第5章酶工业提取

合集下载

第四章酶工程酶的提取与分离纯化ppt课件

第四章酶工程酶的提取与分离纯化ppt课件
在生物大分子制备中最常用的几种沉淀方法: ⑴中性盐沉淀(盐析法) ⑵有机溶剂沉淀 ⑶选择性沉淀(热变性和酸碱变性) ⑷等电点沉淀 ⑸有机聚合物沉淀
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
脂类
蛋白质(6% ~ 8%) 蛋白质
脂类(8.5% ~ 13.5%)
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
细菌细胞壁的结构
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
蛋白质溶解度与盐浓度之间的关系:
loSg loS0 g K sI
I:离子强度,I = 1/2∑MZ2;M:离子浓度(mol/L); Z:离子价数
S:离子强度为I时的蛋白质的溶解度(g/L) S0:离子强度为0时蛋白质的溶解度(g/L) Ks:盐析常数,是与蛋白质和盐种类有关的特性常数。
b. 添加固体硫酸铵
适用于:蛋白质溶液原来体积已经很大,而要 达到的盐浓度又很高时。
实际使用时,可直接查表 (各种饱和度下 需加固体硫酸铵的量)。
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
3. 化学法 应用各种化学试剂与细胞膜作用,
使细胞膜结构改变或破坏。

第5章 酶

第5章 酶

目录
1.绝对特异性(absolute specificity):
一种酶只能作用于一种化合物,以 催化一种化学反应,称为绝对特异 性,如脲酶。
目录
绝对专一性
O 脲酶 H2N—C—NH2 + H2O 2NH3 + CO2
NH2 O C NH2 尿素 NH CH3 O C NH2 甲基尿素 + H2O
Km:米氏常数(Michaelis constant)
目录
(二)Km与Vmax的意义
Km值 ① Km等于酶促反应速度为最大反应速度一半 时的底物浓度。 ② 意义:
a) Km是酶的特征性常数之一;
b) Km可近似表示酶对底物的亲和力;
c) 同一酶对于不同底物有不同的Km值。
目录
Vmax
定义:Vm是酶完全被底物饱和时的 反应速度,与酶浓度成正比。 意义:Vmax=K3 [E] 如果酶的总浓度已知,可从Vmax
唾液淀粉酶丧失催化能力称酶失活 唾液淀粉酶
淀粉
底物
葡萄糖
产物 酶促反应
目录
二、 酶的化学组成★
(一)单纯酶 完全由蛋白质组成 (二)结合酶 蛋白质和非蛋白质 全酶 = 酶蛋白 + 辅助因子 酶蛋白:决定着反应的特异性, 辅助因子:决定着酶的催化反应 类型
目录
全酶
(辅助 因子是 金属)
金属酶
(金属离子与酶蛋白结合紧密)
2. 抑制作用的类型
(1)不可逆性抑制 (2)可逆性抑制
①竞争性抑制
②非竞争性抑制
③反竞争性抑制
目录
(二) 不可逆性抑制作用
1. 概念
抑制剂通常以共价键与酶活性中 心的必需基团相结合,使酶失活; 抑制剂不可用透析、超滤等方法 去除。

酶学第五章 酶的分离纯化与制剂

酶学第五章 酶的分离纯化与制剂

主讲教师:赵丹丹
第五章 酶的分离纯化与制剂
11
一、预处理和破细胞
4. 细胞破碎(cell disruption)
(2) ‘‘丙酮干粉’’(acetone powder)处理法 适用于微生物材料 一般程序是先将材料粉碎、分散,然后在0℃以下的低温条件下、加 入5~10倍预先冷至约-20℃的丙酮,迅速搅拌均匀,随即过滤,最后 低温干燥,研磨过筛 丙酮处理优点: ① 能有效地破坏细胞壁(膜);② 有利于除去大量脂类物质,以免 它在以后的步骤产生干扰;③ 能使某些膜结合酶易于溶解;④ 丙酮 干粉含水量低,便于保存。 缺点:丙酮可能引起某些酶变性失效。
主讲教师:赵丹丹
第五章 酶的分离纯化与制剂
7
第二节 酶的抽提
抽提的要求是要将尽可能多的酶、 尽量少的杂质从原料引入溶液。
主要内容:预处理和破细胞
抽提
浓缩
一、预处理和破细胞
着手酶的提取前,通常应先对酶的原料进行适当的预处理 (Pretreatmention)。例如: (1) 动物材料要先剔除结缔组织、脂肪组织和血污等 ; (2) 油质种子最好先用乙醚等脱脂; (3) 种子研磨前应去壳,以免丹宁等物质着色污染; (4) 对于微生物材料则应将菌体和发酵介质加以分离。 2. 在这些预处理后,尽可能以非常新鲜的状态直接应用; 否则,应将 完整材料立即冰冻保存。
最终目的( 获得高度纯净的酶制剂 )
整个工作包括三个基本环节: (1) 抽提(extraction):是要将酶从原料中抽提出来作成酶溶液;
(2) 纯化(purification):是将酶和杂质分离开来,或者选择地将酶从 包含杂质的溶液中分离出来,或者选择地将杂质从酶溶液中移除出去;
(3) 制剂(preparation):是要将纯化的酶作成一定形式的制剂。

酶工程课后题答案.doc

酶工程课后题答案.doc

第一章1.简述酶与一般催化剂的共性以及作为生物催化剂的特点共同点:只能催化热力学所允许的的化学反应,缩短达到化学平衡的时间,而不改变平衡点:反应前后酶本身没有质和量的改变:很少量就能发挥较大的催化作用:其作用机理都在于降低了反应的活化能。

酶作为生物催化剂的特点:1.极高的催化率;2.高度专一性;3.酶活的可调节性;酶的不稳定性。

5.酶失活的因素和机理。

酶失活的因素主要包括物理因素,化学因素和生物因素物理因素1热失活:热失活是由于热伸展作用使酶的反应基团和疏水区域暴露,促使蛋白质聚合。

2冷冻和脱水:很多变构酶在温度降低是会产生构象变化。

在冷冻过程中,溶质(酶和盐)随着水分子的结晶而被浓缩,引起酶微环境中的pH和离子强度的剧烈改变,很容易引起蛋白质的酸变性。

3.辐射作用:电离辐射和非电离辐射都会导致多肽链的断裂和酶活性丧失。

4.机械力作用:化学因素1.极端pH:极端pH远离蛋白质的等电点,酶蛋白相同电荷间的静电斥力会导致蛋白肽链伸展,埋藏在酶蛋白内部非电离残基发生电离,启动改变。

交联或破坏氨基酸的化学反应,结果引起不可逆失活。

极端pH也容易导致蛋白质水解。

2.氧化作用:酶分子中所含的带芳香族侧链的氨基酸以及Met, Cys等,与活性氧有极高的反应性,极易受到氧化攻击。

3.聚合作用:加热或高浓度电介质课破坏蛋白质胶体溶液的稳定性,促使蛋白质结构发生改变,分子间聚合并沉淀。

4.表面活性剂和变性剂:表面活性剂主要改变酶分子正常的折叠,暴露酶分子疏水内核的疏水基团,使之变性;变性剂与酶分子结合,改变其稳定性,使之发生变性。

生物因素微生物或蛋白水解酶的作用使酶分子被水解。

6.简述酶活力测定方法的原理直接测定法:有些酶促反应进行一段时间后,酶底物或产物的变量可直接检测。

间接测定法:有些酶促反应的底物或产物不易直接检测,一次必须与特定的化学试剂反应,形成稳定的可检测物。

酶偶联测定法:与间接测定法相类似,只是使用一指示酶,使第一酶的产物在指示酶的作用下转变成可测定的新产物。

第五章 固定化酶和细胞

第五章 固定化酶和细胞

制备固定化酶的依据
1.固定化酶必须能保持酶原有的专一性、 1.固定化酶必须能保持酶原有的专一性、高效催化 固定化酶必须能保持酶原有的专一性 能力和常温、常压下能起催化反应等特点。 能力和常温、常压下能起催化反应等特点。 2.固定化酶应能回收、贮藏,利于反复使用。 2.固定化酶应能回收、贮藏,利于反复使用。 固定化酶应能回收 3.固定化酶应用于机械化和自动化操作 固定化酶应用于机械化和自动化操作, 3.固定化酶应用于机械化和自动化操作,所用载体 常有一定的机械强度。 常有一定的机械强度。 4.固定化酶应能保持甚至超过原有酶液的活性 固定化酶应能保持甚至超过原有酶液的活性。 4.固定化酶应能保持甚至超过原有酶液的活性。即 要保护活性中心基团。 要保护活性中心基团。 5.固定化酶应能最大程度与底物接近 固定化酶应能最大程度与底物接近, 5.固定化酶应能最大程度与底物接近,从而提高产 具有最小的空间位阻。 量。具有最小的空间位阻。 6.固定化酶应有最大的稳定性 固定化酶应有最大的稳定性。 6.固定化酶应有最大的稳定性。 7.固定化酶应易与产物分离 固定化酶应易与产物分离。 7.固定化酶应易与产物分离。
随着固定化技术的发展,出现固定化菌体 1973年 随着固定化技术的发展,出现固定化菌体 。1973年,日 本首次在工业上应用固定化大肠杆菌菌体中的天门冬氨 酸酶,由反丁烯二酸连续生产L 天门冬氨酸。 酸酶,由反丁烯二酸连续生产L-天门冬氨酸。 在固定化酶和固定化菌体的基础上,70年代后期出现了 在固定化酶和固定化菌体的基础上,70年代后期出现了 固定化细胞技术 技术。 1976年 固定化细胞技术。 1976年,法国首次用固定化酵母细胞 生产啤酒和酒精,1978年日本用固定化枯草杆菌生产淀 生产啤酒和酒精,1978年日本用固定化枯草杆菌生产淀 粉酶,开始了用固定化细胞生产酶的先例。 粉酶,开始了用固定化细胞生产酶的先例。 1982年 日本首次研究用固定化原生质体生产谷氨酸, 1982年,日本首次研究用固定化原生质体生产谷氨酸, 固定化原生质体生产谷氨酸 取得进展。固定化原生质体由于解除了细胞壁的障碍, 取得进展。固定化原生质体由于解除了细胞壁的障碍, 更有利于胞内物质的分泌, 更有利于胞内物质的分泌,这为胞内酶生产技术路线的 变革提供了新的方向。 变革提供了新的方向。

《酶工程》 课后习题答案

《酶工程》 课后习题答案

① 酶工程:由酶学与化学工程技术、基因工程技术、微生物学技术相结合而产生的一门新技术,是工业上有目的地设计一定的反应器和反应条件,利用酶的催化功能,在常温常压下催化化学反应,生产人类所需产品或者服务于其它目的地一门应用技术。

② 比活力:指在特定条件下,单位质量的蛋白质或者 RNA 所拥有的酶活力单位数。

③ 酶活力:也称为酶活性,是指酶催化某一化学反应的能力。

其大小可用在一定条件下,酶催化某一化学反应的速度来表示,酶催化反应速度愈大,酶活力愈高。

④ 酶活国际单位 : 1961 年国际酶学会议规定:在特定条件(25℃,其它为最适条件 )下,每分钟内能转化1 μmol 底物或者催化1 μmol 产物形成所需要的酶量为 1 个酶活力单位,即为国际单位(IU)。

⑤ 酶反应动力学:指主要研究酶反应速度规律及各种因素对酶反应速度影响的科学。

酶的研究简史如下:(1)不清晰的应用:酿酒、造酱、制饴、治病等。

(2)酶学的产生: 1777 年,意大利物理学家 Spallanzani 的山鹰实验; 1822 年,美国外科医生 Beaumont 研究食物在胃里的消化; 19 世纪 30 年代,德国科学家施旺获得胃蛋白酶。

1684 年,比利时医生Helment 提出 ferment—引起酿酒过程中物质变化的因素(酵素);1833 年,法国化学家 Payen 和Person 用酒精处理麦芽抽提液,得到淀粉酶; 1878 年,德国科学家 K hne 提出 enzyme—从活生物体中分离得到的酶,意思是“在酵母中”(希腊文)。

(3)酶学的迅速发展(理论研究): 1926 年,美国康乃尔大学的”独臂学者”萨姆纳博士从刀豆中提取出脲酶结晶,并证明具有蛋白质的性质;1930 年,美国的生物化学家 Northrop 分离得到了胃蛋白酶、胰蛋白酶、胰凝乳蛋白酶结晶,确立了酶的化学本质。

I.酶工程发展如下:①1894 年,日本的高峰让吉用米曲霉制备淀粉酶,酶技术走向商业化:②1908 年,德国的Rohm 用动物胰脏制得胰蛋白酶,皮革软化及洗涤;③1911 年, Wallerstein 从木瓜中获得木瓜蛋白酶,用于啤酒的澄清;④1949 年,用微生物液体深层培养法进行-淀粉酶的发酵生产,揭开了近代酶工业的序幕;⑤1960 年,法国科学家 Jacob 和 Monod 提出的控制子学说,阐明了酶生物合成的调节机制,通过酶的诱导和解除阻遏,可显著提高酶的产量;⑥1971 年各国科学家开始使用“酶工程”这一位词。

《食品生物化学》第5章酶

《食品生物化学》第5章酶

辅助因子的作用
酶蛋白决定反应的 酶蛋白决定反应的特异性 决定反应的特异性 辅助因子决定反应的种类与 决定反应的种类 辅助因子决定反应的种类与性质 金属离子 稳定酶的构象(少见) 稳定酶的构象(少见) 参与催化反应,传递电子(超酸催化剂) 参与催化反应,传递电子(超酸催化剂) 在酶与底物间起桥梁作用(配位键) 在酶与底物间起桥梁作用(配位键) 中和阴离子, 中和阴离子,降低反应中的静电斥力 小分子有机化合物 在反应中起运载体的作用,传递电子、 在反应中起运载体的作用,传递电子、质 子或其它基团。 子或其它基团。
小分子有机化合物作为辅助因子
转移的基团 小分子有机化合物 (辅 酶 或 辅 基) 辅 名 称 所含的维生素 尼克酰胺(维生素 PP之一) 之一) 尼克酰胺( 之一 尼克酰胺(维生素 PP之一) 之一) 尼克酰胺( 之一 维生素B2 (核黄素) 核黄素) 维生素 维生素B2 (核黄素) 维生素 核黄素) 维生素B 硫胺素) 维生素 1(硫胺素) 泛酸 硫辛酸 维生素B 维生素 12 生物素 吡哆醛(维生素B 之一) 吡哆醛(维生素 6之一) 叶酸
酶具有巨大的催化能力
酶是高度专一的
一种酶仅作用于一种或一类化合物,或一定的化学 一种酶仅作用于一种或一类化合物, 催化一定的化学反应并生成一定的产物。 键,催化一定的化学反应并生成一定的产物。酶的 这种特性称为酶的特异性 专一性(specificity) 特异性或 这种特性称为酶的特异性或专一性(specificity)。 绝对特异性(absolute specificity): 绝对特异性(absolute specificity):只能作用于特定 结构的底物,进行一种专一的反应, 结构的底物,进行一种专一的反应,生成一种特定 结构的产物(脲酶) 结构的产物(脲酶) 。 相对特异性(relative specificity): 相对特异性(relative specificity):作用于一类化合 物或一种化学键(胰蛋白酶、凝血酶) 物或一种化学键(胰蛋白酶、凝血酶)。 立体结构特异性(stereo specificity): 立体结构特异性(stereo specificity):作用于立体异 构体中的一种(L-精氨酸酶、延胡索酸酶) 构体中的一种(L-精氨酸酶、延胡索酸酶)。

《生物化学》-第五章 酶化学

《生物化学》-第五章  酶化学
亲核基团
—CH2—·O·:
H
底物中典 型的亲电 中心包括:
磷酰基
Cys-SH
—CH2—·S·:
H
脂酰基 糖基
His-咪唑基
—CH2—C=CH
HN N:
CH
(五)金属离子催化
金属离子作为酶的辅助因子起作用的方式:
1.与酶蛋白紧密结合稳定酶的天然构象,亲电催化 2.与酶结合较弱,作为激活剂存在。 3.通过价态的可逆变化,参与氧化还原反应。
其他成分的酶:
核酶(ribozyme) :具有催化活性的天然RNA。 近年还有DNA分子具有催化活性报道。
酶的概念: 酶是生物催化剂。由活细胞产生的具有高效催化能力 和催化专一性的蛋白质、核酸或其复合体。
脲酶:专一性水解尿素。
第一个被分离提取的酶,并证明其化学本质为蛋白质。 抗体酶:是用化学反应的过渡态类似物作免疫原产生 的催化性抗体,是一种具有催化能力的蛋白质,其本 质上是免疫球蛋白。
(6)对于结合酶,辅酶、辅基往往参与酶活中心的 组成。
第二节 酶催化作用的机制
一、酶与底物的结合——中间复合物学说
该学说认为,在酶促反应中,酶(E)总是先和底 物(S)结合生成不稳定的中间复合物(ES),再 分解成产物(P),并释放出酶(E)。 ——中间复合物学说能较好的解释酶为什么能降 低反应的活化能。
实际上,底物与酶结合是一种相互作用的过程, 底物可诱导蛋白质构象改变,蛋白质必需基团也可使 底物敏感键发生变化,更好“契合” 。 3.“三点附着”模型:该模型认为底物与酶活中心的 结合有三个结合位点,只有当这三个位点都匹配的时 候,酶才会催化相应的反应。
二、酶作用高效率机制
(一)底物与酶的邻近、定向效应
1)绝对专一性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 酶的分离纯化
第5章酶工业提取
Contents of chapter 5
Go 1、酶的提取与分离纯化技术路线 Go 2、酶的粗分离 Go 3、酶的精制 Go 4、酶的浓缩、干燥、结晶
第5章酶工业提取
细胞结构与酶分布
第5章酶工业提取
5.1 酶的提取、分离纯化技术路线
细胞破碎 酶提取
动物、植物或微生物细胞 发酵液
利用酶与其它杂质在有机溶剂中的溶解度不同,通过添加一定 量的某种有机溶剂,使酶或杂质沉淀析出,从而使酶与杂质分 离
在酶液中加入某些物质,使它与酶形成复合物而沉淀下来,从 而使酶与杂质分离
第5章酶工业提取
(3)色素及其他物质的去除
• 活性炭 • 离子交换树脂、离子交换纤维 • 大孔吸附树脂 • 专用脱色树脂
第5章酶工业提取
2.发酵液固液分离
——过滤
过滤是借助于过滤介质将不同大小、不同形状的物 质分离的技术过程。
提高过滤性能的方法 絮凝和凝聚 稀释 助滤剂——不可压缩的多孔微粒
第5章酶工业提取
(3)浓缩与干燥 (concentration and
desiccation)使酶与溶剂分离的过程,使用蒸发、
冷冻干燥等方法。
本章
第5章酶工业提取
目录
5.1.1酶分离纯化的基本原则
• 1.防止酶变性失效 (1)一般在低温下进行 (2)控制pH不要过酸、过碱 (3)尽量减少泡沫 (4)防止重金属、有机溶剂引起酶变性,防止微生物污
• 酶都能溶解于水,通常可用水或稀酸、稀碱、稀盐溶液等进 行提取,有些酶与脂质结合或含有较多的非极性基团,则可 用有机溶剂提取。
提高温度,降低溶液粘度、增加扩散面积、縮短扩散距离,增大浓 度差等都有利于提高酶分子的扩散速度,从而增大提取效果。
为了提高酶的提取率并防止酶的变性失活,在提取过程中还要注 意控制好温度、pH值等提取条件。
沉淀分离方法 盐析沉淀法
等电点沉淀法
有机溶剂沉淀法
复合沉淀法 选择性变性沉淀 法
分离原理
利用不同蛋白质在不同的盐浓度条件下溶解度不同的特性,通 过在酶液中添加一定浓度的中性盐,使酶或杂质从溶液中析出 沉淀,从而使酶与杂质分离
利用两性电解质在等电点时溶解度最低,以及不同的两性电解 质有不同的等电点这一特性,通过调节溶液的pH值,使酶或杂 质沉淀析出,从而使酶与杂质分离
染和蛋白酶水解。 • 2.选择有效的纯化方式 (1)在不破坏待纯化酶的限度内,使用各种“激烈” 手段
。 (2)使用亲和剂进行纯化。 • 3.酶活性测定贯穿纯化过程始终。
第5章酶工业提取
5.1.2酶的组合分离纯化策略
设计分离纯化工艺的基本要求
Resolution(分辨率)
Speed(速度)
Capacity(容量)
5.2.2 细胞破碎
许多酶存在于细胞内。 为了提取这些胞内酶, 首先需要对细胞进行破 碎处理。
JY92-II D超声波 细胞粉碎机
1)机械破碎 2)物理破碎 3)化学破碎 4)酶解破碎
DY89-I型 电动玻璃匀浆机
第5章酶工业提取
碎高 机压
细 胞 破
细 胞 破 碎 珠
细胞破碎方法及其原理
机械破碎
Recovery(回收率)
第5章酶工业提取
5.2 酶的提取(粗分离)
5.2.1 发酵液预处理 5.2.2 细胞破碎 5.2.3 酶的提取 5.2.4 离心分离 5.2.5 沉淀分离 5.2.6 萃取分离
第5章酶工业提取
5.2.1 发酵液预处理
• 1.发酵液相对纯化 • 2.发酵液固液分离
第5章酶工业提取
酶分离纯化
酶浓缩 酶贮存
离心,过滤,沉淀,层析,电 泳,萃取,结晶等。
第5章酶工业提取
酶分离纯化过程
酶的纯化过程,约可分为三个阶段:
(1) 粗蛋白质 (crude protein): 采样 → 均质 打破细胞 → 抽出全蛋白,多使用盐析沉淀法;可 以粗略去除蛋白质以外的物质。
(2) 部分纯化 (partially purified): 使用各种 柱层析法。均质酶 (homogeneous): 目标酶的进 一步精制纯化,可用制备式电泳或高效液相色谱。
1.发酵液相对纯化
(1)无机离子的去除 (2)杂蛋白的去除 (3)色素及其他物质的去除
第5章酶工业提取
(1)无机离子的去除
钙离子——草酸 镁离子——三聚磷酸钠 铁离子——黄血盐
第5章酶工业提取
(2)杂蛋白的去除
• 1)沉淀法——pH、盐析 • 2)变性法——加热、极端pH、有机溶剂 • 3)凝聚和絮凝——电解质、有机絮凝剂 • 4)吸附法——吸附剂
温度差破碎法 压力差破碎法 超声波破碎法
有机溶剂: 甲苯、丙酮 丁醇、氯仿 表面活性剂: Triton、Tween
自溶法 外加酶制剂法
本章 目录
5.2.3 酶的提取
• 酶的提取是指在一定的条件下,用适当的溶剂或溶液处理含 酶原料,使酶充分溶解到溶剂或溶液中的过程。也称为酶的 抽提。
• 酶提取时首先应根据酶的结构和溶解性质,选择适当的溶剂。 一般说来,极性物质易溶于极性溶剂中,非极性物质易溶于 非极性的有机溶剂中,酸性物质易溶于碱性溶剂中,碱性物 质易溶于酸性溶剂中。
有机溶剂提取 可与水混溶的有机溶剂
用于提取那些与脂质结合牢固或含 有较多非极性基团的酶
大多数蛋白类酶都溶于水,而
且在低浓度的盐存在的条件下,
酶的溶解度随盐浓度的升高而
增加,这称为盐溶பைடு நூலகம்象。
第5章酶工业提取
本章 目录
5.2.4 沉淀分离
沉淀分离是通过改变某些条件或添加某种物质,使酶的溶解 度降低,而从溶液中沉淀析出,与其它溶质分离的技术过程。
通过机械运动产生的剪切 力,使组织、细胞破碎。
捣碎法 研磨法 匀浆法
物理破碎 化学破碎 酶促破碎
通过各种物理因素的作用, 使组织、细胞的外层结构破 坏,而使细胞破碎。
通过各种化学试剂对细胞 膜的作用,而使细胞破碎
通过细胞本身的酶系或外 加酶制剂的催化作用,使 细胞外层结构受到破坏, 而达到细胞破碎
第5章酶工业提取
第5章酶工业提取
酶的主要提取方法
提取方法
使用的溶剂或溶液
提取对象
盐溶液提取
0.02~0.5mol/L的盐溶液 用于提取在低浓度盐溶液中溶解度 较大的酶
酸溶液提取 PH2~6的水溶液
用于提取在稀酸溶液中溶解度大, 且稳定性较好的酶
碱溶液提取 PH8~12的水溶液
用于提取在稀碱溶液中溶解度大且 稳定性较好的酶
相关文档
最新文档