水轮机结构与原理

合集下载

混流式水轮机结构

混流式水轮机结构

混流式水轮机结构一、混流式水轮机的结构1.水轮机壳体:水轮机的壳体通常由钢板焊接而成,具有良好的密封性能。

壳体内部还设有轮道导汤管,用于引导水流。

2.导叶环:导叶环是安装在水轮机壳体内部的一个环形零件,其内部安装有一系列可调节的导叶叶片。

导叶环通过调节导叶叶片的开度,可以控制水流的流量和流速,从而实现对水轮机的调节。

3.导叶叶片:导叶叶片是水轮机中起导流作用的重要零件,通过调整导叶叶片的开度,可以改变出口流速和角度,从而控制水流对转子的冲击力,使得水轮机可以在不同水头和流量条件下工作。

4.转子叶片:转子是水轮机的关键部件,一般由多个对称的叶片组成。

转子叶片通过受到水流的冲击力,转动驱动轴,带动发电机发电。

5.出口导肋:在转子后部有一系列环形的导肋,用于引导从转子上流出的水流,增加水流的压力。

二、混流式水轮机的工作原理1.进水过程:水流由上游引导进入水轮机壳体,进入导叶环。

导叶环的导叶叶片控制水流的进入角度,使水流与转子叶片相互作用。

2.冲击转矩产生:水流受到转子叶片的反作用力,产生冲击力,使转子叶片转动。

3.转动传动:转子叶片的转动通过轴传递给发电机,驱动发电机转动,产生电能。

4.出水过程:水流经过转子和导肋等零部件后,通过出口排出。

出口导肋的作用是引导水流,增加水流的压力。

三、混流式水轮机的优点1.区域适用性强:混流式水轮机适用于中高水头和中小流量的水力发电站,适用范围广,兼容性强。

2.转速稳定:混流式水轮机的转速较稳定,工作平稳可靠。

3.效率高:混流式水轮机的效率较高,能够充分利用水能。

4.运维成本低:水轮机壳体结构简单,维护和维修成本相对较低。

综上所述,混流式水轮机是一种常见并且应用广泛的水轮机结构。

其结构主要由水轮机壳体、导叶环、导叶叶片、转子叶片和出口导肋等零部件组成,通过控制导叶叶片的开度和角度,实现对水流的调节。

混流式水轮机通过水流对转子的冲击力,带动转子转动,驱动发电机发电。

混流式水轮机具有区域适用性强、转速稳定、效率高和运维成本低等优点,在水力发电领域发挥着重要的作用。

水轮机结构及工作原理

水轮机结构及工作原理

水轮机结构及工作原理
水轮机是一种利用水流转动轮盘产生动力的机械装置,它可以将流体动能转化为机械能。

水轮机结构简单,主要由导流装置、转轮、出水装置和传动装置组成。

导流装置通常由水导管、导叶或导流管等构成,主要作用是引导水流进入转轮;转轮是水轮机的核心部件,通常由叶片和轮辐组成,它负责将水流的动能转化为机械能;出水装置用于将转轮后的水流排出;传动装置则将转轮的机械能传递给其他设备,如发电机或机械磨粉机等。

水轮机的工作原理基于液体在流动过程中所具有的动能和压力能。

当水流进入转轮时,叶片将水流的动能转化为转轮的旋转动能,然后通过传动装置将旋转动能传递出去。

在转轮内部,水流的压力能也会对转轮产生作用,进一步增加了转轮的驱动力。

水轮机的工作过程可以分为导流、冲击和排泄三个阶段。

在导流阶段,导流装置将水流引导进入转轮,并使其流向叶片;在冲击阶段,水流与叶片相互作用,使叶片受到冲击力,从而转动转轮;在排泄阶段,转轮后的水流通过出水装置被排出。

总之,水轮机通过利用水流动能和压力能的转化,将水流的动能转化为机械能,实现了能源的转换和利用。

水轮机具有结构简单、效率高等优点,在水力发电、水泵和机械加工等领域得到了广泛应用。

水轮发电机结构及工作原理介绍

水轮发电机结构及工作原理介绍
感应电动势通过整流器转换为直流电再通过逆变器转换为交流电输出到电网
水流冲击水轮机叶片带动水轮机旋 转
发电机将机械能转化为电能
添加标题
添加标题
添加标题
添加标题
水轮机通过传动装置将机械能传递 给发电机
电能通过输电线路传输到电网供用 户使用
效率定义:发电机在单位时间内输出的电能与消耗的机械能之比 影响因素:发电机的设计、制造、运行条件等 提高效率的方法:优化设计、提高制造精度、改善运行条件等 效率计算公式:η=P/P0其中P为输出电功率P0为输入机械功率
感谢您的观看
汇报人:
农村地区:为偏 远地区提供电力 供应
城市景观:作为城 市景观的一部分提 供照明和装饰
水利工程:用于 水利工程的监测 和控制
环保领域:用于 污水处理和环保 监测
水轮发电机的优缺 点
清洁能源:水 轮发电机利用 水能发电是一
种清洁能源
效率高:水轮 发电机的效率
较高可达到 90%以上
运行成本低: 水轮发电机的 运行成本较低 维护费用也较
水轮发电机的工作原理:水流通过水轮机带动发电机转子旋转产生电能 发电机的运行特性:根据水流量、水头、转速等因素调整发电机的输出功率和频率 发电机的运行状态:正常运行、停机、故障等 发电机的维护和保养:定期检查、维护和保养确保发电机的正常运行和寿命
水轮发电机的类型
工作原理:利 用水流的冲击 力推动水轮机 旋转从而带动
水轮发电机结构及工 作原理介绍
汇报人:
目录
添加目录标题
水轮发电机的结构
水轮发电机的工作 原理
水轮发电机的类型
水轮发电机的应用 场景
水轮发电机的优缺 点
添加章节标题
水轮发电机的结构

水轮发电机的工作原理

水轮发电机的工作原理

水轮发电机的工作原理水轮发电机是一种利用水流的动能来驱动发电机产生电能的设备。

它是一种非常常见且有效的发电方式,被广泛应用于水力发电站和小型水电站中。

水轮发电机的工作原理可以简述为水驱动叶轮旋转,从而带动发电机发电。

下面详细介绍水轮发电机的工作原理。

1. 水轮发电机的构造- 水轮发电机主要由水轮机、发电机、发电机调速器和控制系统等组成。

- 水轮机是核心部件,由机壳、导叶、叶轮、轴等组成。

其中,叶轮通过水的冲击力旋转,将水的动能转化为机械能。

- 发电机则将机械能转化为电能,通过正常的电路连接将电能输送到电网或存储设备中。

- 发电机调速器负责控制叶轮的转速,以保持稳定的输出电压。

2. 水轮机的工作原理- 当水流经过水轮机时,根据动量守恒定律,水流的动能会转化为叶轮的动能。

此时水轮机中的叶轮开始旋转。

- 叶轮旋转的速度与水流的流速、叶轮的形状以及进入叶轮的水流角度有关。

因此,调整这些参数可以改变发电机的输出功率。

- 叶轮就像一个转子,将水的动能转化为机械能。

其构造使得能够最大化地利用水流的动能。

3. 发电机的工作原理- 叶轮通过轴将转动的机械能传递给发电机。

发电机内部的转子通过旋转的磁场感应电流,从而发生电磁感应现象。

- 根据法拉第电磁感应定律,转子中产生的电动势会引起电流的流动,从而产生电能。

- 发电机内部的线圈和磁铁组成的电磁感应系统是实现电能转换的关键。

4. 发电机调速器的工作原理- 为保持发电机的输出电压恒定,调速器会通过监测输出电压的变化,反馈控制叶轮的转速。

- 当输出电压低于设定值时,调速器会增加叶轮的转速,增加电能的输出。

反之亦然。

- 调速器还可以根据外部的需求或变化的水流量来自动调整叶轮的转速。

总结起来,水轮发电机的工作原理就是利用水流的动能将水轮旋转,进而带动发电机发电。

水轮发电机的构造包括水轮机、发电机、发电机调速器和控制系统。

水轮机将水的动能转化为机械能,发电机则将机械能转化为电能。

混流式水轮机的结构与工作原理分析

混流式水轮机的结构与工作原理分析

混流式水轮机的结构与工作原理分析引言:混流式水轮机是一种常见的水力发电设施,利用水流的动能将其转化为机械能,再通过发电机将机械能转化为电能。

本文将对混流式水轮机的结构和工作原理进行详细分析。

一、混流式水轮机的结构混流式水轮机由以下几个主要部分组成:1. 水轮机框架:水轮机框架承载着整个水轮机的结构,并将水轮机与发电机连接在一起。

2. 水泵:混流式水轮机的入水部分是一个水泵,用于将水引入水轮机。

3. 水轮机转子:水轮机转子是整个水轮机的核心部件,主要负责将水流的动能转化为机械能。

4. 水轮机导叶:水轮机导叶位于水轮机转子的周围,通过控制导叶角度来控制水流的流向和流量。

5. 水轮机叶片:水轮机叶片是水轮机转子上的可调叶片,用于改变水流通过叶片时的流向和速度。

6. 发电机:发电机是将水轮机转子输出的机械能转化为电能的设备,通过电磁感应原理生成电能。

二、混流式水轮机的工作原理混流式水轮机的工作原理可以分为下面几个步骤:1. 水的引入:水首先通过水泵被引入混流式水轮机。

2. 水的控制:水流经过水轮机导叶时,导叶角度的调整可以改变水流的流向和流量。

通过控制导叶的开度,可以控制水流进入水轮机转子的形式,从而实现对水轮机的输出功率的控制。

3. 动能转换:当水流通过水轮机转子的叶片时,水流的动能被转化为机械能。

水轮机叶片的形状和数量会影响到水流通过叶片时的流向和速度,从而影响机械能的转化效率。

4. 电能产生:水轮机转子输出的机械能被传递给发电机,发电机通过电磁感应原理将机械能转化为电能。

电能可以进行输送和利用,供给电网或者使用在其他需要电力的设备中。

三、混流式水轮机的特点和应用混流式水轮机具有以下特点和应用:1. 宽广调功范围:混流式水轮机适用于水头较高的水流,工作范围较宽,可以根据需要调整输出功率。

2. 节能环保:由于混流式水轮机可以更好地利用水流的动能,相对于传统的水轮机具有更高的转化效率,可以节约水资源,减少对环境的影响。

水轮机原理

水轮机原理

水轮机原理水轮机是一种利用水能转换成机械能的装置,是水力发电的重要设备之一。

它利用水流的动能驱动叶轮旋转,进而带动发电机发电。

水轮机的原理十分简单,但却是一项极为重要的发明,下面我们就来详细了解一下水轮机的原理。

首先,水轮机的基本构造包括水轮机本体、进水系统和出水系统。

水轮机本体由转子、定子和导叶等部件组成,而进水系统则包括水库、引水渠和进水管道,出水系统则包括出水管道和尾水渠。

当水流经过水轮机本体时,首先经过导叶的调节,使水流以一定的速度和角度喷射到叶轮上,叶轮受到水流的冲击力而转动,转动的动能最终驱动发电机发电。

其次,水轮机的原理是基于动能守恒定律和动量定律的。

根据动能守恒定律,水流的动能转化为叶轮的动能,而根据动量定律,水流的冲击力使叶轮产生一个反作用力,从而推动叶轮旋转。

这两个定律共同作用下,使得水轮机得以正常运转。

同时,水轮机的效率也受到水流速度、叶轮形状和叶轮材质等因素的影响,不同的设计和工况下,水轮机的效率也会有所不同。

最后,水轮机的原理还涉及到流体力学和机械传动的知识。

在水轮机的设计过程中,需要考虑水流的流态特性、叶轮的叶片形状和叶轮的转速等因素,以确保水轮机的正常运转和高效发电。

同时,水轮机的传动系统也需要考虑叶轮与发电机之间的匹配和传动效率,以充分利用水轮机的动能转换功能。

总的来说,水轮机的原理是基于水能转换成机械能的基本物理规律和工程原理,通过合理的设计和运行,可以实现高效的水力发电。

水轮机作为一种环保、可再生的能源装置,对于推动清洁能源发展和保护生态环境具有重要意义。

希望通过本文的介绍,读者能对水轮机的原理有一个更加深入的了解,从而更好地认识和利用这一重要的能源装置。

水轮机原理及构造

水轮机原理及构造

水轮机原理及构造1、概述混流式水轮机工作原理:水流经压力钢管在开启蝶阀后进入蜗壳形成封闭的环流〔形成环流是为了使水流作用转轮时,使转轮各方向受力均匀,到达机组稳定运行的目的〕,在导叶开启后,水流径向进入转轮又轴向流出转轮〔所以称之为混流式水轮机〕,在这个过程中由水流和水轮机的相互作用,水流能量传给水轮机,水轮机开始旋转作功。

水轮机带动直流励磁的同步发电机转子旋转后,根据电磁感应原理〔问题〕,在三相定子绕阻中便感应出交流电势,带上外负荷后便输出电流。

注:电磁感应闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就产生感应电流,这种现象叫做电磁感应,产生的电流叫做感应电流。

①产生感应电流的必要条件是:a、电路要闭合;b、闭合电路中一部分导体做切割磁感线运动,缺一不可;假设是闭合电路的一部分导体,但不做切割磁感线运动则无感应电流,假设导体做切割磁感线运动但电路不闭合,导体上仍无感应电流则导体两端有感应电压。

②感应电流的方向跟磁场方向和导体切割磁感线运动方向有关三者互相垂直,改变磁场方向或改变导体切割磁感线方向都会改变感应电流的方向。

③在电磁感应现象中机械能转化为电能。

应用:发电机是根据电磁感应原理制成的,它使人们大规模获得电能成为现实。

①交流发电机主要由转子和定子两部分组成,另外还有滑环、电刷等。

②交流电的周期与频率周期和频率是用来表示交流电特点的两个物理量,周期是指交流发电机中线圈转动一周所用的时间,所以单位是“秒”;频率是指每秒钟内线圈转动的周数,它的单位是“赫”。

我国使用的交流电周期为0.02秒,频率是50赫,其意义是发电机线圈转一周用时0.02秒,即1秒内线圈转50周,因为线圈每转一周电流方向改变两次,所以,频率为50赫的交流电在1秒钟内方向改变100次。

2、水轮机的主要类型:水轮机基本类型有:还击式冲击式还击式:混流式〔HL〕、东风:HLA722C-LJ-192HL混流式水轮机设计序号为A722C为L立轴J金属蜗壳192转轮直径为192cm轴流式〔ZL〕:轴流转桨式〔ZZ〕轴流定桨式〔ZD〕、斜流式〔XL〕、贯流式〔GL〕:贯流转桨式〔GZ〕贯流定桨式〔GD〕特点:将位能〔势能〕、动能转换为压能,进行工作;转轮完全淹没在密闭的水体中。

水轮机原理及构造

水轮机原理及构造

水轮机原理及构造水轮机是一种将水流动能转化为机械能的能量转换装置。

它的工作原理基于动能守恒定律和能量守恒定律。

水轮机的构造主要包括水轮机轮盘、水轮机叶片、水轮机导叶和水轮机主轴等。

水轮机的工作原理:水轮机的工作原理是利用水流的冲击力和动能来推动轮盘旋转,从而进行能量转换。

具体来说,水轮机是利用流体在受力后产生的动量变化来实现动能转化的。

当水流经过水轮机叶片时,由于叶片形状和速度的变化,水流的动量发生了变化。

这个过程中,水流的动能减小,而叶片所受到的水流冲击力增加,从而推动轮盘旋转。

水流的动力作用可分为冲击力和剪力两部分,它们共同作用在叶片上,产生一个向环形斜盘中心方向的作用力,使其在金属皮带或摩擦轮的拉力下转动。

水轮机的构造:1.水轮机轮盘:水轮机轮盘是水轮机的主要部件,它可以分为定子轮盘和转子轮盘两部分。

定子轮盘通常是固定的,而转子轮盘则与主轴连接,并能转动。

轮盘的外形和材料选择需根据具体的工作条件和需求来确定。

2.水轮机叶片:水轮机叶片是位于轮盘上的一系列叶片,其形状和角度的设计对水轮机的性能具有很大的影响。

一般来说,叶片可以分为定叶和移动叶两种类型。

定叶是固定在轮盘上的,主要用于导向水流;移动叶则可以调整角度,用于控制水流的进入和出口。

叶片通常由耐磨和高强度的材料制成,如钢铁或铝合金。

3.水轮机导叶:水轮机导叶位于叶片和进水管道之间,用于引导水流进入叶片。

导叶的设计可根据水流的速度和压力来决定。

通常,导叶是可调角度的,通过调整导叶的角度,可以控制水流的流向和流速,从而实现对水轮机的调节。

4.水轮机主轴:水轮机主轴是连接轮盘和发电机或其他设备的中心轴。

它负责传输轮盘旋转产生的机械能,使之转化成用于发电或其他工作的机械能。

主轴的设计需考虑到承载能力、刚度和传动效率等要素。

除了以上主要构造部件外,水轮机还包括导叶机构、轴承、机壳和冷却系统等辅助部件。

导叶机构通常是由液压或电动设备控制,用于调节导叶的角度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水轮机是把水流的能量转换为旋转机械能的动力机械,它属于流体机械中的透平机械。

早在公元前100年前后,中国就出现了水轮机的雏形——水轮,用于提灌和驱动粮食加工器械。

现代水轮机则大多数安装在水电站内,用来驱动发电机发电。

在水电站中,上游水库中的水经引水管引向水轮机,推动水轮机转轮旋转,带动发电机发电。

作完功的水则通过尾水管道排向下游。

水头越高、流量越大,水轮机的输出功率也就越大。

水轮机按工作原理可分为冲击式水轮机和反击式水轮机两大类。

冲击式水轮机的转轮受到水流的冲击而旋转,工作过程中水流的压力不变,主要是动能的转换;反击式水轮机的转轮在水中受到水流的反作用力而旋转,工作过程中水流的压力能和动能均有改变,但主要是压力能的转换。

冲击式水轮机按水流的流向可分为切击式(又称水斗式)和斜击式两类。

斜击式水轮机的结构与水斗式水轮机基本相同,只是射流方向有一个倾角,只用于小型机组。

早期的冲击式水轮机的水流在冲击叶片时,动能损失很大,效率不高。

1889年,美国工程师佩尔顿发明了水斗式水轮机,它
有流线型的收缩喷嘴,能把水流能量高效率地转变为高速射流的动能。

理论分析证明,当水斗节圆处的圆周速度约为射流速度的一半时,效率最高。

这种水轮机在负荷发生变化时,转轮的进水速度方向不变,加之这类水轮机都用于高水头电站,水头变化相对较小,速度变化不大,因而效率受负荷变化的影响较小,效率曲线比较平缓,最高效率超过91%。

20世纪80年代初,世界上单机功率最大的水斗式水轮机装于挪威的悉·西马电站,其单机容量为315兆瓦,水头885米,转速为300转/分,于1980年投入运行。

水头最高的水斗式水轮机装于奥地利的赖瑟克山电站,其单机功率为22.8兆瓦,转速750转/分,水头达1763.5米,1959年投入运行。

反击式水轮机可分为混流式、轴流式、斜流式和贯流式。

在混流式水轮机中,水流径向进入导水机构,轴向流出转轮;在轴流式水轮机中,水流径向进入导叶,轴向进入和流出转轮;在斜流式水轮机中,水流径向进入导叶而以倾斜于主轴某一角度的方向流进转轮,或以倾斜于主轴的方向流进导叶和转轮;在贯流式水轮机中,水流沿轴向流进导叶和转轮。

轴流式、贯流式和斜流式水轮机按其结构还可分为定桨式和转桨式。

定桨式的转轮叶片是固定的;转桨式的转轮叶片可以在运行中绕叶片轴转动,以适应水头和负荷的变化。

各种类型的反击式水轮机都设有进水装置,大、中型立轴反击式水轮机的进水装置一般由蜗壳、固定导叶和活动导叶组成。

蜗壳的作用是把水流均匀分布到转轮周围。

当水头在40米以下时,水轮机的蜗壳常用钢筋混凝土在现场浇注而成;水头高于40米时,则常采用拼焊或整铸的金属蜗壳。

在反击式水轮机中,水流充满整个转轮流道,全部叶片同时受到水流的作用,所以在同样的水头下,转轮直径小于冲击式水轮机。

它们的最高效率也高于冲击式水轮机,但当负荷变化时,水轮机的效率受到不同程度的影响。

反击式水轮机都设有尾水管,其作用是:回收转轮出口处水流的动能;把水流排向下游;当转轮的安装位置高于下游水位时,将此位能转化为压力能予以回收。

对于低水头大流量的水轮机,转轮的出口动能相对较大,尾水管的回收性能对水轮机的效率有显著影响。

轴流式水轮机适用于较低水头的电站。

在相同水头下,其比
转数较混流式水轮机为高。

轴流定桨式水轮机的叶片固定在转轮体上,叶片安放角不能在运行中改变,效率曲线较陡,适用于负荷变化小或可以用调整机组运行台数来适应负荷变化的电站。

轴流转桨式水轮机是奥地利工程师卡普兰在1920年发明的,故又称卡普兰水轮机。

其转轮叶片一般由装在转轮体内的油压接力器操作,可按水头和负荷变化作相应转动,以保持活动导叶转角和叶片转角间的最优配合,从而提高平均效率,这类水轮机的最高效率有的已超过94%。

80年代,世界上尺寸最大的转桨式水轮机是中国东方电机厂制造的,装在中国长江中游的葛洲坝电站,其单机功率为170兆瓦,水头为18.6米,转速为54.6转/分,转轮直径为11.3米,于1981年投入运行。

世界上水头最高的转桨式水轮机装在意大利的那姆比亚电站,其水头为88.4米,单机功率为13.5兆瓦,转速为375转/分,于1959年投入运行。

贯流式水轮机的导叶和转轮间的水流基本上无变向流动,加上采用直锥形尾水管,排流不必在尾水管中转弯,所以效率高,过流能力大,比转数高,特别适用于水头为3~20米的低水头电站。

这种水轮机装在潮汐电站内还可以实现双向发电。

这种水轮机有多种结构,使用最多的是灯泡式水轮机。

灯泡式机组的发电机装在水密的灯泡体内。

其转轮既可以设计成定桨式,也可以设计成转桨式。

世界上最大的灯泡式水轮机(转桨式)装在美国的罗克岛第二电站,水头12.1米,转速为85.7转/分,转轮直径为7.4米,单机功率为54兆瓦,于1978年投入运行。

混流式水轮机是世界上使用最广泛的一种水轮机,由美国工程师弗朗西斯于1849年发明,故又称弗朗西斯水轮机。

与轴流转桨式相比,其结构较简单,最高效率也比轴流式的高,但在水头和负荷变化大时,平均效率比轴流转桨式的低,这类水轮机的最高效率有的已超过95%。

混流式水轮机适用的水头范围很宽,为5~700米,但采用最多的是40~300米。

混流式的转轮一般用低碳钢或低合金钢铸件,或者采用铸焊结构。

为提高抗汽蚀和抗泥沙磨损性能,可在易气蚀部位堆焊不锈钢,或采用不锈钢叶片,有时也可整个转轮采用不锈钢。

采用铸焊结构能降低成本,并使流道尺寸更精确,流道表面更光滑,有利于提高水轮机的效率,还可以分别用不同材料制造叶片、上冠和下环。

世界上水头最高的混流式水轮机装于奥地利的罗斯亥克电
站,其水头为672米,单机功率为58.4兆瓦,于1967年投入运行。

功率和尺寸最大的混流式水轮机装于美国的大古力第三电站,其单机功率为700兆瓦,转轮直径约9.75米,水头为87米,转速为85.7转/分,于1978年投入运行。

1956年发明,故又称德里亚水轮机。

其叶片倾斜的装在转轮体上,随着水头和负荷的变化,转轮体内的油压接力器操作叶片绕其轴线相应转动。

它的最高效率稍低于混流式水轮机,但平均效率大大高于混流式水轮机;与轴流转桨水轮机相比,抗气蚀性能较好,飞逸转速较低,适用于40~120米水头。

由于斜流式水轮机结构复杂、造价高,一般只在不宜使用混流式或轴流式水轮机,或不够理想时才采用。

这种水轮机还可用作可逆式水泵水轮机。

当它在水泵工况启动时,转轮叶片可关闭成近于封闭的圆锥因而能减小电动机的启动负荷。

世界上容量最大的斜流式水轮机装于苏联的洁雅电站,单机功率为215兆瓦,水头为78.5米。

水泵水轮机主要用于抽水蓄能电站。

在电力系统负荷低于基本负荷时,它可用作水泵,利用多余发电能力,从下游水库抽水到上游水库,以位能形式蓄存能量;在系统负荷高于基本负荷时,可用作水轮机,发出电力以调节高峰负荷。

因此,纯抽水蓄能电站
并不能增加电力系统的电量,但可以改善火力发电机组的运行经济性,提高电力系统的总效率。

50年代以来,抽水蓄能机组在世界各国受到普遍重视并获得迅速发展。

早期发展的或水头很高的抽水蓄能机组大多采用三机式,即由发电电动机、水轮机和水泵串联组成。

它的优点是水轮机和水泵分别设计,可各自具有较高效率,而且发电和抽水时机组的旋转方向相同,可以迅速从发电转换为抽水,或从抽水转换为发电。

同时,可以利用水轮机来启动机组。

它的缺点是造价高,电站投资大。

斜流式水泵水轮机转轮的叶片可以转动,在水头和负荷变化时仍有良好的运行性能,但受水力特性和材料强度的限制,到80年代初,它的最高水头只用到136.2米(日本的高根第一电站)。

对于更高的水头,需要采用混流式水泵水轮机。

世界上最大的混流式水泵水轮机装于联邦德国的不来梅蓄能电站。

其水轮机水头237.5米,发电机功率660兆瓦,转速125转/分;水泵扬程247.3米,电动机功率700兆瓦,转速125转/分。

抽水蓄能电站设有上、下两个水库。

在蓄存相同能量的条件下,提高扬程可以缩小库容、提高机组转速、降低工程造价。

因此,
300米以上的高水头蓄能电站发展很快。

世界上水头最高的混流式水泵水轮机装于南斯拉夫的巴伊纳巴什塔电站,其单机功率为315兆瓦,水轮机水头为600.3米;水泵扬程为623.1米,转速为428.6转/分,于1977年投入运行。

20世纪以来,水电机组一直向高参数、大容量方向发展。

随着电力系统中火电容量的增加和核电的发展,为解决合理调峰问题,世界各国除在主要水系大力开发或扩建大型电站外,正在积极兴建抽水蓄能电站,水泵水轮机因而得到迅速发展。

为了充分利用各种水力资源,潮汐、落差很低的平原河流甚至波浪等也引起普遍重视,从而使贯流式水轮机和其他小型机组迅速发展。

相关文档
最新文档