第5章机器人控制系统PPT课件

合集下载

《机器人控制》PPT课件

《机器人控制》PPT课件

同样可得活塞位移X与配油器输入信号(位移误 差信号)U间的关系为:
编辑ppt
29
5.l机器人的基本控制原则
5.1.2伺服控制系统举例 2.电一液压伺服控制系统
据式(5.5)、(5.6)和图5.4可得系统的传递 函数:
编辑ppt
30
5.l机器人的基本控制原则
5.1.2伺服控制系统举例 2.电一液压伺服控制系统 当采用力矩电动机作为位移给定元件时
编辑ppt
43
5.2 机器人的位置控制
机器人为连杆式机械手,其动态特性具有高度的非线性。 要控制这种由马达驱动的操作机器人,用适当的数学方 程式来表示其运动是十分重要的。这种数学表达式就是 数学模型,或简称模型。控制机器人运动的计算机,运 用这种数学模型来预测和控制将要进行的运动过程。
式中,1很小而又可以忽略时
编辑ppt
31
5.l机器人的基本控制原则
5.1.2伺服控制系统举例
3.滑阀控制液压传动系统 图5.5表示出一个简单的滑阀控制液压传动系统 的结构框图。其中所用的控制阀为四通滑阀。
编辑ppt
32
5.l机器人的基本控制原则
5.1.2伺服控制系统举例 3.滑阀控制液压传动系统
5.1.2伺服控制系统举例
3.滑阀控制液压传动系统
式中,c=k1n为闭环系统的自然角振荡频率;
c k1 为闭环系统的阻尼系数:2 1 为k1闭环系统
的第二时间常数;另一时间常数为1。
式(5.25)即为所求闭环系统的传递函数。从此式 可见,此闭环系统为一等价三阶系统。我们往往把 它简化为一个一阶环节与一个二阶环节串联的系统。 这样,便于对系统进行分析与研究。
13
PID控制器参数整定的一般规律

工业机器人编程技术--课件----第5章---熟悉ROBOGUIDE安装与基本功能

工业机器人编程技术--课件----第5章---熟悉ROBOGUIDE安装与基本功能
时的各时间节点。 Close Hand: 打开或闭合机器人手爪。 Restart Controller:重启控制系统,包括冷启动、控制启
动和初始化启动。 Turn On/Off Controller:打开/关闭机器人控制系统。 Launch MotionPRO...: 启动 MotionPRO。 Robot Properties:对机器人属性进行设置,也可以双击
2.1 任务三:认识ROBOGUIDE界面
4、元素菜单
Add Robot:添加机器人或添加与工作站中相同类型的 机器人。
Add Machine 至 Add Vision Sensor Unit:添加各种外部 设备的模型来构建仿真工作站场景,包括运动机械、工 装台、工件外围设备以及视觉传感器单元等。
制视频的 Logo 进行设置。
2.1 任务三:认识ROBOGUIDE界面
5、机器人菜单
Teach Pendant: 打开虚拟TP示教。 Lock Teach Tool Selection: 锁定一种示教工具。 Move To Retry: 移动到所选位置点。 Show Work Envelope: 显示机器人的工作范围。 Show Joint Jog Tool: 显示/隐藏机器人关节调节工具。 Alarms:显示机器人的所有程序报警信息。 Program Timer:程序时间器,记录整个工作站仿真动作
俯视图、右视图、左视图、前视图、后视图,第六个选项 Isometric表示的是在工作站中的固定三维空间视角。 Center on Selected Object: 选定目标对象置于显示中心。 Full View:工作站全景视角,可以观察到整个工作站。 Wire-frame:所有对象以线框显示。 Perspective:将三维视图切换到透视视图。 Camera View:切换相机视角,如果添加了多个相机,可在 不同相机视角之间切换。 Program Node Map:程序运动节点图显示选项。 Quick Bars:对机器人运动和仿真操作的快捷指令。 Mouse Commands:显示或隐藏鼠标快捷键提示窗口。

《机器人的控制系统》课件

《机器人的控制系统》课件

自主导航
通过路径规划和导航算法,实现无人机的自主飞行和自动巡航。
THANKS
功能
机器人控制系统的主要功能包括感知 、决策、执行和反馈,使机器人能够 自主或半自主地完成复杂任务。
机器人控制系统的组成与分类
组成
机器人控制系统通常由感知系统、决策系统、执行系统和反馈系统等组成。
分类
根据控制方式和结构,机器人控制系统可分为集中式、分布式和混合式控制系 统。
机器人控制系统的历史与发展
历史
机器人控制系统的发展可以追溯到20世纪50年代,随着计算 机技术、传感器技术和算法的发展,机器人控制系统的性能 和功能不断得到提升。
发展
未来机器人控制系统的发展将更加注重智能化、自主化和协 同化,同时随着技术的进步,机器人控制系统将更加广泛地 应用于各个领域。
02
机器人感知系统
感知系统的组成与功能
《机器人的控制系统》ppt课件
$number {01}
目录
• 机器人控制系统概述 • 机器人感知系统 • 机器人运动控制系统 • 机器人智能决策系统 • 机器人控制系统实例分析
01
机器人控制系统概述
机器人控制系统的定义与功能
定义
机器人控制系统是用于指导机器人完 成预设任务的一系列软硬件设备和算 法。
组成
智能决策系统由感知、决策和执行三个部分 组成。感知部分负责收集环境信息,决策部 分根据感知信息进行决策,执行部分则根据 决策结果控制机器人行动。
功能
智能决策系统的主要功能是使机器人能够自 主地适应环境变化,进行有效的任务规划和 行动决策,提高机器人的自主性和智能化水 平。
决策算法与实现
决策算法
感知系统的组成

《机器人控制系统》课件

《机器人控制系统》课件

总结词
人机交互技术是实现人与机器人之间有 效沟通的重要手段。
VS
详细描述
人机交互技术涉及机器人的语音识别、自 然语言处理、手势识别和视觉识别等技术 。通过人机交互技术,机器人可以理解人 类的指令和需求,并作出相应的响应。这 有助于提高机器人的可用性和用户体验, 使其更好地适应人类生活和工作。
PART 03
PART 05
机器人控制系统的实例分 析
工业机器人的实例分析
01
02
03
工业机器人概述
工业机器人是一种自动化 设备,可以在生产线上执 行重复性任务,提高生产 效率和产品质量。
工业机器人应用
工业机器人在汽车制造、 电子制造、物流等领域广 泛应用,例如焊接、装配 、搬运等。
工业机器人实例
ABB、KUKA、FANUC等 是全球知名的工业机器人 品牌,其产品在制造业中 广泛应用。
功能
机器人控制系统具有多种功能,包括感知、决策、执行、学习等,这些功能共 同协作,使机器人能够完成各种复杂的任务。
机器人控制系统的基本组成
感知模块
负责接收来自传感器和 其他输入设备的信息, 以便了解机器人周围的
环境和状态。
决策模块
根据感知模块提供的信 息,进行决策和规划, 确定机器人的行动方案

执行模块
安全与隐私保护
总结词
随着机器人应用的普及,安全与隐私保护成为机器人控 制系统面临的一个重要挑战。
详细描述
在机器人控制系统中,安全与隐私保护涉及到多个方面 ,如数据加密、访问控制、防止黑客攻击等。为了确保 机器人的安全和用户的隐私,需要采取一系列的安全措 施和技术手段,如加密通信、身份验证和访问控制等。 同时,还需要加强安全监管和管理,制定相关的法律法 规和技术标准,规范机器人的研发、生产和应用。

《机器人的控制系统》PPT课件

《机器人的控制系统》PPT课件
完整的传感器组成:包括敏感元件、转换元件、基本转 换电路三部分。 A、敏感元件和转换元件的功能:将某种不便测量的物 理量转换为易于测量的物理量,构成传感器的结构部分
B、基本转换电路:将敏感元件产生的易测量小信号进 行变换,使传感器的信号输出符合具体工业系统的要求 (如4~20mA、–5~5V)。
(5.9)
机器人杆件某点的力与用力和力矩传感 器测出的8个应变的关系为
(5.10)
W1
Fx 0
Fy
k21
F
MFzx
0 0
M
y
0
Mz k61
0 0 k32 0 k52 0
k13 0 0 0 0 k63
0 0 k34 k44 0 0
0 k25 0 0 0 k650 0 k36 0 k5 0编辑ppt18
第5章 机器人的控制系统 5.1 机器人传感器
图5.6 机器人速度伺服控制系统
测速发电机线性度好,灵敏度高,输出信号强 ,目前检测范围一般为20~40 r/min,精度为 0.2 %~0.5 %。
编辑ppt
19
第5章 机器人的控制系统 5.1 机器人传感器
5.1.2 机器人内部传感器
5.1 机器人传感器
5.1.2 机器人内部传感器
图5.3 绝对式编码器码盘
编辑ppt
12
第5章 机器人的控制系统
5.1 机器人传感器
5.1.2 机器人内部传感器
表5.1 循环码(格雷码)与二进制码及真值表
真值 0 1 2 3 4 5 6 7
格雷码 0000 0001 0011 0010 0110 0111 0101 0100
度 ,则编码器在该时间内的平均转速为
(5.8)

第5章 机器人的控制系统

第5章 机器人的控制系统

2.从使用的角度:




多轴运动的协调控制,以产生要求的工作轨迹: 机器人的手部的运动是所有关节运动的合成 运动,要使手部按照规定的规律运动,就必 须很好地控制各关节协调动作。 较高的位置精度,很大的调速范围: 除直角坐标式机器人外,机器人关节上的位 置检测元件通常安装在各自的驱动轴上,构 成位置半闭环系统。机器人以极低的作业速 度工作;空行程时,又能以极高的速度移动。 系统的静差率要小:即要求系统具有较好的刚性。 位置无超调,动态响应快:避免与工件发生碰撞, 在保证系统适当响应能力的前提下增加系统的阻 尼。 需采用加减速控制:为了增加机器人运动平稳性, 运动启停时应有加减速装置。
二、机器人控制方式分类:

机器人位置控制:


定位控制方式:固定位置方式,多点位置方式,伺 服控制方式 。 路径控制方式 :连续轨迹控制 ,点到点控制 。 速度控制方式,加速度控制方式。 固定力控制,可变力控制。

机器人速度控制:


机器人力控制:

三、 机器人的传感器


传感器是一种以一定精度将被测量(如位移、力、加速度、 温度等)转换为与之有确定对应关系、易于精确处理和测量 的某种物理量 (如电量 )的测量部件或装置。根据一般传感 器在系统中所发挥的作用,完整的传感器应包括敏感元件、 转换元件、基本转换电路三部分。敏感元件的基本功能是 将某种不便测量的物理量转换为易于测量的物理量,转换 元件与敏感元件一起构成传感器的结构部分,而基本转换 电路是将敏感元件产生的易测量小信号进行变换,使传感 器的信号输出符合具体工业系统的要求 ( 如 4 ~ 20mA 、 – 5~5V)。 给机器人装备什么样的传感器,对这些传感器有什么要求, 这是设计机器人感觉系统时遇到的首要问题。选择机器人 传感器应当完全取决于机器人的工作需要和应用特点。

《机器人的控制系统》课件

《机器人的控制系统》课件
应用领域
了解机器人控制系统在工业自动化、医疗护理、农业与食品加工等领域的广泛应用。
机器人的控制系统技术
传感器技术
探索机器人控制系统中的传感器 技术,如摄像头、激光雷达和力 觉传感器。
数据处理与算法
研究机器人控制系统中的数据处 理和算法,以实现高效、准确的 决策与规划。
控制器设计与实现
了解机器人控制系统中的控制器 设计和实现原理,包括硬件架构 和软件编程。
探讨人机协作和智能感知在机器人控制系统中的发展和应用前景。
2 自主决策与深度学习
研究自主决策和深度学习技术对机器人控制系统的影响和潜在机会。
3 安全性与可靠性
考虑机器人控制系统的安全性和可靠性问题,以建立安全且可信赖的机器人系统。
机器人的控制系统发展
感谢大家参与本《机器人的控制系统》PPT课件。希望通过本课程的学习,您 能够深入了解机器人控制系统的技术和应用,为未来的机器人发展做出贡献。
《机器人的控制系统》 PPT课件
欢迎大家来到《机器人的控制系统》PPT课件。在本课程中,我们将深入研究 机器人控制系统的关键概念、技术和应用领域,并探讨未来的挑战和趋势。
机器人的控制系统概述
系统组成
了解机器人控制系统的基本组成,包括感知与数据采集、决策与规划、执行与控制。
技术要点
掌握机器人控制系统的关键技术,如传感器技术、数据处理与算法、控制器设计与实现。
机器人控制系统的应用领域
Байду номын сангаас
1
工业自动化
探索机器人控制系统在自动化生产线上的应用,提高生产效率和产品质量。
2
医疗护理
了解机器人控制系统在医疗领域的应用,如手术机器人和辅助护理机器人。

第5章机器人控制系统

第5章机器人控制系统
5.2.3 力(力矩)控制方式
机器人行程的速度 /时间曲线
在进行装配或抓取物体等作业时,工业机器人末端操作器与环境或作业对象
的表面接触,除了要求准确定位之外,还要求使用适度的力或力矩进行工作,这时 就要采取力 (力矩)控制方式。力(力矩)控制是对位置控制的补充,这种方式的控制 原理与位置伺服控制原理也基本相同,只不过输入量和反馈量不是位置信号,而是 力 (力矩 )信号,因此,系统中有力 (力矩)传感器。
5.1.4 工业机器人控制的特点
1) 传统的自动机械是以自身的动作为重点,而工业机器人的控制系统则更 着重本体与操作对象的相互关系。
2) 工业机器人的控制与机构运动学及动力学密切相关。
3) 每个自由度一般包含一个伺服机构,多个独立的伺服系统必须有机地协
调起来,组成一个多变量的控制系统。
4) 描述工业机器人状态和运动的数学模型是一个非线性模型,随着状态的
姿态和轨迹、操作顺序及动作的时间等。 机器人控制系统有三种结构:集中控制、主从控制和分布式控制。
5.1.1 机器人控制系统的基本功能
机器人控制系统是机器人的重要组成部分,用于对操作机的控制,以 完成特定的工作任务,其基本功能如下:
(1)记忆功能 ( 2)示教功能 ( 3)与外围设备联系功能 ( 4)坐标设置功能 ( 5)人机接口 ( 6)传感器接口 ( 7)位置伺服功能
第八页,编辑于星期二:二十点 二十一分。
5.2 工业机器人控制的分类
工业机器人控制结构的选择,是由工业机器人所执行的任务决定的,对不 同类型的机器人已经发展了不同的控制综合方法。工业机器人控制的分类,
没有统一的标准。
? 按运动坐标控制的方式来分:有关节空间运动控制、直角坐标空间 运动控制
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
而是力(力矩)信号,因此,系统中有力(力矩)传感器。
11
5.3 工业机器人的位置控制
工业机器人位置控制的目的,就是要使机器人各关节实现预先所规划的 运动,最终保证工业机器人终端(手爪)沿预定的轨迹运行。
下图所示表示机器人本身、控制器和轨迹规划器之间的关系。图中的轨 迹规划器由监督计算机来完成,控制器则由模拟调节器或DDC计算机来完成。
4
典型的微机控制系统框图如图所示。图中的输入量一般由程序给定,也 可以由输入装置给定。
典型的微机控制系统图
5
微机控制系统的输入通道
微机控制系统的输出通道
6
在工业机器人控制中,进行轨迹规划等需要完成大量的计算工作, 因此,一般采用监督控制系统(SCC——Supervisory Computer Control)。其组成如图所示
第5章 机器人控制系统
❖5.1 控制系统概述 ❖5.2 工业机器人控制的分类 ❖5.3 工业机器人的位置控制 ❖5.4 工业机器人运动轨迹控制 ❖5.5 智能控制技术
1
5.1 控制系统概述
机器人控制系统是机器人的大脑,是决定机器人功能和性能的主要 因素。工业机器人控制技术的主要任务就是控制工业机器人在工作空 间中的运动位置、姿态和轨迹、操作顺序及动作的时间等。
No Image
工业机器人接受控制器发出的关节驱动力矩矢量,装于机器人各关节上的 传感器测出关节位置矢量和关节速度矢量,再反馈到控制器上,因此,工业机 器人每个关节的控制系统都是一个闭环控制系统。
12
5.4 工业机器人的运动轨迹控制
路径和轨迹规划与受到控制的机器人从一个位置移动到另一
个位置的方法有关。路径和轨迹规划既要用到机器人的动力学
5.2.3 力(力矩)控制方式
机器人行程的速度/时间曲线
在进行装配或抓取物体等作业时,工业机器人末端操作器与环境或作业对象
的表面接触,除了要求准确定位之外,还要求使用适度的力或力矩进行工作,这
时就要采取力(力矩)控制方式。力(力矩)控制是对位置控制的补充,这种方式的控 制原理与位置伺服控制原理也基本相同,只不过输入量和反馈量不是位置信号,
9
5.2.1 位置控制方式
工业机器人位置控制分为点位控制(如图a)和连续轨迹控制(如图b)两类。
(1) 点位控制 这类控制的特点是仅控制离散点上工业机器人末端执行器的位姿,要求尽快而
无超调地实现相邻点之间的运动,但对相邻点之间的运动轨迹一般不作具体规定。 (2) 连续轨迹控制 这类运动控制的特点是连续控制工业机器人末端执行器的位姿,使某点按规定
3
5.1.3 机器人控制的关键技术
1. 关键技术
(1) 开放性模块化的控制系统体系结构 (2) 模块化层次化的控制器软件系统 (3) 机器人的故障诊断与安全维护技术 (4) 网络化机器人控制器技术
2. 机器人示教
(1) 直接示教 手把手示教,由人直接搬动机器人的手臂对机器人进行示教, 如示教盒示教或操作杆示教等。 (2) 离线示教 不对实际作业的机器人直接进行示教,而是脱离实际作业环境 生成示教数据,间接地对机器人进行示教。
又要用到运动学。
轨迹规划方法一般是在机器人初始位置和目标位置之间用多
项式函数来“逼近”给定的路径,并产生一系列“控制设定
点”。
路径端点一般是在笛卡尔坐标中给出的,如果需要某些位置
的关节坐标,则可调用运动学的逆问题求解程序,进行必要的
转换。
轨迹控制就是控制机器人手端沿着一定的目标轨迹运动。因
此,目标轨迹的给定方法和如何控制机器人手臂使之高精度地
跟踪目标的方法是轨迹控制的两个主要内容。
SCC+模拟调节节器
SCC+DDC
7
5.1.4 工业机器人控制的特点
1) 传统的自动机械是以自身的动作为重点,而工业机器人的控制系统则更 着重本体与操作对象的相互关系。
2) 工业机器人的控制与机构运动学及动力学密切相关。 3) 每个自由度一般包含一个伺服机构,多个独立的伺服系统必须有机地协 调起来,组成一个多变量的控制系统。 4) 描述工业机器人状态和运动的数学模型是一个非线性模型,随着状态的 变化,其参数也在变化,各变量之间还存在耦合。因此,仅仅是位置闭环是不 够的,还要利用速度、甚至加速度闭环。系统中还经常采用一些控制策略,比 如使用重力补偿、前馈、解耦、基于传感信息的控制和最优PID控制等。 5) 工业机器人还有一种特有的控制方式——示教再现控制方式。
机器人控制系统有三种结构:集中控制、主从控制和分布式控制。
5.1.1 机器人控制系统的基本功能
(1)记忆功能 (2)示教功能 (3)与外围设备联系功能 (4)坐标设置功能 (5)人机接口 (6)传感器接口 (7)位置伺服功能 (8)故障诊断安全保护功能
2
5.1.2 机器人控制系统的组成
(1)控制计算机 (2)示教盒 (3)操作面板 (4)硬盘和软盘存储 (5)数字和模拟量输入输出 (6)打印机接口 (7)传感器接口 (8)轴控制器 (9)辅助设备控制 (10)通信接口 (11)网络接口
总之,工业机器人控制系统是一个与运动学和动力学原 理密切相关的、有耦合的、非线性的多变量控制系统。
8
5.2 工业机器人控制的分类
工业机器人控制结构的选择,是由工业机器人所执行的任务决定 的,对不同类型的机器人已经发展了不同的控制综合方法。工业机器 人控制的分类,没有统一的标准。
➢ 按运动坐标控制的方式来分:有关节空间运动控制、直角坐标空 间运动控制 ➢ 按控制系统对工作环境变化的适应程度来分:有程序控制系统、 适应性控制系统、人工智能控制系统 ➢ 按同时控制机器人数目的多少来分:可分为单控系统、群控系统 ➢ 按运动控制方式的不同:将机器人控制分为位置控制、速度控制、 力控制(包括位置/力混合控制)三类
的轨迹运动。
10
5.2.2 速度控制方式
工业机器人,在位置控制的同时,有时还要 进行速度控制。例如,在连续轨迹控制方式的情 况下,工业机器人按预定的指令,控制运动部件 的速度和实行加、减速,以满足运动平稳、定位 准确的要求,如图5.7所示。由于工业机器人是 一种工作情况(行程负载)多变、惯性负载大的运 动机械,要处理好快速与平稳的矛盾,必须控制 起动加速和停止前的减速这两个过渡运动区段。
相关文档
最新文档