数轴上的动点问题
专题02 数轴上的三种动点问题

专题02 数轴上的三种动点问题数轴的动点问题,无论在平时练习,还是月考,期中期末考试中属于压轴题的版块,其过程复杂,情况多变。
那么,本专题对其中常考的三种题型(求时间、求距离或者对应点、定值问题)做出详细分析与梳理。
【知识点梳理】1.数轴上两点间的距离数轴上A 、B 两点表示的数为分别为a 、b ,则A 与B 间的距离AB=|a -b|;2.数轴上点移动规律数轴上点向右移动则数变大(增加),向左移动数变小(减小);当数a 表示的点向右移动b 个单位长度后到达点表示的数为a+b ;向左移动b 个单位长度后到达点表示的数为a -b.类型一、求时间例1.如图在数轴上A 点表示数a ,B 点表示数b ,a 、b 满足|a +2|+|b ﹣8|=0(1)点A 表示的数为 ;点B 表示的数为 ;(2)若在原点O 处放一挡板,一小球甲从点A 处以1个单位/秒的速度向左运动;同时另一小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t (秒),①当t =1时,甲小球到原点的距离= ;乙小球到原点的距离= ;当t =5时,甲小球到原点的距离= ;乙小球到原点的距离= ;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.【答案】(1)-2,8;(2)①3,6;7,2;②可能,2秒或10秒【分析】(1)根据绝对值的非负性求解即可;(2)①首先求出甲、乙两球运动的路程,再根据它的初始位置求解即可;②分两种情况:乙球碰到挡板前和乙球碰到挡板后,分别建立方程求解即可.【详解】(1)∵|a +2|+|b ﹣8|=0,20,80a b \+=-=, 2,8a b \=-=,∴点A 表示的数为-2;点B 表示的数为8;(2)∵一小球甲从点A 处以1个单位/秒的速度向左运动;同时另一小球乙从点B 处以2个单位/秒的速度也向左运动,∴当t =1时,甲小球运动的路程为111´=个单位,乙小球运动的路程为122´=个单位,∴当t =1时,甲小球到原点的距离为2133--=-=;乙小球到原点的距离为826-=;同理,当t =5时,甲小球运动的路程为155´=个单位,乙小球运动的路程为2510´=个单位,此时乙小球会碰到挡板而向相反的方向运动,∴当t =5时,甲小球到原点的距离为2577--=-=;乙小球到原点的距离为1082-=;②∵点B 表示的数为8,乙小球的速度为2个单位/秒,∴乙小球碰到挡板所用的时间为824¸=(秒),当运动时间小于等于4秒时,282t t +=-,解得2t =;当运动时间大于4秒时,228t t +=-,解得10t =,∴甲,乙两小球到原点的距离可能相等,甲,乙两小球到原点的距离相等时经历的时间为2秒或10秒.【变式训练1】如图,有两条线段,2AB =(单位长度),1CD =(单位长度)在数轴上,点A 在数轴上表示的数是-12,点D 在数轴上表示的数是15.(1)点B 在数轴上表示的数是______,点C 在数轴上表示的数是______,线段BC 的长=______;(2)若线段AB 以1个单位长度秒的速度向右匀速运动,同时线段CD 以2个单位长度秒的速度向左匀速运动.当点B 与C 重合时,点B 与点C 在数轴上表示的数是多少?(3)若线段AB 以1个单位长度秒的速度向左匀速运动,同时线段CD 以2个单位长度/秒的速度也向左匀速运动.设运动时间为t 秒,当t 为何值时,点B 与点C 之间的距离为1个单位长度?【答案】-10,14,24;(2) -2;(3) t =233或253【分析】(1)根据AB 、CD 的长度结合点A 、D 在数轴上表示的数,即可求出点B 、C 在数轴上表示的数,再根据两点间的距离公式求出线段BC 的长度;(2)设相遇时间为a,分别用a 表示出相遇时B 、C 两点所表示的数,让其相等即可求出;(3) 分线段AB 与线段CD 在相遇之前与相遇之后两种情况,利用两点间的距离公式结合BC =1,得出关于t 的的一元一次方程,解之即可得出结论;【详解】(1)∵AB =2,点A 在数轴上表示的数是-12,∴点B 在数轴上表示的数是-12+2=-10;∵CD =1,点D 在数轴上表示的数是15,∴点C 在数轴上表示的数是15-1=14.∴BC =14-(-10)=24.故答案为:-10,14,24;(2)设运动时间为a 秒时B 、C 相遇,此时点B 在数轴上表示的数为-10+a ,点C 在数轴上表示的数为14-2a∵B 、C 重合,∴-10+a =14-2a ,解得a =8此时点B 与点C 在数轴上表示的数是-10+a =-10+8=-2;故答案为:-2(3)当运动时间为t 秒时,点B 在数轴上表示的数为-10+t ,点C 在数轴上表示的数为14-2t∴BC =10(142)t t -+--=324t -∵BC =1,∴324t -=1,∴t 1=233,t 2=253,综上所述:当BC =1时,t =233或253;【点睛】本题考查了一元一次方程的应用,两点间的距离,数轴等知识,解题的关键是:根据点与点之间的位置关系求出点B 、C 在数轴上表示的数.【变式训练2】如图,A ,B 两点在数轴上对应的数分别为a ,b ,且点A 在点B 的左侧,|a |=10,a +b =60,ab <0.(1)求出a ,b 的值;(2)现有一只蚂蚁P 从点A 出发,以每秒4个单位长度的速度向右运动,同时另一只蚂蚁Q 从点B 出发,以每秒2个单位长度的速度向右运动.①两只蚂蚁经过多长时间相遇?②设两只蚂蚁在数轴上的点C 处相遇,求点C 对应的数;③经过多长时间,两只蚂蚁在数轴上相距30个单位长度?【答案】(1)a =﹣10,b =70;(2)①两只蚂蚁经过40秒长时间相遇;②点C 对应的数为150;③经过25秒或55秒长时间,两只蚂蚁在数轴上相距30个单位长度.【分析】(1)根据两个数乘积小于0说明两数异号即可求解;(2)①根据相遇问题列一元一次方程即可求解;②根据路程=速度×时间,列出算式计算即可求解;③分两种情况讨论:相遇前相距和相遇后相距30个单位长度列一元一次方程即可求解.【详解】解:(1)∵|a |=10,∴a =10或﹣10,∵ab <0,∴a ,b 异号,∵a +b =60,当a =10时,b =50,不合题意,舍去.当a =﹣10时,b =70,符合题意.答:a =﹣10,b =70.(2)①设Q 从B 出发t 秒与P 相遇.根据题意得4t ﹣2t =80,解得t =40.故两只蚂蚁经过40秒长时间相遇;②设两只蚂蚁在数轴上的点C 处相遇,则点C 对应的数为70+40×2=150;③根据题意,得相遇前:4t ﹣2t =80﹣30,解得t =25;相遇后:4t ﹣2t =80+30,解得t =55.故经过25秒或55秒长时间,两只蚂蚁在数轴上相距30个单位长度.【点睛】本题考查了一元一次方程的应用、数轴以及绝对值的非负性,解题的关键是:(1)利用绝对值的非负性,求出a ,b 的值;(2)找准等量关系,分情况讨论相遇前后的距离变化正确列出一元一次方程.【变式训练3】在数轴上,点A 表示的数为a ,点B 表示的数为b ,且|a +2|+(b ﹣3)2=0.(1)a = ,b = ;(2)在(1)的条件下,点A 以每秒0.5个单位长度沿数轴向左移动,点B 以每秒1个单位长度沿数轴向右移动,两点同时移动,当点A 运动到﹣4所在的点处时,求A 、B 两点间距离;(3)在(2)的条件下,现A 点静止不动,B 点沿数轴向左运动时,经过多长时间A 、B 两点相距3个单位长度?【答案】(1)2,3-;(2)11;(3)经过8或14时,A 、B 两点相距3个单位长度【分析】(1)利用非负性即可求解;(2)设t 秒时,点A 运动到4-,求出所需时间4t =,4秒后,点B 运动到3417+´=,即求出两点间距离;(3)分两种情况进行讨论,即点B 需要运动到1-或7-处.【详解】解:(1)根据绝对值与平方的非负性得,20,30a b +=-=,2,3a b \=-=,故答案是:2,3-;(2)设t 秒时,点A 运动到4-,则20.54t --=-,解得:4t =,4秒后,点B 运动到3417+´=,7(4)11\--=,即,A B 两点间的距离为11;(3),A B Q 分别位于4,7-,要使A 、B 两点相距3个单位长度,则点B 需要运动到1-或7-处,设经过t 秒,当71t -=-,解得:8t =,当77t -=-,解得:14t =,\经过8或14秒,A 、B 两点相距3个单位长度.【点睛】本题考查了绝对值和完全平方公式的非负性、数轴上的动点问题、数轴上两点间的距离问题,解题的关键是利用数形结合的思想进行解答.类型二、求距离或对应点例.如图所示,在数轴上点A表示的数是4,点B位于点A的左侧,与点A的距离是10个单位长度.(1)点B表示的数是,并在数轴上将点B表示出来.(2)动点P从点B出发,沿着数轴的正方向以每秒2个单位长度的速度运动.经过多少秒点P与点A的距离是2个单位长度?(3)在(2)的条件下,点P出发的同时,点Q也从点A出发,沿着数轴的负方向,以1个单位每秒的速度运动.经过多少秒,点Q到点B的距离是点P到点A的距离的2倍?【答案】(1)-6,见解析;(2)经过4秒或6秒点P与点A的距离是2个单位长度;(3)经过103秒或6秒,点Q到点B的距离是点P到点A的距离的2倍.【分析】(1)根据数轴上两点间的距离为10,计算后即可得到结论;(2)根据题意可由点P在A点的左侧和右侧可列方程,求解后即可得到结论;(3)根据题意列方程即可得到结论.【详解】解:(1)10-4=6,∵点B位于点A的左侧,∴点B表示的数是-6,故答案为:-6.在数轴上将点B表示如图所示:(2)设经过t秒点P与点A的距离是2个单位长度,∴当点P在A点左侧时,可得2t+2=10,则t=4,当点P在A点右侧时,可得2t-2=10,则t=6,∴经过4秒或6秒点P与点A的距离是2个单位长度;(3)设经过t秒,点Q到点B的距离是点P到点A的距离的2倍,∴当点P在A点左侧时,可得2(10-2t)=10-t,则t=103,当点P在A点右侧时,可得2(2t-10)=|10-t|,则t=6或t=103(舍),∴经过103秒或6秒,点Q到点B的距离是点P到点A的距离的2倍.【点睛】本题考查了一元一次方程的应用、数轴等知识,根据数量关系得到一元一次方程是解题的关键.【变式训练1】(知识储备)(1)数轴上点A 表示的数为a ,若向右移动m 个长度单位后表示的数是;若向左移动n 个长度单位后表示的数是 .(2)在数轴上A 点表示数a ,B 点示数b ,A 在B 的右边,A 、B 两点间的距离等于a -b .(解决问题)已知数轴上两点A 、B 对应的数分别为﹣3、1,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A 、点B 的距离相等,求点P 对应的数;(2)数轴上是否存在点P ,使点P 到点A 、点B 的距离之和为10?若存在,请求出x 的值;若不存在,说明理由;(3)现在点A 、点B 分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点P 以6个单位长度/秒的速度同时从原点向左运动.当点A 与点B 之间的距离为3个单位长度时,求点P 所对应的数是多少?【答案】【知识储备】(1)a +m ;a-n ;【解决问题】(1)点P 对应的数-1;(2)存在,x 的值为4或-6;(3)点P 所对应的数是-4或-28.【详解】解:知识储备(1)根据向右移为加,向左移为减,得:a +m ;a-n ;解决问题(1)如图:∵点P 到点A 、点B 的距离相等,∴AP BP = ,∵()33AP x x =--=+ (点P 在点A 右边),1BP x =- (点B 在点P 右边),∴31x x +=- ,解得:1x =- ,∴点P 对应的数为1- .解决问题(2)如图:点P 到点A 的距离为PA ,点P 到点B 的距离为PB ,依题意:10PA PB += ,∵点P 在点A 和点B 之间时410PA PB +=¹ ,∴点P 不在点A 和点B 之间,当点P 在点A 左边时:()()313122PA PB x x x x x +=--+-=--+-=-- ,∵10PA PB +=,∴2210x --=,解得:6x =- ,当点P 在点B 右边时:()()()313122PA PB x x x x x +=--+-=++-=+ ,∵10PA PB +=,∴2210x += ,解得:4x = .综上,存在点P ,使点P 到点A 、点B 的距离之和为10.4x =或6x =-.解决问题(3)设经过t 秒,点A 与点B 之间的距离为3个单位长度,此时点A 运动到点A ¢,点B 运动到B ¢,点P 运动到P ¢ ,∴经过t 秒,2AA t ¢= ,此时A ¢的对应的数为23t - ,0.5BB t ¢= ,此时B ¢的对应的数为0.51t + ,6PP t ¢= ,此时P ¢对应的数为6t - ,∵t 秒后点A 与点B 之间的距离为3个单位长度,∴3A B ¢¢= ,当B ¢在A ¢右边时:∴()()0.5123 1.54A B t t t ¢¢=+--=-+ ,∴ 1.543t -+= ,∴23t =,∵26643t -=-´=-,∴P 所对应的数为4- .当点A ¢在点B ¢ 右边时:∴()()230.51 1.54B A t t t ¢¢=--+=- ,∴1.543t -= ,∴143t =,∵1466283t -=-´=- ,∴P 所对应的数为28-,综上,点P 对应的数为4-或28-.【点睛】本题考查的是列代数式,数轴的定义及数轴上两点之间的距离公式,弄清题意并列式是解本题的关键.【变式训练2】我们知道,在数轴上,|a |表示数a 表示的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A 、B ,分别用a ,b 表示,那么A 、B 两点之间的距离为:AB =|a ﹣b |.利用此结论,回答以下问题:(1)数轴上表示1和4的两点的距离是 ,数轴上表示﹣1和﹣4的两点之间的距离是 .(2)|a ﹣1|=2,则a = ,|a ﹣1|+|a +3|=6,则a = .(3)当|a ﹣1|+|a +3|取最小值时,此时符合条件的非负整数a 是 .(4)如图,已知A ,B 分别为数轴上的两点,点A 表示的数是﹣30,点B 表示的数是50;现有一只蚂蚁P 从点B 出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一只蚂蚁Q 恰好从点A 出发,以每秒2个单位长度的速度沿数轴向右移动,设t 秒后两只蚂蚁相距10个单位长度,求此时点P 表示的数是多少?【答案】(1)3,3;(2)3或-1,2或-4;(3)0和1;(4)8或-4.【分析】(1)利用两点之间的距离公式列式计算即可;(2)利用绝对值定义知12a -=±,分别求解即可,由136a a -++=,分3a £-和1a ³两种情况进行讨论即可求出答案;(3)13a a -++表示数轴到表示1和表示3-的点的距离之和,由两点之间线段最短可知:当31a -££时,13a a -++有最小值,最小值为4,即可得符合条件的非负整数a 的值 ;(4)分情况讨论:相遇前两只蚂蚁所走总路程等于50(30)10---,相遇后两只蚂蚁所走总路程等于50(30)10--+,求出所用时间t ,在进行求解即可.【详解】解:(1)数轴上表示1和4的两点的距离为143-=,数轴上表示1-和4-的两点之间的距离为1(4)3---=;(2)∵1=2a -,∴12a -=±,∴3a =或1a =-,即a 为3或1-;∵136a a -++=,∴当3a £-时,136a a ---=,4a =-,当1a ³时,136a a -++=,2a =,∴a 为2或4-;(3)当a 在数轴上表示1和3-之间时,此时13a a -++的最小值为4,此时31a -££,∴符合条件的非负整数a 是0和1;(4)①相遇前两只蚂蚁相距10个单位长度时,得:3250(30)10t t +=---,解得:14t =,∴501438-´=,∴点P 表示的数是8;②相遇后两只蚂蚁相距10个单位长度时,得:3250(30)10t t +=--+,解得:18t =;∴501834-´=-,∴点P 表示的数是4-;综上所述:此时点P 表示的数是8或4-;【点睛】此题考查了数轴,涉及绝对值、解方程的知识点,解题的关键是对绝对值意义的掌握.类型三、求定值例.已知若数轴上点A 、点B 表示的数分别为,a b ,则AB a b =-∣∣,线段AB 的中点表示的数为2a b +.如图,数轴上点A 表示的数为2-,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(0)t >.(1)填空:①,A B 两点间的距离AB =______,线段AB 的中点表示的数为_____;②用含t 的代数式表示:t 秒后,点P 表示的数为_______;点Q 表示的数为______.(2)求当t 为何值时,,P Q 两点相遇,并写出相遇点所表示的数.(3)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.【答案】(1)①10,3;②-2+3t ,8-2t ;(2)t =2,4;(3)5【解析】(1)①AB =8-(-2)=10,AB 中点为282-+=3,故答案为:10,3;②t 秒后,点P 表示的数为-2+3t ,点Q 表示的数为8-2t ,故答案为:-2+3t ,8-2t ;(2)∵当P 、Q 两点相遇时,P 、Q 表示的数相等∴-2+3t =8-2t ,解得:t =2,∴当t =2时,P 、Q 相遇,此时,-2+3t =-2+3×2=4,∴相遇点表示的数为4;(3)∵点M 表示的数为()2233222t t -+-+=-,点N 表示的数为()8233322t t +-+=+,∴MN =333222t t æö+--ç÷èø=5.故答案为:(1)①10,3;②-2+3t ,8-2t ;(2)t =2,4;(3)5【变式训练1】如图,数轴上原点为O ,A ,B 是数轴上的两点,点A 对应的数是a ,点B 对应的数是b ,且a ,b 满足2(2)40a b -++=,动点M ,N 同时从A ,B 出发,分别以1个单位/秒和3个单位/秒的速度沿着数轴正方向运动,设运动时间为x 秒(x >0).(1)A 、B 两点间的距离是 ;动点M 对应的数是 (用含x 的代数式表示);动点N 对应的数是 ;(用含x 的代数式表示)(2)几秒后,线段OM 与线段ON 恰好满足3OM =2ON ?(3)若M ,N 开始运动的同时,R 从﹣1出发以2个单位/秒的速度沿着数轴正方向运动,当R 与M 不重合时,求MB NB RM-的值.【答案】(1)6,2x +,34x -;(2)143秒或29秒;(3)2或 2.-【解析】(1)∵a ,b 满足2(2)40a b -++=,∴a ﹣2=0,b +4=0,∴a =2,b =﹣4,∵点A 对应的数是a ,点B 对应的数是b ,AB =2﹣(﹣4)=6.当运动时间为x 秒时,动点M 对应的数是x +2,动点N 对应的数是3x ﹣4.故答案为:6;x +2;3x ﹣4.(2)由(1)中M ,N 所对的数得OM =x +2,ON =3x ﹣4,∵3OM =2ON , ∴|32|(2)34x x+=﹣,①3(2+x )=2(3x ﹣4),解得x =143;②3(2+x )=﹣2(3x ﹣4),解得x =29;综上,143或29秒后,线段OM 与线段ON 恰好满足3OM =2ON ;(3)由题意得动点R 所对的数为﹣1+2x ,|12)((|3||2)RM x x x +-+--==,(2)(4)6MB x x =+--=+,(43)(4)3NB x x =-+--=, ∴MB ﹣NB =6+x ﹣3x =6﹣2x ,∵2+x =﹣4+3x ,解得x =3,∴M 与N 相遇时时间为3s ,N 与M 相遇前,x <3s 时,62|3|MB NB x RM x --=-=623x x--=2,N 与M 相遇后,x >3s 时,MB NB RM -=62|3|x x --=623x x --=﹣2,综上所述MB NB RM-的值为2或﹣2.故答案为:(1)6,2x +,34x -;(2)143秒或29秒;(3)2或 2.-【变式训练2】已知:b 是最小的正整数,且a 、b 满足()250c a b -++=,请回答问题:(1)请直接写出a 、b 、c 的值:a = ,b = ,c = .(2)在(1)的条件下数a ,b ,c 分别在数轴上对应的点A ,C 有两只电子蚂蚁甲、乙分别从A ,C 两点同时出发相向而行,甲的速度为2个单位/秒,乙的速度为4个单位/秒点,当两只电子蚂蚁在数轴上点M 处相遇时,求点M 表示的数.(3)在(1)的条件下,点a ,b ,c 分别对应点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动.同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.【答案】(1)﹣1;1;5;(2)1;(3)不变,2【分析】(1)先根据b 是最小的正整数,求出b ,再根据2(5)||0c a b -++=,即可求出a 、c ;(2)设经过x 秒,甲,乙在数轴上点M 处相遇,根据题意表示出甲,乙分别走的路程,根据路程之和等于AC 列出方程,解方程即可.(3)先求出BC =3t +4,AB =3t +2,从而得出BC ﹣AB =2.【详解】解:(1)∵b 是最小的正整数,∴b =1.∵(c ﹣5)2+|a +b |=0,∴a =﹣1,c =5;故答案为﹣1;1;5;(2)设经过x 秒,甲,乙在数轴上点M 处相遇,则()2451x x +=--,解得1x =则甲蚂蚁经过1秒到达M 点,\M 点表示的数为:1211-+´=(3)BC ﹣AB 的值不随着时间t 的变化而改变,其值是2,理由如下:∵点A 都以每秒1个单位的速度向左运动,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,∴BC =3t +4,AB =3t +2,∴BC ﹣AB =(3t +4)﹣(3t +2)=2.【点睛】本题考查了数轴与整式的加减,数形结合是解题的关键.课后训练1.数学实验室:点A 、B 在数轴上分别表示有理数a 、b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离AB =|a ﹣b |.利用数形结合思想回答下列问题:(1)数轴上表示2和5的两点之间的距离是_____,数轴上表示1和-3的两点之间的距离是 ;(2)数轴上若点A 表示的数是x ,点B 表示的数是-2,若AB =2,那么x 为; (3)当x 是 时,代数式|2||1|5x x ++-=;(4)若点A 表示的数-1,点B 与点A 的距离是10,且点B 在点A 的右侧,动点P 、Q 同时从A 、B 出发沿数轴正方向运动,点P 的速度是每秒3个单位长度,点Q 的速度是每秒1个单位长度,求运动几秒后,PQ =1(请写出必要的求解过程)【答案】(1)3,4;(2)0或-4;(3)-3或2;(4)4.5或5.5【分析】(1)直接利用题干两点的距离公式计算即可;(2)根据题意可列出关于x 的绝对值方程,解出x 即可.(3)分类讨论①当2x <-时;②当21x -£<时;③当1³x 时,去绝对值,解出方程即可.(4)设运动x 秒后,PQ =1,分类讨论:①当点P 未超过点Q 时;②当点P 超过点Q 时,根据数轴列出方程,解出x 即可.【详解】(1)根据题意可知数轴上表示2和5的两点之间的距离是253-=,数轴上表示1和-3的两点之间的距离是1(3)4--=;故答案为:3,4.(2)由题意可知:22AB x =--=∴22x --=±解得:0x =或4x =-;故答案为:0或-4.(3)∵215x x ++-=,即可表示为点A (表示有理数x )到点B (表示有理数-2)的距离与点A 到点C (表示有理数1)的距离的和是5,如图:故分类讨论:①当点A 在点B 左侧时,即2x <-,此时有215x x ---+=,解得:3x =-,符合题意;②当点A 在点B 和点C 中间时,即21x -£<,此时有215x x ++-=,方程无解;当点A 在点C 右侧时,即1³x ,此时有215x x ++-=,解得:2x =,符合题意;综上,3x =-或2x =,故答案为:-3或2.(4)设运动x 秒后,PQ =1,分类讨论:①当点P 未超过点Q 时,根据数轴可列方程:3(101)x x =+-解得: 4.5x =②当当点P 超过点Q 时,根据数轴可列方程:3(101)x x =++,解得: 5.5x =故运动4.5或5.5秒后,PQ =1.【点睛】本题考查一元一次方程的实际应用,实数与数轴,数轴上两点之间的距离.利用分类讨论和数形结合的思想是解答本题的关键.2.已知数轴上A 、B 两点表示的数分别为a ,b ,且a ,b 满足|a +20|+(b -13)2=0,点C 表示的数为16,点D 表示的数为-7.(1)A ,C 两点之间的距离为__________;(2)已知|m -n |可理解为数轴上表示数m 、n 的两点之间的距离.若点P 在数轴上表示的数为x ,则满足|x +2|+|x -3|=5的所有的整数x 的和为_______________;满足|x +2|+|x -3|=9的x 值为______________.(3)点A ,B 从起始位置同时出发相向匀速运动,点A 的速度为6个单位长度/秒,点B 的速度为2个单位长度/秒,当点A 运动到点C 时,迅速以原来的速度返回,到达出发点后,又折返向点C 运动,点B 运动至点D 后停止运动,当点B 停止运动时,点A 也停止运动,求在此运动过程中,求A ,B 两点同时到达的点在数轴上表示的数.【答案】(1)36;(2)3,5或-4;(3)194,132-【分析】(1)根据|a +20|+(b -13)2=0,求出a 和b 的值,即可得出A ,C 两点之间的距离;(2)根据题意可得|x +2|+|x -3|=5表示的是x 到-2的距离和到3的距离和为5,即可求出所有的整数x 的值,然后求和即可;根据题意可得|x +2|+|x -3|=9表示的是x 到-2的距离和到3的距离和为9,分x 在-2左边和x 在3右边两种情况讨论,列出方程求解即可;(3)根据题意表示出A 点从A 到C 的过程和C 到A 的过程到达的点,表示出B 点从B 到D 的过程到达的点,然后根据A ,B 两点同时到达时分别列出方程求解即可.【详解】解:(1)∵|a +20|+(b -13)2=0,∴200130a b +=-=,,∴2013a b =-=,,∴A 点表示的数是-20,又∵点C 表示的数为16,∴A ,C 两点之间的距离=16-(-20)=36;(2)∵|m -n |可理解为数轴上表示数m 、n 的两点之间的距离,∴|x +2|+|x -3|=5表示的是x 到-2的距离和到3的距离和为5,∴23x -££,又∵x 是整数,∴x 的值可以是-2,-1,0,1,2,3,∴-2-1+0+1+2+3=3,∴满足|x +2|+|x -3|=5的所有的整数x 的和为3;同理|x +2|+|x -3|=9表示的是x 到-2的距离和到3的距离和为9,∴当x 在-2左边时,-2-x +3-x =9,解得:x =-4,当x 在3右边时,x -(-2)+x -3=9,解得:x =5,综上所述,满足|x +2|+|x -3|=9的x 值为5或-4;(3)设两点运动的时间为t ,A 点:A 到C 的过程:()20606x t t =-+££,C 到A 的过程:()()1666526610x t t t =--=-£<,B 点:B 到D 的过程:()132010x t t =-££,第一次相遇时,由题意得:206132t t -+=-,解得:338t =,此时x =194;第二次相遇时,由题意得:526132t t -=-,解得:394t =,此时x =132-;综上所述,A ,B 两点同时到达的点在数轴上表示的数为194,132-.【点睛】此题考查了绝对值的几何意义的运用,动点问题的求解,解题的关键是熟练掌握绝对值的几何意义.。
数轴的动点问题公式

数轴的动点问题公式
数轴的动点问题是指一个点在数轴上按一定规律运动的问题。
为了描述这个运动过程,我们可以使用公式来表示动点的位置。
假设数轴上的起点为0,动点在某个时刻的位置为x。
动点按照某个速度v向左或向右运动,那么在经过t单位时间后,动
点的位置可以用下面的公式表示:
x=x0+vt
其中,x0表示初始位置,v表示速度,t表示时间。
如果速
度为正,表示向右移动;如果速度为负,表示向左移动。
如果动点在数轴上做匀速直线运动,那么速度v是常数,这
时可以将公式简化为:
x=x0+vt
如果动点在数轴上做加速或减速运动,速度v是变化的,那
么我们需要根据具体的问题来确定速度v的表达式。
常见的加
速或减速运动可以用以下几种公式表示:
匀加速运动:v=v0+at,其中v0表示初始速度,a表示加
速度。
匀减速运动:v=v0at,其中v0表示初始速度,a表示减速度。
自由落体运动:h=h0+v0t+(1/2)gt^2,其中h0表示初始高度,v0表示初始速度,g表示重力加速度。
希望上述内容能够对您有所帮助!如有任何疑问,请随时向我提问。
数轴上的动点问题

数轴上的动点问题❖ 数轴上的动点问题,是很重要的一部分,但往往使学生感到很棘手.实际上,如果将动点问题“代数化”,“三招”就可轻松解决常见的问题.第一招:平移公式(平移规律)若数轴上点A 表示的数是a ,则当点A 向左平移t 个单位长度时表示的数为a t -;当点A 向右平移t 个单位长度时表示的数为a t +.简记为:左减右加.第二招:距离公式若数轴上,A B 两点表示的数分别是,a b ,则,A B 两点的距离AB a b =-.如果已知,A B 两点的位置关系,比如点A 在点B 的左边,则AB b a =-.第三招:中点公式若数轴上,A B 两点表示的数分别是,a b ,则线段AB 的中点表示的数是2a b + ❖ 常见题型:一、突破基础关—平移与距离数轴上点的平移和两点间的距离是数轴所有难点问题的突破口.点的平移是今后进一步研究动点问题的基础,两点间的距离则可以让学生感知数轴与线段之间的关系. 例1 请利用数轴回答下列问题:①如果点A 表示数3-,将点A 向右移动7个单位长度,那么终点B 表示的数是 ,A 、B 两点间的距离是 ;②如果点A 表示数3,将A 点先向左移动4个单位长度,那么终点B 表示的数是 ,A 、B 两点间的距离是 ;③如果点A 表示数3,将A 点先向左移动4个单位长度,再向右移动5个单位长度,那么终点B 表示的数是 ,A 、B 两点间的距离是 ;④一般地,如果A 点表示的数为a ,将A 点向右移动m 个单位长度,再向左移动n 个单位长度,请你猜想终点B 表示的数是 ,A 、B 两点间的距离是 .二、突破应用关—平移、距离、对称、旋转(滚动)1.平移平移是所有动点问题的灵魂所在,也是数轴问题研究的基石,所以我们在突破数轴难点时,有必要进行深层次的探究.例2如果将A点先向左移动4个单位长度,再向右移动5个单位长度,那么终点B表示的数是2,则起点A表示的数为 ,A、B两点间的距离是 .-.例3若AB为数轴上一线段,其中点A表示3,点B表示1①将线段沿着数轴左右平移,若平移后点A对应的数为5,则点B所对应的数是 ;-,则点A对应的数是 , AB的中点C对应的数②若平移后点B对应的数是4是 ;-,则A对应的数是 ,B对应的数③若平移后AB的中点C对应的数是1是 .2.距离距离是今后解决坐标系中数形结合问题的关键所在.在坐标系中,大多数问题归根结底是研究线段与线段之间的数量关系,也就是两点之间的距离.因此在初学数轴时,把水平距离问题理解透彻,对今后坐标系里几何问题的学习大有帮助.例4 数轴上有A、B两点,且A、B两点间的距离是3.①若A为原点,则点B表示的数是 ;②若点A表示的数是1,则点B表示的数是 ;③若点A表示的数是a,则点B表示的数是 ;例5数轴上有三点A、B、C,且A、B两点间的距离是3,B、C两点的距离是2,-,则点C表示的数是 .若A点表示的数为1-,C为例6 数轴上有三个点A、B、C,其中A点表示的数为1,B点表示的数为5数轴上的动点,若C到A的距离是C到B的距离的2倍,求此时C所表示的数是 .3.对称数轴上对称问题的关键是线段的中点.最简单的对称是相反数,它们关于原点对称,由此可把此类问题推广至一般,即关于数轴上任意点的对称.例7数轴上A、B两点表示的数为相反数,且AB的距离为5,点A在点B的右边,则A表示的数是 ,B表示的数是 .例8 将数轴沿着某一点A对折,使得1与6重合.①则A表示的数是 ;-重合的数是 ;②与10重合的数是 ;与3③若MN重合,且MN相距2015个单位长度(M在N的右边),则M表示的数是,N表示的数是 ;例9 数轴上有三个点A、B、C,其中A点表示的数为1,B点表示的数为一3,C为数轴上的动点,当A、B、C三个点中有一个点是另两个点的中点时,求此时C所表示的数.4.旋转(滚动)多边形的旋转问题或圆的滚动问题也是中考热点,实际在这类问题中也可以结合数轴来解答.例10 正方形ABCD在数轴上的位置如图5,点A、D对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B对应的数为1,则连续翻转2015次后,图5①数轴上数2015对应的点是 ;②连续翻转2015次后,数轴上数2014对应的点是 .例11 (1)如图6,数轴上有一半径为1的圆,起始点A与原点重合.若将圆沿着数轴-重合的,顺时针无滑动地滚动一周,点A所对应的数是 ;若起点A开始时是与2则圆在数轴上无滑动地滚动2周后点A表示的数是 .图6A B C D,(2)如图6所示,圆的周长为4个单位长度,在圆的4等分点处标上字母,,,-所对应的点重合,再让圆沿着数轴按逆先让圆周上字母A所对应的点与数轴上的数2-将与圆周上的字母重合.时针方向作无滑动滚动,那么数轴上的数2015三 、突破动点大题—试卷中经常出现的动点应用题解决此类问题的关键是确定动点表示的数,以及动点的运动方向.以下分为三类问题进行解析:1.方向不变例1 如图1,数轴上点B 表示的数是30,,P Q 两点分别从,O B 两点同时出发,分别以3单位/秒和2单位/秒的速度向右运动,运动时间为t 秒, M 为线段BP 上一点,且13PM PB =,N 为QM 的中点. (1)若12PB BQ =,求t 的值; (2)当t 的值变化时, NQ 的值是否发生变化?为什么?练习1:已知数轴上两点,A B 对应的数为-1 ,3,点P 为数轴上一动点,其对应的数为x .(1)数轴上是否存在点P ,使5PA PB +=?若存在,请求出x 的值;若不存在,请说明理由.(2)当点P 以每分钟1个单位长度的速度从O 点向右运动时,点A 以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向右运动.在运动的过程中,,M N 分别是,AP OB 的中点,AB OP MN-的值是否改变,为什么?,B点对应的数为练习2:如图,已知A、B分别为数轴上两点,A点对应的数为20100.(1)AB中点M对应的数;(2)现有一只电子蚂蚁甲从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁乙恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;(3)若当电子蚂蚁甲从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁乙恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数.练习3:已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。
数形结合之数轴上的动点问题

数形结合之数轴上的动点问题数形结合是数学中一种重要的解题思想,它通过将抽象的数学语言与直观的图形相结合,使复杂的问题变得简单易懂。
数轴上的动点问题是一个典型的数形结合问题,通过将数轴上的点与代数式相结合,可以解决一系列与距离、速度、加速度等有关的实际问题。
数轴上的动点问题通常涉及以下几个步骤:1. 建立数轴:根据题意,在数轴上标出已知的点,并确定动点的初始位置。
2. 确定动点运动规律:根据题意,确定动点的运动方式(如匀速、匀加速等)和运动规律(如时间、速度、加速度等)。
3. 计算动点位置:根据动点的运动规律,计算出动点在任意时刻的位置。
4. 求解问题:根据题目要求的问题,利用数轴上的距离、速度、加速度等概念进行求解。
下面是一个具体的数轴上的动点问题的例子:题目:在数轴上,一动点A从原点出发,沿数轴向右以每秒3个单位长度的速度移动,同时动点B也从原点出发,沿数轴向左以每秒2个单位长度的速度移动。
设动点A、B的运动时间为t秒。
(1)求出点A、B运动的路程;(2)求出点A、B运动的速度;(3)当A、B两点相距的路程不超过3个单位长度时,求t的取值范围。
解:(1)由题意可知,点A、B运动的路程分别为3t和2t。
(2)由题意可知,点A、B运动的速度分别为每秒3个单位长度和每秒2个单位长度。
(3)当A、B两点相距的路程不超过3个单位长度时,有两种情况:一是A、B两点相遇前相距的路程不超过3个单位长度;二是A、B两点相遇后继续运动一段时间,相距的路程不超过3个单位长度。
①当A、B两点相遇前相距的路程不超过3个单位长度时,有(3t - 2t) ≤ 3,解得t ≤ 3;②当A、B两点相遇后继续运动一段时间,相距的路程不超过3个单位长度时,有(3t + 2t) - 3 ≤ 3,解得t ≤ 2。
综上所述,当A、B两点相距的路程不超过3个单位长度时,t的取值范围为t ≤ 3或t ≤ 2。
小专题(十一) 数轴上的动点问题

3)t+60.因为要使得mAP+7BP-2CP为一个定值,所以3m+3=0,解得m=-1.所
以mAP+7BP-2CP=(3m+3)t+60=60.综上所述,m的值为-1,这个定值为60
1
2
3
4
(3) 动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若
点P,Q同时出发,点P运动多少秒时,P,Q两点相距4个单位长度?
(3) 因为动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运
动,所以点Q表示的数是-6-4t.因为点P表示的数是10-8t,P,Q两点相距4个
单位长度,所以|(-6-4t)-(10-8t)|=4.所以4t-16=4或4t-16=-4,解得t=5或t=3.所
1
2
3
4
(2) 若点M到点A的距离是到点B距离的2倍,求点M表示的数.
(2) 设点M表示的数为x.因为点M到点A的距离是到点B距离的2倍,所以
|x-3|=2|x-(-5)|.所以x-3=2(x+5)或x-3=-2(x+5),解得x=-13或x=- ,即点M表
示的数为-13或
1
2
3
4
(3) 动点P从点B出发,沿着数轴以每秒4个单位长度的速度向点A运动,同
1
2
3
4
1
2
3
4
② 在移动过程中,当木棒m,n重叠部分的长为3个单位长度时,求t的值.
七年级数学数轴动点问题解题技巧

七年级数学数轴动点问题解题技巧一、数轴动点问题解题技巧。
1. 用字母表示动点。
- 在数轴上,设动点表示的数为x,如果已知动点的运动速度v和运动时间t,则经过t时间后,动点表示的数为初始位置加上运动的距离。
如果向左运动,距离为-vt;如果向右运动,距离为vt。
2. 表示两点间的距离。
- 数轴上两点A、B,若A表示的数为a,B表示的数为b,则AB=| a - b|。
3. 分析运动过程中的等量关系。
- 例如相遇问题,两个动点运动的路程之和等于两点间的初始距离;追及问题,快的动点比慢的动点多运动的路程等于两点间的初始距离。
二、题目及解析。
1. 已知数轴上A点表示的数为-5,B点表示的数为3,点P从A点出发,以每秒2个单位长度的速度沿数轴向右运动,同时点Q从B点出发,以每秒1个单位长度的速度沿数轴向左运动,设运动时间为t秒。
- 求t秒后点P表示的数。
- 解:点P从A点出发,A点表示的数为-5,向右运动速度为每秒2个单位长度,经过t秒后,运动的距离为2t,所以点P表示的数为-5 + 2t。
- 求t秒后点Q表示的数。
- 解:点Q从B点出发,B点表示的数为3,向左运动速度为每秒1个单位长度,经过t秒后,运动的距离为-t,所以点Q表示的数为3-t。
- 求t秒后PQ的距离。
- 解:t秒后点P表示的数为-5 + 2t,点Q表示的数为3 - t,则PQ=|(-5 +2t)-(3 - t)|=|-5 + 2t - 3+t|=|3t - 8|。
2. 数轴上点A表示的数为1,点B表示的数为-3,点C在点A右侧,且AC = 5。
点M从A点出发,以每秒1个单位长度的速度沿数轴向右运动,点N从B点出发,以每秒2个单位长度的速度沿数轴向右运动,设运动时间为t秒。
- 求点C表示的数。
- 解:因为点A表示的数为1,AC = 5,且C在A右侧,所以点C表示的数为1+5 = 6。
- 求t秒后点M表示的数。
- 解:点M从A点出发,A点表示的数为1,向右运动速度为每秒1个单位长度,经过t秒后,运动的距离为t,所以点M表示的数为1+t。
数轴动点问题公式

数轴动点问题公式
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想数形结合思想转化思想
动点问题公式为:已知a点在数轴x1,b点在数轴的x2,a从a点出发,速度为v1,b从b点出发,速度为v2,则相遇时间t=|x1-x2|/(v1-v2)(v1与v2速度方向同向)。
比如:a点在数轴1的边线向右以1个单位每秒的速度向右运动,b点数轴10的边线以每秒2个单位每秒的速度向左运动,碰面时间t=|1-10|/(1-(-2))=3s。
解决动点问题的根本在于受力分析清楚。
力就是发生改变物体运动的原因,因此,必须化解各种运动参量。
只需要知道物体的受力,和动点的初始条件。
就可以列出牛顿运动方程来解决。
其中力对时间的分数(累积)就是动量的变化。
对加速度的分数(累积)就是动点能量的变化。
(完整版)数轴上的动点问题

数轴上的线段与动点问题一、与数轴上的动点问题相关的基本概念主要涉及以下几个概数轴上的动点问题离不开数轴上两点之间的距离.念:,=|a-b|1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值d右边点表示的数=也即用右边的数减去左边的数的差.即数轴上两点间的距离.—左边点表示的数÷2.中点坐标=(a+b)2.两点中点公式:线段AB因此向右运动的速点在数轴上运动时,由于数轴向右的方向为正方向,3.这样在起点的基础上加上点的度看作正速度,而向左运动的速度看作负速度.b,向左运动运动路程就可以直接得到运动后点的坐标.即一个点表示的数为a.a+bb;向右运动b个单位后所表示的数为个单位后表示的数为a—点分析数轴上点的运动要结合图形进行分析,4.数轴是数形结合的产物,. 在数轴上运动形成的路径可看作数轴上线段的和差关系数轴上的动点问题基本解题思路和方法:二、t.、表示出题目中动点运动后的坐标(一般用含有时间的式子表示)1t的式子表示). 根据两点间的距离公式表示出题目中相关线段长度 2、(一般用含有时间 3、根据题目问题中线段的等量关系(一般是和、差关系)列绝对值方程.4、解绝对值方程并根据实际问题验算结果.注:数轴上线段的动点问题方法类似AB两点对应数为-2、4,P为数轴上一动点,对应的数为x、已知数轴上1. 、 A B-2 -1 0 1 2 3 4(1) 若P为AB线段的三等分点,求P对应的数;(2)数轴上是否存在P,使P到A点、B点距离和为10,若存在,求出x;若不存在,说明理由.(3)若点A,点B和点P(点P在原点)同时向左运动,它们的速度分别为1,2,1个长度单位/分,则第几分钟时,P为AB的中点?2 ++|abb、|=0c满足(c2、已知:-5b)是最小的正整数,且,请回答问题a、=________ b=________,c,1)请直接写出a、b、c的值.a=________(、、、、,xPc所对应的点分别为AB为一动点,其对应的数为C)(2a,点b+5|. -1|+2|xx ≤2时),请化简式子:|x+1|-|x0≤点P在0到2之间运动时(即请问个单位长度的速度向左运动,点C分别以每秒1个单位和2(3)若点A、CA,之间的距离为1个单位长度?几秒时,、、个单位长度的速度向左1A(4)点A以每秒BC开始在数轴上运动,若点个单位长度的速度向右个单位长度和5和点运动,同时,点BC分别以每秒2之A 之间的距离表示为BC,点与点BCt运动,假设秒钟过后,若点B与点的变化而改变?若变化,tAB的值是否随着时间BC间的距离表示为AB.请问:-请说明理由;若不变,请求其值.2b满足,且a,A在数轴上对应的数为a,点B在数轴上对应的数为b2.如图,若点2 B0. 1)= A -+|a2|+(b的长;(1)求线段AB1的根,在数轴上是否存在2x+-x1=C(2)点在数轴上对应的数为x,且x是方程2 2. P 对应的数;若不存在,说明理由PB+=PC,若存在,求出点点P,使PA点左侧运动时,点在ANPB的中点为,当PM左侧的一点,)若(3P是APA的中点为,的值不变,其中只有一个结论正确,PM的值不变;②PN-+有两个结论:①PMPN.请判断正确结论,并求出其值3,=10cm(如图所示)=60cm,BCCB、,满足OA=20cm,AB如图,3、在射线OM上有三点A、CO 从点C出发在线段出发,沿OOM方向以1cm/s的速度匀速运动,点Q点P从点. 匀速运动,两点同时出发上向点OQ运动的速度;Q运动到的位置恰好是线段AB的三等分点,求点=2(1)当PAPB时,点、两点相距70cm3cm/s,Q运动的速度为经过多长时间P;Q2()若点AP?OB、.的值,求EABOPABP3()当点运动到线段上时,取和的中点F EF4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-2
4
AO
B
2、已知在数轴上有A,B两点,点A表示的数为-8,点B表示的数为4.动点P从数轴上点 A出发,以每秒2个单位长度的速度运动,同时动点Q从点B出发,以每秒1个单位长度的 速度,设运动时间为t秒。 (1)若点P向右运动,点Q向左运动,问多少秒后点P与Q相距2个单位长度? (2)若动点P、Q都向右运动,当点P与点Q重合时,P、Q两点停止运动. 当t为何值时,2OP-OQ=4?
数轴上的动点问题
学情交流
类型一、数轴上两点距离的应用
1、数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左 边的数的差。即数轴上两点间的距离=右边点表示的数-左边点表示的数。
类型一、数轴上两点距离的应用
2、
类型二、绝对值的处理策略
3、绝对值策略:对于两个动点P,Q,若点P,Q的左右位置关系不明确或有多种情况,可用 p,q两数差的绝对值表示P,Q两点距离,从而避免分复杂分类讨论
类型二、绝对值的处理策略
4、
类型三、小狗来回跑的问题
5、如何表示运动过程中的数:点在数轴上运动时,由于数轴向右的方向为正方向,因此 向右运动的速度看作正速度,而向左运动的速度看作负速度。这样在起点的基础上加上点 的运动路程就可以直接得到运动后点的坐标。即一个点表示的数为a,向左运动b个单位后 表示的数为a-b;向右运动b个单位后所表示的数为a+b。(简单说成左减右加)
作业:
3、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为 x.点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个 单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不 停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?
类型四、中点问题
7、中点公式:若数轴上点A,B表示的数分别为a,b,M为线段AB中点,则M点表示的数为
类型四、中点问题
8、如图,数轴上的两个点A、B所对应的数分别为-8、7,点M、N对应的数分别是m、 m+3. (1)若AM=BN,请直接写出点M、N所对应的数; (2)若AN=2BM,求m的值; (3)设点P为AN的中点,点Q为BM的中点,问当线段MN在数轴上运动时,PQ的值是 否发生改变?如果不变,求出PQ的值;如果改变,请说明理由.
4、如图,已知数轴上有三点A、B、C,它们对应的数分别为-40,-10,20,O为原点, 动点P、Q分别从A、C同时出发,P向左运动,Q向右运动,P点的运动速度为8个单位长 度/秒,Q点的运动速度为4个单位长度/秒,N为OP的中点,M为BQ的中点,在P、Q运 动的过程中,PQ-2MN的值是否发生变化?若不变,求其值;若变化,请说明理由.
下课了啦! 继续努力! 下次课见!
类型三、小狗来回跑的问题
6、数轴上,点A表示-3,点B表示12,A,B两点同时向负方向运动,速度分别为1个单位 和4个单位每秒,同时另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B 点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运 动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路 程是多少单位长度.
课堂总结: 1、让学生总结本节课的收获 2、老师点评本节课学生的表现 3、学生的努力方向
作业:
1、已知数轴上A、B两点对应数分别为-2和4,P为数轴上一动点,对应数为x. (1)若P为线段AB的三等分点,则x的值为_________
(2)若线段PA=3PB,则P点表示的数为__________
(3)若点P到A点、B点距离之和为10,则P点表示的数为_________