高压直流电源技术的发展现状及应用

合集下载

特高压直流输电技术的应用分析

特高压直流输电技术的应用分析

特高压直流输电技术的应用分析摘要:随着我国经济快速发展,对电力资源需求量持续增加,很大程度上推动了电力事业发展。

用户对用电提出了更高要求,主要包括安全、稳定等方面,特高压直流输电输电能力更强、输电效率更高,可以满足实际发展所需。

文章先介绍特高压直流输电技术的价值,再分析目前应用现状,最后论述具体应用,为人民群众提供优质电力资源。

关键词:特高压;直流输电技术;应用1 前言电力技术发展及应用关系着群众的用电安全,而特高压直流输电作为我国发展建设中的重要组成部分,创造了世界电力工业史上的奇迹。

但就目前情况来看,特高压直流输电技术应用中还仍然存在着一些问题有待解决,因此需要电力企业相关从业人员对其进行全方位的分析,并提出合理的对策进行解决,进而保障电力的可持续运输,提高群众的用电质量和用电安全。

2 特高压直流输电技术特点2.1电网结构简单,易调控特高压直流输电采用大功率、远距离、点对点的输送模式,无中间落点,直接将电力输送到负荷中心。

当确定了送、受端之后,采用直流输电方式可实现交、直流电网并联输电,或者异步联网输电,电网结构清晰易调控。

2.2 短路电流易限制能够对系统的短路电流进行良好的限制,当企业选择使用直流输电线路对两个不同的交流系统进行连接的时候,直流系统通过使用自身的定电流控制这一功能,从而有效的将短路电流限制在额定功率周边,这样就能够在极大程度上保障短路容量不会因为交流系统的并联出现增加的问题,从而有效的互联两个交流系统。

2.3 系统高可靠性利用可控硅换流器,在直流输电技术中可快速调整有功功率,实现电流方向的改变。

另外,在正常状态下,直流系统可保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援。

因此,当交、直流电网互联时,假若交流电网线路出现短路,可通过短暂增大直流输送功率的方式,来控制电源端的发电机转子速度,从而提高系统可靠性。

2.4 年电能损耗小,线路造价低就现阶段的发展状况来看,对于架空线路的建设来说,交流输电一般需要使用三根导线,但是直流输电只需要两根双极导线或者是一根单极导线就可以。

高压直流电源(HVDC)的应用

高压直流电源(HVDC)的应用

哪些场合可以使用HVDC?
凡是计算机系统使用LCD显示器的地方都可以使 用HVDC
目前通信机房中交换机使用的是-48V系统,服务 器使用的是UPS
电厂或变电站中,V电源; 计算机系统使用的是UPS
银行、保险、证券公司中通信使用的是 -48V 通信电源,计算机服务器使用的是UPS。证券公 司的大显示屏使用的是24VDC,这个电源也来之 于UPS,同样可以由HVDC直接供电!
UPS的出现,是由于一些重要设备,如航天 控制、医疗仪器、金融系统、计算机、数据 管理系统等,不能断电而产生的。她的诞生, 为信息革命产生了十分重大的影响。也是电 力电子领域划时代的技术突破!
UPS(Uninterrupted Power Supply )工作原理
AC输入 输入 滤波
工频 整流
障,负载仍然停电;而HVDC的电池在输出 端,即使HVDC本身出故障,电池仍然可以 给负载供电,保障不间断供电,所以HVDC 也成为直流不间断电源;
与HVDC相比UPS系统存在的问题
UPS系统并机是交流并联,需要同频、同 相、同电位,并机复杂控制难度大,并机 失败率高,而且,一旦并机失败后会导致 系统瘫痪! HVDC,并机是直流并联,只有同电位的 问题,控制非常的简单,而且并机失败也 没有严重问题,最多就是“贫富不均” (不均流)!
银行、保险、证券公司的UPS略小于通信行业估 计20亿左右,而且以中小型机为主。主流厂家有 APC、伊顿、艾默生、中达
变电站(以220KV以上站为主)、电厂以中大型 UPS为主,估计市场容量10亿左右。主流厂家有 ABB、西门子、梅兰日兰、伊顿(主要是爱克赛)
与HVDC相比UPS系统存在的问题
UPS系统并联数量上受到限制,一般最多6台并 机,HVDC并机理论上可以做到“无穷大”,一 般可以做到40台并联。

2024年高压直流电源市场前景分析

2024年高压直流电源市场前景分析

2024年高压直流电源市场前景分析简介高压直流(High-Voltage Direct Current,简称HVDC)电源是一种将交流电转换为直流电,并通过高压输送能量的装置。

在能源传输、电网连接和电力交换等领域,HVDC电源具有重要的应用价值。

本文将对高压直流电源市场前景进行分析,并探讨其发展趋势。

市场概况高压直流电源市场目前呈现出稳定增长的态势。

随着能源消费结构的改变和清洁能源的广泛应用,对HVDC电源的需求不断增加。

此外,HVDC技术在电力传输效率、电网稳定性等方面的优势,也进一步推动了市场的发展。

发展驱动因素1. 清洁能源需求增加随着全球对环境保护意识的提高,清洁能源的需求呈现出快速增长的趋势。

HVDC 电源作为清洁能源输送和分配的重要工具,将在未来持续发挥重要作用。

2. 可再生能源发展势头强劲可再生能源如风能、太阳能等的发展势头迅猛,而其分布区域往往与能源需求区域存在一定的距离。

HVDC电源通过其远距离输送的特性,为可再生能源的消纳提供了可行解决方案。

3. 能源互联互通的需求增加跨国能源互联互通项目的增多,对HVDC电源的需求提供了机遇。

随着能源交换的增加,HVDC电源的应用将进一步扩大。

发展趋势1. 技术不断创新HVDC电源领域的技术在不断创新和进步。

新一代HVDC电源具有更高的转换效率、更低的损耗和更强的稳定性。

随着技术的发展,HVDC电源将能够更好地满足日益增长的能源需求。

2. 存在市场竞争HVDC电源市场竞争激烈,有多家企业充分发挥其技术和研发实力。

国内外一些知名厂家如ABB、西门子等,不断推出新产品,并通过市场竞争提升产品质量和技术水平。

3. 地区市场差异明显由于各地的能源消费结构和需求有所不同,HVDC电源市场在不同地区呈现出差异化特点。

发达经济体和新兴经济体对HVDC电源的需求差异较大,因此企业需要根据具体市场情况制定不同的营销策略。

发展挑战1. 技术标准和规范的制定HVDC电源的发展需要制定统一的技术标准和规范。

电力系统中的高电压直流输电技术研究与应用

电力系统中的高电压直流输电技术研究与应用

电力系统中的高电压直流输电技术研究与应用高电压直流输电(HDVC)技术是一种在电力系统中广泛应用的传输方式,它以其高效、可靠的特点在电力输电领域发挥着重要作用。

本文将对电力系统中的高电压直流输电技术进行研究与应用的相关内容进行探讨。

首先,我们来了解一下高电压直流输电技术的基本原理和特点。

高电压直流输电是指将交流电转换为直流电,在高压直流电缆或输电线路上进行传输,然后再将直流电转换为交流电。

其主要优势在于能够实现长距离高容量传输,并可以实现稳定的电压调节。

此外,由于直流电不受频率限制,可以更好地克服传统交流输电方式在长距离输电中的电流损耗和电压稳定性等问题。

高电压直流输电技术的研究与应用有助于提高电力系统的传输效率和可靠性。

它可以在大规模电力输送中减少电能损耗,提高系统稳定性,降低线路电流,减少线损,提高能源利用率。

此外,由于直流功率传输线损较小,可以减少对环境的影响,降低电力输送的造成的电磁辐射和电磁干扰。

在高电压直流输电技术的研究方面,一些重要的问题需要关注和解决。

首先是换流技术,即直流-交流-直流的转换过程。

换流系统的设计和运行对于高压直流输电的稳定性和可靠性至关重要。

其次是高电压直流输电的电源技术。

在实际应用中,电源选择和电源接入技术对系统的稳定性和可靠性起着关键作用。

对于不同的电源类型,如火电、风电、太阳能等,需要采用不同的接入技术和控制策略。

此外,高电压直流输电系统的绝缘和故障检测技术也是研究的重点。

在高电压直流输电技术的应用方面,着重研究了其在远距离、大容量输电、交流和直流系统之间的连接、电力稳定性调节、电力匹配等方面的应用。

例如,通过高压直流输电技术,可以实现国与国之间、地区之间的电力互联互通,提高电力供应的可靠性和稳定性。

此外,高电压直流输电技术在可再生能源接入方面也起着重要作用。

随着可再生能源的快速发展,如风能和太阳能等,传统的交流输电系统可能无法满足其接入的需求。

而高电压直流输电系统能够通过其较低的线损和更好的电压控制能力,实现可再生能源的大规模接入,更好地实现电力系统的可持续发展。

多端高压直流输电技术及应用前景

多端高压直流输电技术及应用前景

多端高压直流输电技术及应用前景摘要:目前,尽管大多数国家选择交流输电技术进行电力传输,但交流输电技术会在传输过程中造成大量能量损失。

然而,传输技术可以有效地避免这一问题,从而传输技术再次引起人们的注意,并将在未来得到广泛应用。

因此,本文对多终端水电技术及其应用前景进行了研究,以更好地促进中国能源工业的发展。

关键词:多端高压直流输电技术;应用前景;能源行业多终端技术使用电可控设备和控制技术,使其比传统传输方法更有利可图。

同时,柔性直流输电技术采用全控制单元,具有方便灵活的优点。

本文重点介绍了多终端HVAC技术的应用及其应用技术,以更好地促进HVAC技术发展。

1多终端传输及其主要连接形式1.1多连接高压直流输电技术综述多终端传输技术是指将三个或多个转换站连接到传输网络。

如果其中一个转换站因故障而停止运行,则仍可在其他转换站之间进行能量交换,这仅传输系统平衡功,不会影响整个系统的正常运行。

与传统的双终端传输技术相比,该技术可以实现多点电流的效果,有效满足当今城市的能源需求。

1.2高压直流多重连接互连的基本形式多端口传输系统的布线有多种类型,主要可分为并联、串联和串并联连接,而环网后的并联可分为平行和反射并联。

在并联结构中,工作电流水平应相同,在转换站中的电流改变后,功率可以重新分配;串联结构中的工作电流水平也应保持不变,但功率应根据直流电压的分布而变化。

在串并联结构中,直流电的水平可以不同,以进一步提高直流电的灵活性。

在连接多端输电线路时,技术人员必须充分考虑灵活性、安全性、投入成本等因素,然后根据实际情况结合实际需求,实现连接方式的合理选择。

对于传统的双端口传输,并联电流比串联电流更经济,操作更容易,因此其应用范围也更广。

因此,如今,多信道传输通常并行进行。

通过比较应用,发现与传统的双终端传输技术相比,传输技术具有以下技术优势:该技术可以将大量能量从基地传输到几个偏远的货运中心。

其次,电流或负载可以连接到输电线路中间的支路。

高压直流供电技术与发展前景浅述论文

高压直流供电技术与发展前景浅述论文

高压直流供电技术与发展前景浅述【摘要】随着工厂数量和人口的增多,对电的需求量也大大增多。

因此,普通的供电技术已经不能满足人们对电的需求。

而高压直流供电与普通的供电技术相比具有巨大的优势,也得到了人们的青睐。

但高压直流供电技术在实施的过程中存在着一些制约因素。

所以本文针对高也直流供电技术的发展前景做了详细的分析。

【关键词】高压直流电;供电技术;节约能耗1 高压直流供电技术的优势1.1 在技术方面的优势可靠性大幅提升,高压直流供电技术引入的主要目的就在于提升系统的安全性。

ups系统本身仅并联主机具有冗余备份,系统组件之间更多地是串联关系,其可用性是各部分组件可靠性的连乘结果,总体可靠性低于单个组件的可靠性。

反观直流系统,系统的并联整流模块、蓄电池组均构成了冗余关系,不可靠性是各组件连乘结果,总体可靠性高于单个组件的可靠性。

1.2 高压直流供电能大大节约能耗目前大量使用的ups主机均为在线双变换型,在负载率大于50%时,其转换效率与开关电源相近。

但一个不容忽视的现实是,为了保证ups系统的可靠性,ups主机均采用n+1(n=1、2、3)方式运行,加之受后端负载输入的谐波和波峰因数的影响,ups主机并不能满足运行,通常ups单机的设计最大稳定运行负载率仅为35—53%。

而受后端设备虚提功耗和业务发展的影响,很多ups系统通常在寿命中后期才能达到设计负载率,甚至根本不能达到设计负载率,ups 主机单机长期运行在很低的负载率,其转换效率通常为80%多,甚至更低。

对于直流电源系统而言,因其采用模块化结构,可根据输出负载的大小,由监控模块、监控系统或现场值守人员灵活控制模块的开机运行数量,使整流器模块的负载率始终保持在较高的水平,从而使系统的转换效率保持在较高的水平。

1.3 直流供电的带载能力大大提高ups系统带载能力受两个因素的制约,一是负载的功率因数,以国内某大型ups厂商的某型主机为例,在输出功率因数为0.5(容性)时,其最大允许负载率仅为50%;二是负载的电流峰值系数,通常ups主机的设计波峰因数为3,如果负载的电流峰值系数大于3,则ups主机将降容使用。

特高压直流输电的现状与展望 王冰1

特高压直流输电的现状与展望 王冰1

特高压直流输电的现状与展望王冰1摘要:特高压直流输电一般用在大容量长距离的直流电运输过程中,目前,在海底电缆、大型发电站等对这种技术的应用最广泛。

在我国,特高压直流输电是指通过1 000 k V级交流电网和600 k V级以上的直流电网所构成的电网系统。

纵观当前,直流输电技术发展得越来越成熟,并在电力传输中占着举足轻重的地位,由于目前计算机技术应用在了特高压直流输电中,使得特高压直流输电在调控方面有着更大的发展。

本文通过分析我国特高压直流输电的发展现状,对特高压直流输电在今后的发展进行了展望。

关键词:特高压;直流输电;电网;电力传输1特高压电直流输电的现状1.1发展速度快在20世纪60年代,一些发达国家需要向部分地区进行远距离输电,由于输电过程中的距离遥远,且输送的电量极大,所以,设计人员就开始研究高压直流运输。

起初,电流的传输距离最多可达1 000 km,最高直流电压为500 000 V,传输过程中的最大功率可以达到6.0×106k W;发展到如今,这种特高压直流电的传输最高电压可以达到800 000 k V,而且最近几年,特高压直流电的发展速度非常惊人。

另外,由于我国这几年现代化科技的飞速发展,目前,在高压直流电的传输过程中,计算机在对高压电流检测过程中得到了应用,这使得高压直流电的系统方面得到了优化,进而使得高压直流电的技术发展更向前迈进了一步。

此外,与以往的电线相比而言,电流传输过程中对光纤的使用使得电流在传输过程中的安全性得到了保障,进而很大程度上使得输电效率得到了提高。

同时,随着高压直流电传输技术的发展,目前,有很多国家也开始把高压直流电传输技术应用于实际生活中。

1.2效率高目前,我国在直流电传输方面一共有3种电流传输方式,即交流电传输、超高压输电以及特高压输电。

在进行远距离直流电传输过程中,应用最多的一种方式是特高压直流电传输。

这种电流传输方式无论在经济成本、能源耗损,还是在工程规模方面,都要优于其他的电流传输方式。

高压直流输电技术现状及发展前景

高压直流输电技术现状及发展前景

高压直流输电技术现状及发展前景摘要:由于我国的技术水平相对落后,导致我国电力系统的发展相对滞后,我国能源分布与电力资源使用很不均衡,电力输送的特点为大容量、长距离输电,为了减少电量损耗,我国目前主要研究高压直流输电技术和特高压直流输电技术。

随着我国高压直流输电技术日趋成熟,高压直流输电技术在电力系统中得到了广泛的应用,标志着我国高压直流输电时代的来临。

关键词:高压直流输电;技术现状;发展前景由于我国地域辽阔,能源分布及负荷发展很不平衡,水利资源主要集中在西南数省,煤炭资源主要集中在山西、陕西和内蒙古西部,而负荷主要集中在东部沿海地区,因此远距离大容量输电势在必行。

另一方面,电网互联是电力工业发展的必然趋势,我国各大区和独立省网的互联已进入实施阶段,利用高压直流输电作异步联网在技术上、经济上和安全性等方面的优势已在世界范围内得到证明。

因此高压直流输电技术必将以其技术上和经济上的独特优势,在远距离大容量输电和全国联网两个方面对我国电力工业的发展起到十分重要的作用。

1.高压直流输电优劣势分析①优势由于直流输电架空路线只需要两极导线正极和负极,线杆结构简单、造价低、损耗小;在直流电压下,线路电容不存在,没有电容电流;输送容量量大不易老化;不用考虑输电稳定性,有助于远距离大容量送电;不受联网影响,可以非同步联网,输送的有功功率和损耗的无功功率可由控制系统进行控制,提高了电力系统的质量和可靠性,有利于增容建设、节省投资效益。

②劣势由于直流输电换流变电所多,结构复杂,造价高,元器件多损耗。

如晶闸管换流时消耗大量无功功率;直流输电的特性造成一些接地技术问题;直流电流没有过零投切,给断路器灭火弧带来困难,这些问题需要充分研究并采取预防措施。

2.高压直流输电技术的发展现状我国关于高压直流输电技术的研究起步较晚,发展也相对滞后,由于技术不成熟,至今也没有在电力输送系统中得到广泛的应用。

我国目前采用的输电发展为全国联网、南北互供、西电东输的趋势,近年来,我国高压直流输电技术取得了显著进步,随着高压直流输电技术日趋成熟,我国将逐渐兴建一批远距离、大容量、超高压的直流输电工程,采用高压直流输电新技术,能够减少输电损耗,提高输电效率,进一步完善我国电网建设,提高电网运行的稳定性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高压直流电源技术的发展现状及应用
集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-
高压直流电源技术的发展现状及应用1 高压直流电源的基本工作原理和应用
高压直流电源是将工频电网电能转变成特种形式的高压电源的一种电子仪器设备,高压直流电源按输出电压极性可分为正极性和负极性两种。

高压直流电源已经广泛应用于各行各业,农业领域也有应用,例如农业环境静电除尘,静电喷雾杀虫,农业物料静电喷涂包裹,农产品加工中的静电植绒、农业生物静电效应研究、静电杀菌、农业种子静电处理等等。

随着农业科学技术的不断发展进步,农业科学研究和农业工程应用实践对高压静电电源的需求逐年增多,对其精度、性能、规格、品种、类型、体积、智能化操作等方面都提出了许多新的要求,现有的高压直流电源已经不能满足农业领域中的许多需要,研究和开发适合农业领域要求的多种新型直流高压电源已经成为一种客观需求,而且其社会效益和经济效益都比较显着,市场前景比较光明。

回顾高压直流电源发展历史,高压直流电源最初是将工频电压直接经高压变压器升压后整流滤波,或升压后再倍压整流后得到高压的,其基本原理如图1所示。

随着科学技术的发展,后来高压直流电源才发展到了线性高压直流电源。

图1 典型线形高压直流电源示意
2 高压直流电源近年来的发展
20世纪70年代世界电源史上发生了一场革命,即20Hz的开关频率结合脉宽调制技术(PWM)在电源领域的应用。

到目前为止,电源的频率已经达到数百Hz,应用先进的准谐振技术甚至可以达到兆Hz水平。

提高振荡器输出频率可降低高压变压器、电抗器、平滑电容器、高压电容器等电子器件基本性能要求和结构体积,进而缩小高压电源体积。

高频化使高压电源体积大幅度的减小,轻巧便携,实用性和使用方便性明显得到改善。

近几年,随着电子电力技术的发展,新一代功率器件,如MOSFET,IGBT 等应用,高频逆变技术的逐步成熟,出现了高压开关直流电源,同线性电源相比较高频开关电源的突出特点是:效率高、体积小、重量轻、反应快、储能少、设计、制造周期短。

由于它的优越特性,现在已逐渐取代了传统的高压线性直流电源。

图2是高压开关直流电源示意图。

同图1相比较,它采用了脉宽调制技术,PWM技术和BUCK变换器结合以及PWM技术和逆变器技术结合,实现了高压开关直流电源输出电压稳压和输出电流的限流功能。

图2 典型开关高压直流电源示意
目前,世界各国正在大力研制开发新型高压高频电源,包含新的电源理论、新型模块化电路、新型电子器件等,以满足电子设备小型化、高效化和高性能化的时代发展要求。

相关文档
最新文档