✞ a ③若a +b=0,则(a ✞ a )+(b ✞ b )=2 ab ④若a ✞b=0,则a =0 其中正确结论的序号是 .(在横线上填上你认为所有正确结论的序号) 【答案】①③11. (2011广东汕头,8,4分)按下面程序计算:输入x =3,则输出的答案是__ _ .【答案】2612. (20011江苏镇江,9,2分)计算:-(-12)=______;12-=______;012⎛⎫- ⎪⎝⎭=______; 112-⎛⎫- ⎪⎝⎭=_______. 答案:12,12,1,-2 13.(2011广东湛江20,4分)已知:23233556326,54360,5432120,6543360A A A A =⨯==⨯⨯==⨯⨯⨯==⨯⨯⨯=,,观察前面的计算过程,寻找计算规律计算27A = (直接写出计算结果),并比较59A 310A (填“>”或“<”或“=”)【答案】>14. (2010湖北孝感,17,3分)对实数a 、b ,定义运算★如下:a ★b=(,0)(,0)bb a a b a a a b a -⎧>≠⎪⎨≤≠⎪⎩,例如2★3=2-3=18.计算[2★(﹣4)]×[(﹣4)★(﹣2)] 【答案】115. (2011湖南湘潭市,16,3分)规定一种新的运算:ba b a 11+=⊗,则=⊗21____. 【答案】112三、解答题1. (2011浙江金华,17,6分)计算:|-1|-128-(5-π)0+4cos45°. 【解】原式=1-12×22-1+4×22=1-2-1+22=2.2. (2011广东东莞,11,6分)计算:0011)2--【解】原式=1+2-4 =03. (1) (2011福建福州,16(1),7分)计算:0|-4|+2011 【答案】解:原式414=+-1=4. (2011江苏扬州,19(1),4分)(1)30)2(4)2011(23-÷+---【答案】(1)解:原式=)8(4123-÷+-=21123--=0 5. (2011山东滨州,19,6分)计算:()101-3cos30 1.2π-︒⎛⎫+-+- ⎪⎝⎭【答案】解:原式=21122=2--+-6. (2011山东菏泽,15(1),60(4)6cos302-π-+- 解:原式=6-=1 7. (2011山东济宁,16,504sin 45(3)4︒+-π+-【答案】.解:原式4142=⨯++ 5=8. (2011山东济宁,18,6分)观察下面的变形规律:211⨯ =1-12; 321⨯=12-31;431⨯=31-41;…… 解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n = ;(2)证明你猜想的结论;(3)求和:211⨯+321⨯+431⨯+…+201020091⨯ . 【答案】(1)111n n -+ ·············································································································· 1分(2)证明:n 1-11+n =)1(1++n n n -)1(+n n n =1(1)n nn n +-+=)1(1+n n . ·························· 3分(3)原式=1-12+12-31+31-41+…+20091-20101=12009120102010-=. ………………5分9. (2011 浙江湖州,17,6)计算:0022sin30)π-- 【答案】解:原式=1222142-⨯++= 10.(2011浙江衢州,17(1),4分) 计算:()0232cos 45π---+︒.【答案】解:(1)原式2121=-+=+11. (2011浙江绍兴,17(1),4分)(1012cos454π-+︒+(-2);【答案】解:原式11224+⨯+3=.412. (2011浙江省,17(1),4分)(1)计算:12)21(30tan 3)21(01+-+---【答案】(1)解:12)21(30tan 3)21(01+-+---= 3213332++⨯--=13-13. (2011浙江台州,17,8分)计算:203)12(1+-+- 【答案】解:原式= 1+1+9=1114. (2011浙江温州,17(1),5分)计算:20(2)(2011)-+-【答案】解:20(2)(2011)415-+-=+-=-15. (2011浙江义乌,17(1),6分)(1)计算: 45sin 2820110-+;【答案】(1)原式=1+22-2=1+ 216. (2011广东汕头,11,6分)计算:0011)2--【解】原式=1+2-4 =017. (2011浙江省嘉兴,17,8分)(1)计算:202(3)+- 【答案】原式=4+1-3=218. (2011浙江丽水,17,6分)计算:|-1|-128-(5-π)0+4cos45°.【解】原式=1-12×22-1+4×22=1-2-1+22=2.19. (2011福建泉州,18,9分)计算:()()2201113132π-⎛⎫-+-⨯- ⎪⎝⎭.【答案】解:原式=3+(-1)⨯1-3+4…………………………(6分) =3…………………………(9分)20.(2011湖南常德,17,5分)计算:()317223-÷-⨯【答案】2921. (2011湖南邵阳,17,8分)计算:020103-。

2011年中考数学试题分类汇总:数据的集中趋势与离散程度

2011年中考数学试题分类汇总:数据的集中趋势与离散程度

2011年全国各地中考数学试卷分类汇编第15章数据的集中趋势与离散程度1. (2011浙江省舟山,8,3分)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()(A)极差是47 (B)众数是42(C)中位数是58 (D)每月阅读数量超过40的有4个月【答案】C2.(2011 浙江湖州,5,3)数据1,2,3,4,5的平均数是A.1 B.2 C.3 D.4【答案】C3. (2011广东广州市,3,3分)某车间5名工人日加工零件数分别为6,10,4,5,4,则这组数据的中位数是().A.4B.5C.6D.10【答案】B4. (2011山东德州5,3分)某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确...的是(A)甲运动员得分的极差大于乙运动员得分的极差(B)甲运动员得分的的中位数大于乙运动员得分的的中位数(C)甲运动员的得分平均数大于乙运动员的得分平均数(D)甲运动员的成绩比乙运动员的成绩稳定【答案】D5. (2011山东泰安,9 ,3分)某校篮球班21名同学的身高如下表:身高(cm ) 180 186 188 192 208人数(个) 4 6 5 4 2 则该校篮球班21名同学身高的众数和中位数分别是(单位:cm )( ) A.186,186 B.186,187 C.186,188 D.208,188 【答案】C6. (2011山东威海,2,3分)今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学的测试成绩(单位:个/分钟).176 180 184 180 170 176 172 164 186 180该组数据的众数、中位数、平均数分别为( )A .180, 180, 178B .180, 178, 178C .180, 178, 176.8D .178, 180, 176.8【答案】C7. (2011山东烟台,8,4分)体育课上测量立定跳远,其中一组六个人的成绩(单位:米)分别是:1.0,1.3,2.2,2.0,1.8,1.6 ,则这组数据的中位数和极差分别是( )A.2.1,0.6B. 1.6,1.2C.1.8,1.2D.1.7,1.2 【答案】D8. (2011四川南充市,2,3分)学校商店在一段时间内销售了四种饮料共100瓶,各种饮料的销售量如下表:品牌 甲 乙 丙 丁 销售量(瓶)12321343建议学校商店进货数量最多的品牌是( )(A )甲品牌 (B )乙品牌 (C )丙品牌 (D )丁品牌【答案】D9. (2011广东湛江9,3分)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是20.65S =甲,20.55S =乙,20.50S =丙 20.45S =丁,则射箭成绩最稳定的是 A 甲 B 乙 C 丙 D 丁 【答案】D10. (2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:最高气温(℃) 25 26 27 28天 数 1 1 2 3则这组数据的中位数与众数分别是( ) A .27,28 B .27.5,28 C .28,27 D .26.5,27 【答案】A11. (2011浙江衢州,1,3分)在九年级体育中考中,某校某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):44,45,42,48,46,47,45.则这组数据的极差为( )A.2B. 4C.6D.8【答案】C12. (2011浙江省,4,3分)某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.中位数B.众数C.平均数D. 极差【答案】A13. (2011浙江台州,3,4分)要反映台州某一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图【答案】C14. (2011浙江温州,2,4分)某校开展形式多样的“阳光体育”活动,七(3)班同学积极响应,全班参与,晶晶绘制了该班同学参加体育项目情况的扇形统计图(如图所示),由图可知参加人数最多的体育项目是)(A.排球B.乒乓球C.篮球D.跳绳【答案】C16. (2011浙江省嘉兴,8,4分)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()(A)极差是47 (B)众数是42(C)中位数是58 (D)每月阅读数量超过40的有4个月Array【答案】C18. (2011台湾台北,14)图(四)为某班甲、乙两组模拟考成绩的盒状图。

湖南省常德市中考数学真题试卷(含解析)

湖南省常德市中考数学真题试卷(含解析)

湖南省常德市中考数学真题试卷一、选择题(共8小题).1.4的倒数为()A.B.2 C.1 D.﹣4 2.下面几种中式窗户图形既是轴对称又是中心对称的是()A.B.C.D.3.如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为()A.70°B.65°C.35°D.5°4.下列计算正确的是()A.a2+b2=(a+b)2B.a2+a4=a6C.a10÷a5=a2D.a2•a3=a55.下列说法正确的是()A.明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上C.了解一批花炮的燃放质量,应采用抽样调查方式D.一组数据的众数一定只有一个6.一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是()A.100πB.200πC.100πD.200π7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2﹣4ac>0;②abc<0;③4a+b=0;④4a﹣2b+c>0.其中正确结论的个数是()A.4 B.3 C.2 D.18.如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F二、填空题(本大题8个小题,每小题3分,满分24分)9.分解因式:xy2﹣4x=.10.若代数式在实数范围内有意义,则x的取值范围是.11.计算:﹣+=.12.如图,若反比例函数y=(x<0)的图象经过点A,AB⊥x轴于B,且△AOB的面积为6,则k=.13.4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如表:阅读时间(x小时)x≤3.5 3.5<x≤5 5<x≤6.5 x>6.5 人数12 8 6 4 若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为.14.今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是次.15.如图1,已知四边形ABCD是正方形,将△DAE,△DCF分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C都落在G点),若GF=4,EG=6,则DG的长为.16.阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为.三、(本大题2个小题,每小题5分,满分10分)17.计算:20+()﹣1•﹣4tan45°.18.解不等式组.四、(本大题2个小题,每小题6分,满分12分)19.先化简,再选一个合适的数代入求值:(x+1﹣)÷.20.第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?五、(本大题2个小题,每小题7分,满分14分)21.已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,求交点坐标.22.如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC的底部支撑点B在水平线AD的下方,AB与水平线AD之间的夹角是5°,卸货时,车厢与水平线AD成60°,此时AB与支撑顶杆BC的夹角为45°,若AC=2米,求BC的长度.(结果保留一位小数)(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41)六、(本大题2个小题,每小题8分,满分16分)23.今年2﹣4月某市出现了200名新冠肺炎患者,市委根据的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.24.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE 交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.七、(本大题2个小题,每小题10分,满分20分)25.如图,已知抛物线y=ax2过点A(﹣3,).(1)求抛物线的解析式;(2)已知直线l过点A,M(,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MA•MB;(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D的四边形是平行四边形,求所有符合条件的P点坐标.26.已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.参考答案一、选择题(本大题8个小题,每小题3分,满分24分)1.4的倒数为()A.B.2 C.1 D.﹣4【分析】根据倒数的意义,乘积是1的两个数叫做互为倒数,求倒数的方法,是把一个数的分子和分母互换位置即可,是带分数的化成假分数,再把分子分母互换位置,据此解答.解:4的倒数为.故选:A.2.下面几种中式窗户图形既是轴对称又是中心对称的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、不是轴对称图形,也不是中心对称图形,故本选项不合题意;C、既是轴对称图形,又是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故本选项不合题意;故选:C.3.如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为()A.70°B.65°C.35°D.5°【分析】根据平行线的性质和∠1=30°,∠2=35°,可以得到∠BCE的度数,本题得以解决.解:作CF∥AB,∵AB∥DE,∴CF∥DE,∴AB∥DE∥DE,∴∠1=∠BCF,∠FCE=∠2,∵∠1=30°,∠2=35°,∴∠BCF=30°,∠FCE=35°,∴∠BCE=65°,故选:B.4.下列计算正确的是()A.a2+b2=(a+b)2B.a2+a4=a6C.a10÷a5=a2D.a2•a3=a5【分析】根据完全平方公式、合并同类项法则、同底数幂的乘除法计算得到结果,即可作出判断.解:A、a2+2ab+b2=(a+b)2,原计算错误,故此选项不符合题意;B、a2与a4不是同类项不能合并,原计算错误,故此选项不符合题意;C、a10÷a5=a5,原计算错误,故此选项不符合题意;D、a2•a3=a5,原计算正确,故此选项符合题意;故选:D.5.下列说法正确的是()A.明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上C.了解一批花炮的燃放质量,应采用抽样调查方式D.一组数据的众数一定只有一个【分析】根据必然事件的概念、众数的定义、随机事件的概率逐项分析即可得出答案.解:A、明天的降水概率为80%,则明天下雨可能性较大,故本选项错误;B、抛掷一枚质地均匀的硬币两次,正面朝上的概率是,故本选项错误;C、了解一批花炮的燃放质量,应采用抽样调查方式,故本选项正确;D、一组数据的众数不一定只有一个,故本选项错误;故选:C.6.一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是()A.100πB.200πC.100πD.200π【分析】先利用勾股定理计算出母线长,然后利用扇形的面积公式计算这个圆锥的侧面积.解:这个圆锥的母线长==10,这个圆锥的侧面积=×2π×10×10=100π.故选:C.7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2﹣4ac>0;②abc<0;③4a+b=0;④4a﹣2b+c>0.其中正确结论的个数是()A.4 B.3 C.2 D.1【分析】先由抛物线与x周董交点个数判断出结论①,利用抛物线的对称轴为x=2,判断出结论②,先由抛物线的开口方向判断出a<0,进而判断出b>0,再用抛物线与y轴的交点的位置判断出c>0,判断出结论③,最后用x=﹣2时,抛物线在x轴下方,判断出结论④,即可得出结论.解:由图象知,抛物线与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,故①正确,由图象知,抛物线的对称轴直线为x=2,∴﹣=2,∴4a+b=0,故②正确,由图象知,抛物线开口方向向下,∴a<0,∵4a+b=0,∴b>0,而抛物线与y轴的交点在y轴的正半轴上,∴c>0,∴abc<0,故③正确,由图象知,当x=﹣2时,y<0,∴4a﹣2b+c<0,故④错误,即正确的结论有3个,故选:B.8.如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F【分析】设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.解:经实验或按下方法可求得顶点C,E和F棋子不可能停到.设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),应停在第k(k+1)﹣7p格,这时P是整数,且使0≤k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤,设k=7+t(t=1,2,3)代入可得,k(k+1)﹣7p=7m+t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.故选:D.二、填空题(本大题8个小题,每小题3分,满分24分)9.分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)10.若代数式在实数范围内有意义,则x的取值范围是x>3 .【分析】根据二次根式有意义的条件可得2x﹣6>0,再解即可.解:由题意得:2x﹣6>0,解得:x>3,故答案为:x>3.11.计算:﹣+=3.【分析】直接化简二次根式进而合并得出答案.解:原式=﹣+2=3.故答案为:3.12.如图,若反比例函数y=(x<0)的图象经过点A,AB⊥x轴于B,且△AOB的面积为6,则k=﹣12 .【分析】根据反比例函数比例系数的几何意义即可解决问题.解:∵AB⊥OB,∴S△AOB==6,∴k=±12,∵反比例函数的图象在二四象限,∴k<0,∴k=﹣12,故答案为﹣12.13.4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如表:阅读时间(x小时)x≤3.5 3.5<x≤5 5<x≤6.5 x>6.5 人数12 8 6 4 若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为400人.【分析】用总人数×每周课外阅读时间在5小时以上的学生人数所占的百分比即可得到结论.解:1200×=400(人),答:估计全校每周课外阅读时间在5小时以上的学生人数为400人.14.今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是 4 次.【分析】设李红出门没有买到口罩的次数是x,买到口罩的次数是y,根据买口罩的次数是10次和家里现有口罩35只,可列出关于x和y的二元一次方程组,求解即可.解:设李红出门没有买到口罩的次数是x,买到口罩的次数是y,由题意得:,整理得:,解得:.故答案为:4.15.如图1,已知四边形ABCD是正方形,将△DAE,△DCF分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C都落在G点),若GF=4,EG=6,则DG的长为12 .【分析】设正方形ABCD的边长为x,由翻折及已知线段的长,可用含x的式子分别表示出BE、BF及EF的长;在Rt△BEF中,由勾股定理得关于x的方程,解得x的值,即为DG的长.解:设正方形ABCD的边长为x,由翻折可得:DG=DA=DC=x,∵GF=4,EG=6,∴AE=EG=6,CF=GF=4,∴BE=x﹣6,BF=x﹣6,EF=6+4=10,如图1所示:在Rt△BEF中,由勾股定理得:BE2+BF2=EF2,∴(x﹣6)2+(x﹣4)2=102,∴x2﹣12x+36+x2﹣8x+16=100,∴x2﹣10x﹣24=0,∴(x+2)(x﹣12)=0,∴x1=﹣2(舍),x2=12.∴DG=12.故答案为:12.16.阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为x=2或x=﹣1+或x=﹣1﹣.【分析】将原方程左边变形为x3﹣4x﹣x+2=0,再进一步因式分解得(x﹣2)[x(x+2)﹣1]=0,据此得到两个关于x的方程求解可得.解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1,故答案为:x=2或x=﹣1+或x=﹣1﹣.三、(本大题2个小题,每小题5分,满分10分)17.计算:20+()﹣1•﹣4tan45°.【分析】先计算20、、()﹣1、tan45°,再按运算顺序求值即可.解:原式=1+3×2﹣4×1=1+6﹣4=3.18.解不等式组.【分析】首先分别解出两个不等式的解集,再根据解集的规律确定不等式组的解集.解:,由①得:x<5,由②得:x≥﹣1,不等式组的解集为:﹣1≤x<5.四、(本大题2个小题,每小题6分,满分12分)19.先化简,再选一个合适的数代入求值:(x+1﹣)÷.【分析】根据分式的减法和除法可以化简题目中的式子,然后选取一个使得原分式有意义的值代入化简后的式子即可解答本题.解:(x+1﹣)÷====,当x=2时,原式==﹣.20.第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?【分析】首先设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,根据题意可得等量关系:4G下载600兆所用时间﹣5G下载600兆所用时间=140秒.然后根据等量关系,列出分式方程,再解即可.解:设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,由题意得:﹣=140,解得:x=4,经检验:x=4是原分式方程的解,且符合题意,15×4=60,答:该地4G的下载速度是每秒4兆,则该地5G的下载速度是每秒60兆.五、(本大题2个小题,每小题7分,满分14分)21.已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,求交点坐标.【分析】(1)直接把(3,18),(﹣2,8)代入一次函数y=kx+b中可得关于k、b的方程组,再解方程组可得k、b的值,进而求出一次函数的解析式;(2)联立一次函数解析式和反比例函数解析式,根据题意得到△=0,解方程即可得到结论.解:(1)把(3,18),(﹣2,8)代入一次函数y=kx+b(k≠0),得,解得,∴一次函数的解析式为y=2x+12;(2)∵一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,∴只有一组解,即2x2+12x﹣m=0有两个相等的实数根,∴△=122﹣4×2×(﹣m)=0,∴m=﹣18.把m=﹣18代入求得该方程的解为:x=﹣3,把x=﹣3代入y=2x+12得:y=6,即所求的交点坐标为(﹣3,6).22.如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC的底部支撑点B在水平线AD的下方,AB与水平线AD之间的夹角是5°,卸货时,车厢与水平线AD成60°,此时AB与支撑顶杆BC的夹角为45°,若AC=2米,求BC的长度.(结果保留一位小数)(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41)【分析】直接过点C作CF⊥AB于点F,利用锐角三角函数关系得出CF的长,进而得出BC的长.【解答】方法一:解:如图1,过点C作CF⊥AB于点F,在Rt△ACF中,∵sin∠CAB=sin(60°+5°)=sin65°=,∴CF=AC•sin65°≈2×0.91=1.82,在Rt△BCF中,∵∠ABC=45°,∴CF=BF,∴BC=CF=1.41×1.82=2.5662≈2.6,答:所求BC的长度约为2.6米.方法二:解:如图2,过点A作AE⊥BC于点E,在Rt△ACE中,∵∠C=180°﹣65°﹣45°=70°,∴cos C=cos70°=,即CE=AC×cos70°≈2×0.34=0.68,sin C=sin70°=,即AE=AC×sin70°≈2×0.94=1.88,又∵在Rt△AEB中,∠ABC=45°,∴AE=BE,∴BC=BE+CE=0.68+1.88=2.56≈2.6,答:所求BC的长度约为2.6米.六、(本大题2个小题,每小题8分,满分16分)23.今年2﹣4月某市出现了200名新冠肺炎患者,市委根据的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.【分析】(1)因为总人数已知,由轻症患者所占的百分比即可求出其的人数;(2)求出该市危重症患者所占的百分比,即可求出其共花费的钱数;(3)用加权平均数公式求出各种患者的平均费用即可;(4)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选中B、D两位同学的情况,再利用概率公式即可求得答案.解:(1)轻症患者的人数=200×80%=160(人);(2)该市为治疗危重症患者共花费钱数=200×(1﹣80%﹣15%)×10=100(万元);(3)所有患者的平均治疗费用==2.15(万元);(4)列表得:A B C D EA(B,A)(C,A)(D,A)(E,A)B(A,B)(C,B)(D,B)(E,B)C(A,C)(B,C)(D,C)(E,C)D(A,D)(B,D)(C,D)(E,D)E(A,E)(B,E)(C,E)(D,E)由列表格,可知:共有20种等可能的结果,恰好选中B、D两位同学的有2种情况,∴P(恰好选中B、D)==.24.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE 交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.【分析】(1)连接OC,由等腰三角形的性质和直角三角形的性质可得∠OCB+∠ECF=90°,可证EC是⊙O的切线;(2)由勾股定理可求AC=6,由锐角三角函数可求BF=5,可求CF=3,通过证明△OAC ∽△ECF,可得,可求解.解:(1)连接OC,∵OC=OB,∴∠OBC=∠OCB,∵DE⊥AB,∴∠OBC+∠DFB=90°,∵EF=EC,∴∠ECF=∠EFC=∠DFB,∴∠OCB+∠ECF=90°,∴OC⊥CE,∴EC是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∵OB=5,∴AB=10,∴AC===6,∵cos∠ABC=,∴,∴BF=5,∴CF=BC﹣BF=3,∵∠ABC+∠A=90°,∠ABC+∠BFD=90°,∴∠BFD=∠A,∴∠A=∠BFD=∠ECF=∠EFC,∵OA=OC,∴∠OCA=∠A=∠BFD=∠ECF=∠EFC,∴△OAC∽△ECF,∴,∴EC===.七、(本大题2个小题,每小题10分,满分20分)25.如图,已知抛物线y=ax2过点A(﹣3,).(1)求抛物线的解析式;(2)已知直线l过点A,M(,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MA•MB;(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D的四边形是平行四边形,求所有符合条件的P点坐标.【分析】(1)利用待定系数法即可解决问题.(2)构建方程组确定点B的坐标,再利用平行线分线段成比例定理解决问题即可.(3)如图2中,设P(t,t2),根据PD=CD构建方程求出t即可解决问题.解:(1)把点A(﹣3,)代入y=ax2,得到=9a,∴a=,∴抛物线的解析式为y=x2.(2)设直线l的解析式为y=kx+b,则有,解得,∴直线l的解析式为y=﹣x+,令x=0,得到y=,∴C(0,),由,解得或,∴B(1,),如图1中,过点A作AA1⊥x轴于A1,过B作BB1⊥x轴于B1,则BB1∥OC∥AA1,∴===,===,∴=,即MC2=MA•MB.(3)如图2中,设P(t,t2)∵OC为一边且顶点为O,C,P,D的四边形是平行四边形,∴PD∥OC,PD=OC,∴D(t,﹣t+),∴|t2﹣(﹣t+)|=,整理得:t2+2t﹣6=0或t2+2t=0,解得t=﹣1﹣或﹣1=或﹣2或0(舍弃),∴P(﹣1﹣,2+)或(﹣1+,2﹣)或(﹣2,1).26.已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.【分析】(1)①证明△CBP是直角三角形,根据直角三角形斜边中线可得结论;②根据同位角相等可得BC∥EF,由平行线的性质得BP⊥EF,可得EF是线段BP的垂直平分线,根据等腰三角形三线合一的性质可得∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,证明△QEP≌△DEC(SAS),则PQ=DC=DB,由QE=DE,∠DEF=90°,知EF是DQ的垂直平分线,证明△FQP≌△FDB (SAS),再由EF是DQ的垂直平分线,可得结论.【解答】证明(1)①∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,同理∠EDF=60°,∴∠A=∠EDF=60°,∴AC∥DE,∴∠DMB=∠ACB=90°,∵D是Rt△ABC斜边AB的中点,AC∥DM,∴,即M是BC的中点,∵EP=CE,即E是PC的中点,∴ED∥BP,∴∠CBP=∠DMB=90°,∴△CBP是直角三角形,∴BE=PC=EP;②∵∠ABC=∠DFE=30°,∴BC∥EF,由①知:∠CBP=90°,∴BP⊥EF,∵EB=EP,∴EF是线段BP的垂直平分线,∴PF=BF,∴∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,∵EC=EP,∠DEC=∠QEP,∴△QEP≌△DEC(SAS),则PQ=DC=DB,∵QE=DE,∠DEF=90°∴EF是DQ的垂直平分线,∴QF=DF,∵CD=AD,∴∠CDA=∠A=60°,∴∠CDB=120°,∴∠FDB=120°﹣∠FDC=120°﹣(60°+∠EDC)=60°﹣∠EDC=60°﹣∠EQP=∠FQP,∴△FQP≌△FDB(SAS),∴∠QFP=∠BFD,∵EF是DQ的垂直平分线,∴∠QFE=∠EFD=30°,∴∠QFP+∠EFP=30°,∴∠BFD+∠EFP=30°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年常德市初中毕业学业考试数 学 试 题 卷(满分120分,考试时间120分钟)一、填空题(本大题8个小题,每小题3分,满分24分)1. (2011湖南常德,1,3分)2______.-=【答案】22. (2011湖南常德,2,3分)分解因式:24_________.x x -=【答案】()4x x -3. (2011湖南常德,3,3分)函数13y x =-中自变量x 的取值范围是_______________. 【答案】3x ≠4. (2011湖南常德,4,3分)四边形的外角和为__________.【答案】360°5. (2011湖南常德,5,3分)如图所示的曲线是一个反比例函数图象的一支,点A 在此曲线上,则该反比例函数的解析式为_______________.【答案】3y x= 6. (2011湖南常德,6,3分)质量检验部门抽样检测出某品牌电器产品的次品率为5%,一位经销商现有这种产品1000件,估计其中次品有_________件.【答案】507. (2011湖南常德,7,3分)如图,已知⊙O 是△ABC 的外接圆,且∠C =70°,则∠OAB =__________.【答案】20°8. (2011湖南常德,8,3分)先找规律,再填数:1111111111111111,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则 【答案】11006二、选择题(本大题8个小题,每小题3分,满分24分)9. (2011湖南常德,9,3分)下列计算错误的是( )A.020111=9=± C.1133-⎛⎫= ⎪⎝⎭ D.4216= 【答案】B10.(2011湖南常德,10,3分)如图,是由四个相同的小正方形组成的立体图形,它的左视图是( )【答案】A 11.(2011湖南常德,11,3分)我国以2010年11月1日零时为标准记时点,进行了第六次全国人口普查,查得全国总人口约为1 370 000 000人,请将总人口用科学计数法表示为( )A.81.3710⨯B. 91.3710⨯C.101.3710⨯D. 813.710⨯【答案】B12.(2011湖南常德,12,3分)在平面直角坐标系中,□ABCD 的顶点A 、B 、C 的坐标分别是(0,0)、(3,0)、(4,2)则顶点D 的坐标为( )A .(7,2) B. (5,4) C.(1,2) D. (2,1)【答案】C13.(2011湖南常德,13,3分)在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是( )A .李东夺冠的可能性较小 B. 李东和他的对手比赛10局时,他一定会赢8局C .李东夺冠的可能性较大 D. 李东肯定会赢【答案】C14.(2011湖南常德,14,3分)已知圆锥底面圆的半径为6厘米,高为8厘米,则圆锥的侧面积为( )A .48厘米2 B. 48π厘米2 C. 120π厘米2 D. 60π厘米2【答案】D15.(2011湖南常德,15,3分)小华同学利用假期时间乘坐一大巴去看望在外打工的妈妈.出发时,大巴的油箱装满了油,匀速行驶一段时间后,油箱内的汽油恰剩一半时又加满了油,接着按原速度行驶,到目的地时油箱中还剩有13箱汽油.设油箱中所剩的汽油量为V (升),时间为t 的大致图象是( )【答案】D16.(2011湖南常德,16,3分)设min {x ,y }表示x,y 两个数中的最小值,例如min {0,2}=0,min {12,8}=8,则关于x 的函数y 可以表示为( )A. ()()2222x x y x x <⎧⎪=⎨+≥⎪⎩B. ()()2222x x y x x +<⎧⎪=⎨≥⎪⎩ C. y =2x D. y =x +2【答案】D三、(本大题2个小题,每小题5分,满分10分)17.(2011湖南常德,17,5分)计算:()317223-÷-⨯ 【解】2918.(2011湖南常德,18,5分)解不等式组:211481x x x x ->+⎧⎨-<+⎩ 【解】解不等式①得,x > 2A B C D① ②解不等式②, x < 3所以此不等式组的解集为2<x < 3四、(本大题2个小题,每小题6分,满分12分)19.(2011湖南常德,19,6分)先化简,再求值.221211, 2.111x x x x x x x ⎛⎫-+-+÷= ⎪+-+⎝⎭其中 【解】221211111x x x x x x ⎛⎫-+-+÷ ⎪+-+⎝⎭()()()21111111111122==2.21x x x x x x x x x x x x x ⎛⎫-+=+ ⎪ ⎪++--⎝⎭+=+-=-=-当时,原式20.(2011湖南常德,20,6分)在一个不透明的口袋里,装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个.若从中任意摸出一个球,这个球是白球的概率为0.5 .(1)求口袋中红球的个数.(2)若摸到红球记0分,摸到白球记1分,摸到黄球记2分,甲从口袋中摸出一个球不放回,再摸出一个.请用画树状图的方法求甲摸得两个球且得2分的概率.【解】(1)设袋中有红球x 个,则有20.521x=++,解得x =1. 所以,袋中的红球有1个.(2)画树状图如下:由上述树状图可知:所有可能出现的结果共有12种.其中摸出两个得2分的有4种.所以P (从中摸出两个得2分)=41123. 五、(本大题2个小题,每小题7分,满分14分) 21.(2011湖南常德,21,7分)如图,已知四边形ABCD 是平行四边形.(1)求证:△MEF ∽△MBA ;(2)若AF ,BE 分别是∠DAB ,∠CBA 的平分线,求证DF =EC【证明】(1)∵□ABCD ,∴CD ∥AB∴∠MEF =∠MBA ,∠MFE =∠MAB∴△MEF ∽△MBA(2)在□ABCD 中,∵CD ∥AB∴∠DF A =∠FAB又∵AF 是∠DAB 的平分线∴∠DAF =∠F AB∴∠DAF =∠DF A∴AD =DF同理可得EC =BC∵□ABCD ,∴AD =BC∴DF =EC22.(2011湖南常德,22,7分)随着“十一五”期间中央系列强农惠农政策的出台,农民的收入和生活质量及消费走势发生了巨大的变化,农民的生活消费结构趋于理性化,并呈现出多层次的消费结构,为了解我市农民消费结构状况,随机调查了部分农民,并根据调查数据,将2008年和2010年我市农民生活消费支出情况绘成了如下统计图表:2 13 2 1 3 1 1 2 3 3 2 开始白 白 红 黄白 红 黄 第二次 第一次 得分白 白 黄白 红 黄白 白 红请解答如下问题:(1)2008年的生活消费支出总额是多少元?支出费用中支出最多的项目是哪一项?(2)2010年我市农民生活消费支出统计表中a 、b 、c 的值分别是多少?(3)2008年到2010年的生活消费支出总额的年平均增长率是多少?【解】(1)2370+360+1060+390+420+400=5000(元)所以2008年的生活消费支出总额是5000元;支出费用中支出最多的项目是食品.(2)a =6050-(2630+521+1380+430+605)=484(元)b =484÷6050=0.08c =605÷6050=0.1(3)设2008年到2010年的生活消费支出总额的年平均增长率是x ,根据题意有()2500016050x += 解得1210%, 2.1()x x ==-舍去所以2008年到2010年的生活消费支出总额的年平均增长率是10%六、(本大题2个小题,每小题8分,满分16分)23.(2011湖南常德,23,8分)某城市规定:出租车起步价允许行驶的最远路程为3千米,超过3千米的部分按每千米另收费.甲说:“我乘这种出租车走了11千米,付了17元”;乙说:“我乘这种出租车走了23千米,付了35元”.请你算一算这种出租车的起步价是多少元?以及超过3千米后,每千米的车费是多少元?【解】设这种出租车的起步价是x 元,超过3千米后每千米收费y 元,根据题得()()113175,23335 1.5x y x x y y +-=⎧=⎧⎪⎨⎨+-==⎪⎩⎩解得 所以这种出租车的起步价是5元,超过3千米后每千米收费1.5元24.(2011湖南常德,24,8分)青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃.(如图所示)一天,灰太狼在自家城堡顶部A 处测得懒羊羊所在地B 处的俯角为60°,然后下到城堡的C 处,测得B 处的俯角为30°.已知AC=40米,若灰太狼以5m/s 的速度从城堡底部D 处出发,几秒钟后能抓到懒羊羊?(结果精确到个位)【解】在Rt △ABD 中,∠ABD =60° ∵tan 60AD BD=︒,∴0tan60AD BD =⋅=在Rt △BCD 中,∠CBD =30°tan 30CD BD=︒∴0tan 30CD BD BD =⋅=由AD -CD=AC ,得到403BD -=,解得BD≈34.6(米) 34.6÷5=6.92≈7(秒)六、(本大题2个小题,每小题10分,满分20分)25.(2011湖南常德,25,10分)已知 △ABC ,分别以AC 和BC 为直径作半圆1O 、2,O P 是AB的中点.(1)如图1,若△ABC 是等腰三角形,且AC =BC ,在,AC BC 上分别取点E 、F ,使12,AO E BO F ∠=∠则有结论①△EO 1P ≌△PO 2F ②四边形12PO CO 是菱形.请给出结论②的证明;(2)如图2,若(1)中△ABC 是任意三角形,其它条件不变,则(1)中的两个结论还成立吗?若成立,请给出证明;(3)如图3,若PC 是1O 的切线,求证:2223AB BC AC =+【证明】(1)∵BC 是⊙O 2直径,则O 2是BC 的中点又P 是AB 的中点.,∴P O 2是△ABC 的中位线∴P O 2 =12AC 又AC 是⊙O 1直径∴P O 2= O 1C=12AC 同理P O 1= O 2C =12BC ∵AC =BC∴P O 2= O 1C=P O 1= O 2C∴四边形12PO CO 是菱形(2)结论①△PO 1E ≌△PO 2F 成立,结论②不成立证明:在(1)中已证PO 2=12AC ,又O 1E =12AC ∴PO 2=O 1E同理可得PO 1=O 2F∵PO 2是△ABC 的中位线∴PO 2∥AC∴∠PO 2B =∠ACB同理∠P O 1A=∠ACB∴∠PO 2B =∠P O 1A∵∠AO 1E =∠BO 2F∴∠P O 1A+∠AO 1E =∠PO 2B+∠BO 2F即∠P O 1E =∠F O 2 P∴△EO 1P ≌△PO 2F ;(3)延长AC 交⊙O 2于点D ,连接BD.∵BC 是⊙O 2的直径,则∠D=90°,又PC 是1O 的切线,则∠ACP=90°,∴∠ACP=∠D又∠PAC=∠BAD∴△A PC ∽△BAD又P 是AB 的中点 ∴12AC AP AD AB == ∴AC=CD ∴在Rt △BCD 中,2222²BC CD BD AC BD =+=+ 在Rt △ABD 中,222AB AD BD =+∴()22222243AB AC BD AC BD AC =+=++ ∴2223AB BC AC =+26.(2011湖南常德,26,10分)如图,已知抛物线过点A (0,6),B (2,0),C (7,52). (1)求抛物线的解析式;(2)若D 是抛物线的顶点,E 是抛物线的对称轴与直线AC 的交点,F 与E 关于D 对称,求证:∠CFE=∠AFE ;(3)在y 轴上是否存在这样的点P ,使△AFP 与△FDC 相似,若有,请求出所有合条件的点P 的坐标;若没有,请说明理由.【解】(1)设经过A (0,6),B (2,0),C (7,52)三点的抛物线的解析式为y =ax 2+bx +c ,则:642054972c a b c a b c ⎧⎪=⎪++=⎨⎪⎪++=⎩ 解得1,4, 6.2a b c ==-= ∴ 此抛物线的解析式为 21462y x x =-+ (2)过点A 作AM ∥x 轴,交FC 于点M ,交对称轴于点N.∵抛物线的解析式21462y x x =-+可变形为()21422y x =-- ∴抛物线对称轴是直线x =4,顶点D 的坐标为(4,-2).则AN=4. 设直线AC 的解析式为11y k x b =+, 则有1116572b k b =⎧⎪⎨+=⎪⎩,解得111,62k b =-=. ∴ 直线AC 的解析式为1 6.2y x =-+ 当x=4时,146 4.2y =-⨯+=∴点E 的坐标为(4,4),∵点F 与E 关于点D 对称,则点F 的坐标为(4,-8)设直线FC 的解析式为22y k x b =+, 则有222248572k b k b +=-⎧⎪⎨+=⎪⎩,解得227,222k b ==-. ∴ 直线FC 的解析式为722.2y x =- ∵AM 与x 轴平行,则点M 的纵坐标为6.当y =6时,则有7226,2x -=解得x =8. ∴AM =8,MN=AM —MN=4∴AN =MN∵FN ⊥AM∴∠ANF=∠MNF又NF=NF∴△ANF ≌△MNF∴∠CFE=∠AFE(3)∵C 的坐标为(7,52),F 坐标为(4,-8) ∴CF == ∵又A 的坐标为(0,6),则FA == 又DF =6,若△AFP ∽△DEF∵EF ∥AO ,则有∠PAF=∠AFE , 又由(2)可知∠DFC=∠AFE∴∠PAF=∠DFC若△AFP 1∽△FCD则1P A AF DF CF =,即16P A =,解得P 1A=8. ∴O P 1=8-6=2∴P 1的坐标为(0,-2).若△AFP 2∽△FDC则2P A AF CF DF =,=,解得P 2A=532. ∴O P 2=532-6=412. ∴P 2的坐标为(0,-412). 所以符合条件的点P 的坐标有两个,分别是P 1(0,-2),P 2(0,-412).。

相关文档
最新文档