中考数学函数课件
合集下载
中考数学基础复习第10课一次函数的图象与性质课件

第10课 一次函数的图象与性质
【知识清单】
一次函数的图象和性质 1.图象
正比例函数 y=kx(k≠0)
一次函数 y=kx+b(k≠0)
图象关系
是经过点(0,0)和点(1,___k___)的一条直线
是经过点(0,b__ )和点(____kb,0)的一条直线
一次函数y=kx+b的图象可由正比例函数y=kx的图象 平移得到,b>0,向___上____移动___b___个单位,b<0, 向___下____移动___-_b___个单位
∵m-n=4,∴m-(-2m+2)=4,解得m=2,n=-2,
∴点P的坐标为(2,-2).
反思:函数的性质可以结合图象来理解求解.
考点3 与方程(组)、不等式的关系 例3.(202X·乐山)直线y=kx+b在平面直角坐标系中的位置如图所示,求不等式 kx+b≤2的解.
【解析】根据图象得出直线y=kx+b经过(0,1),(2,0)两点,
2
.5
2
【联系课标】 【课标要求】 一次函数 (1)会利用待定系数法确定一次函数的表达式 (2)会画一次函数的图象 (3)能根据一次函数的图象和表达式探索并理解其性质 (4)体会一次函数与二元一次方程的关系
【考点剖析】 考点1 一次函数表达式的确定 例1.(202X·黔西南)如图,正比例函数的图象与一次函数y=-x+1的图象相交于 点P,点P到x轴的距离是2,求这个正比例函数的表达式.
变式1.(202X·广州)一次函数y=-3x+1的图象过点(x1,y1),(x1+1,y2),
(x1+2,y3),则 ( B )
A.y1<y2<y3
【知识清单】
一次函数的图象和性质 1.图象
正比例函数 y=kx(k≠0)
一次函数 y=kx+b(k≠0)
图象关系
是经过点(0,0)和点(1,___k___)的一条直线
是经过点(0,b__ )和点(____kb,0)的一条直线
一次函数y=kx+b的图象可由正比例函数y=kx的图象 平移得到,b>0,向___上____移动___b___个单位,b<0, 向___下____移动___-_b___个单位
∵m-n=4,∴m-(-2m+2)=4,解得m=2,n=-2,
∴点P的坐标为(2,-2).
反思:函数的性质可以结合图象来理解求解.
考点3 与方程(组)、不等式的关系 例3.(202X·乐山)直线y=kx+b在平面直角坐标系中的位置如图所示,求不等式 kx+b≤2的解.
【解析】根据图象得出直线y=kx+b经过(0,1),(2,0)两点,
2
.5
2
【联系课标】 【课标要求】 一次函数 (1)会利用待定系数法确定一次函数的表达式 (2)会画一次函数的图象 (3)能根据一次函数的图象和表达式探索并理解其性质 (4)体会一次函数与二元一次方程的关系
【考点剖析】 考点1 一次函数表达式的确定 例1.(202X·黔西南)如图,正比例函数的图象与一次函数y=-x+1的图象相交于 点P,点P到x轴的距离是2,求这个正比例函数的表达式.
变式1.(202X·广州)一次函数y=-3x+1的图象过点(x1,y1),(x1+1,y2),
(x1+2,y3),则 ( B )
A.y1<y2<y3
中考数学考点专题复习课件反比例函数的图象和性质

解:(1)过点 D 作 x 轴的垂线,垂足为 F,∵点 D 的坐标为(4,3),∴OF
=4,DF=3,∴OD=5,∴AD=5,∴点 A 坐标为(4,8),∴k=xy=4×8
=32,∴k=32 (2)将菱形 ABCD 沿 x 轴正方向平移,使得点 D 落在函数 y=3x2(x>0)的
图象 D′点处,过点 D′做 x 轴的垂线,垂足为 F′.∵DF=3,∴D′F′=3,∴ 点 D′的纵坐标为 3,∵点 D′在 y=3x2的图象上,∴3=3x2,解得:x=332,即 OF′=332,∴FF′=332-4=230,∴菱形 ABCD 平移的距离为230
3.(2015·苏州)若点 A(a,b)在反比例函数 y=2x的图象上,则代数式 ab
-4 的值为( B)
A.0 B.-2 C.2 D.-6
4.(2015·牡丹江)在同一直角坐标系中,函数 y=-xa与 y=ax+1(a≠0)
的图象可能是( B )
,A)
,B)
,C)
,D)
5.(2015·青岛)如图,正比例函数 y1=k1x 的图象与反 比例函数 y2=kx2的图象相交于 A,B 两点,其中点 A 的横坐标为 2,当
①ACMN =||kk12||; ②阴影部分面积是12(k1+k2); ③当∠AOC=90°时,|k1|=|k2|; ④若 OABC 是菱形,则两双曲线既关于 x 轴对称,也关于 y 轴对称.
其中正确的是①__④__.(把所有正确的结论的序号都填上)
(3)(2015·宿迁)如图,在平面直角坐标系中,已知点 A(8,1),B(0,-3), 反比例函数 y=kx(x>0)的图象经过点 A,动直线 x=t(0<t<8)与反比例函数 的图象交于点 M,与直线 AB 交于点 N.
2024年中考数学一轮复习考点精讲课件—一次函数的图象与性质

的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.
4)一次函数与正比例函数有着共同的性质:
①当k>0时,y的值随x值的增大而增大;②当k<0时,y的值随x值的增大而减小.
考点二 一次函数的图象与性质
1. 正比例函数y= kx中,|k|越大,直线y= kx越靠近y轴;反之,|y|越小,直线y= kx越靠近x轴.
C.3
D.−3或3
∴9 = 2 ,∴ = ±3,又∵正比例函数 = 的图象经过第二、
∴ < 0,∴ = −3,故选:B.
【对点训练1】(2023·浙江杭州·统考一模)已知 − 与 − 1成正比例,且当 = −2时, = 3.若关
于的函数图象经过二、三、四象限,则m的取值范围为(
用待定系数法求一次函数表达式的一般步骤:
1)设出函数的一般形式y=kx(k≠0)或y=kx+b(k≠0);
2)根据已知条件(自变量与函数的对应值)代入表达式得到关于待定系数的方程或方程组;
3)解方程或方程组求出k,b的值;
4)将所求得的k,b的值代入到函数的一般形式中,从而得到一次函数解析式.
考点二 一次函数的图象与性质
两点即可,
图象确定
b
k
1)画一次函数的图象,只需过图象上两点作直线即可,一般取(0,b),(− ,0)两点;
2)画正比例函数的图象,只要取一个不同于原点的点即可.
考点二 一次函数的图象与性质
三、k,b的符号与直线y=kx+b(k≠0)的关系
在直线y=kx+b(k≠0)中,令y=0,则x=− ,即直线y=kx+b与x轴交于(− ,0)
综上所述,0 > 1 > 2
中考数学复习讲义课件 第3单元 第11讲 一次函数

第三单元 函数
第11讲 一次函数
1 知识梳理素养形成 2 考法聚焦素养提升
知识梳理素养 形成
考法聚焦素养 提升
一次函数的图象与性质(10 年 6 考) 例 1 已知关于 x 的一次函数 y=(2m+1)x+m-1. (1)若该函数的值 y 随自变量 x 的增大而增大,则 m 的取值范围为
(3)每月制作 A 类微课多少个时,该团队月利润 w 最大,最大利润是多少元?
解:由(2)知,w=50a+16500. ∵50>0,∴w 随 a 的增大而增大. ∴当 a=9 时,w 有最大值,w 最大=50×9+16500=16950(元).
答:每月制作 A 类微课 9 个时,该团队月利润 w 最大,最大利润是 16950 元.
7.(2021·衡阳)如图是一种单肩包,其背带由双层部分、单层部分和调节扣 构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度, 可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽 略不计)加长或缩短,设双层部分的长度为 xcm,单层部分的长度为 ycm. 经测量,得到表中数据. 双层部分长度 x/cm 2 8 14 20 单层部分长度 y/cm 148 136 124 112
品种 A B 原来的运费 45 25 现在的运费 30 20
(1)求每次运输的农产品中 A,B 产品各有多少件; [解答] 解:设每次运输的农产品中 A 产品有 x 件,B 产品有 y 件.根据题 意,得 4350xx++2250yy==11220000,-300.解得yx==3100., 答:每次运输的农产品中 A 产品有 10 件,B 产品有 30 件.
10.(2021·乐山)如图,已知直线 l1:y=-2x+4 与坐标轴分别交于 A,B 两 点,那么过原点 O 且将△AOB 的面积平分的直线 l2 的解析式为( D )
第11讲 一次函数
1 知识梳理素养形成 2 考法聚焦素养提升
知识梳理素养 形成
考法聚焦素养 提升
一次函数的图象与性质(10 年 6 考) 例 1 已知关于 x 的一次函数 y=(2m+1)x+m-1. (1)若该函数的值 y 随自变量 x 的增大而增大,则 m 的取值范围为
(3)每月制作 A 类微课多少个时,该团队月利润 w 最大,最大利润是多少元?
解:由(2)知,w=50a+16500. ∵50>0,∴w 随 a 的增大而增大. ∴当 a=9 时,w 有最大值,w 最大=50×9+16500=16950(元).
答:每月制作 A 类微课 9 个时,该团队月利润 w 最大,最大利润是 16950 元.
7.(2021·衡阳)如图是一种单肩包,其背带由双层部分、单层部分和调节扣 构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度, 可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽 略不计)加长或缩短,设双层部分的长度为 xcm,单层部分的长度为 ycm. 经测量,得到表中数据. 双层部分长度 x/cm 2 8 14 20 单层部分长度 y/cm 148 136 124 112
品种 A B 原来的运费 45 25 现在的运费 30 20
(1)求每次运输的农产品中 A,B 产品各有多少件; [解答] 解:设每次运输的农产品中 A 产品有 x 件,B 产品有 y 件.根据题 意,得 4350xx++2250yy==11220000,-300.解得yx==3100., 答:每次运输的农产品中 A 产品有 10 件,B 产品有 30 件.
10.(2021·乐山)如图,已知直线 l1:y=-2x+4 与坐标轴分别交于 A,B 两 点,那么过原点 O 且将△AOB 的面积平分的直线 l2 的解析式为( D )
中考数学总复习第一部分基础知识复习函数及其图象反比例函数PPT

★考点2 ★考点2 ★知识点2 ★考点2 ★考点2 ★知识点2 ★考点2 ★知识点2 ★知识点2 ★知识点2 ★知识点2 ★知识点2 ★考点2 ★考点2 ★考点2 ★考点2
★考点3 ★考点3 ★知识点3 ★考点3 ★考点3 ★知识点3 ★考点3 ★知识点3 ★知识点3 ★知识点3 ★知识点3 ★知识点3 ★考点3 ★考点3 ★考点3 ★考点3
★知识点3 ★知识点3 ★考点3 ★知识点3 ★知识点3 ★考点3 ★考点3 ★考点3 ★知识点3 ★考点3 ★知识点3 ★考点3 ★考点3 ★考点3 ★知识点3
★知识点4 ★知识点4 ★知识点4 ★知识点4
★知识点4 ★知识点4
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
数学中考一轮复习专题13一次函数的图象及其性质课件

知识点2:一次函数的图象及其性质
典型例题
【例2】(3分)(202X•赤峰11/26)点P(a,b)在函数y =4x+3的图象上,则代数式
8a -2b +1的值等于( )
A.5
B.-5
C.7
D.-6
【分析】把点P的坐标代入一次函数解析式可以求得a、b间的数量关系,所以易求
代数式8a -2b +1的值.
地市以探究性问题的情 的近似解.
势考查.
思维导图
知识点1:一次函数的概念
知识点梳理
1. 一次函数的概念: 一般地,如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数. 结构特征:①k≠0;②x的次数是1;③常数项b可以是任意实数. 2. 正比例函数的概念: 特别地,当一次函数y=kx+b中的b为0时,y=kx(k为常数,k≠0).这时,y叫做x 的正比例函数. 结构特征:①k≠0;②x的次数是1;③常数项为0. 3. 一次函数与正比例函数的联系:正比例函数是一次函数的特殊情势.
关于x,y的二元一次方程组
kk12xx
b1 b2
y y
的解是直线y=k1x+b1和y=k2x+b2的交点坐标.
3. 一元一次不等式:
关于x的一元一次不等式kx+b>0(<0)的解集是以直线y=kx+b和x轴的交点为分界点,
x轴上(下)方的图象所对应的x的取值范围.
知识点3:一次函数与方程(组)、一元一次不等式
知识点2:一次函数的图象及其性质
典型例题
【例4】(3分)(202X•安徽7/23)已知一次函数y=kx+3的图象经过点A,且y随x的增
大而减小,则点A的坐标可以是( )
【中考数学考点复习】第二节一次函数的图象与性质课件

7.已知点(3,5)在直线 y=ax+b(a,b 为常数,且 a≠0)上,则b-a 5的值 为 -13 .
拓展训练
8.已知正比例函数 y=kx(k≠0)的图象过点(2,3),把正比例函数 y= k x (k ≠0) 的 图 象 平 移 , 使 它 过 点(1 , - 1) , 则 平 移 后 的 函 数 图 象 大 致 是 ( D)
一 平移前表
次
达式
函
平移方向(m>0)
平移后表达式
数
向左平移m个单位长度 y=k(x m )+b
图
直线
向右平移m个单位长度 y=k(x m )+b
象
的 y=kx+b 向上平移m个单位长度 y=kx+b m
平
(k≠0)
移
向下平移m个单位长度 y=kx+b m
口诀
横坐标左加 右减
等号右边整 体上加下减
4.一次函数 y=(2m-1)x+2 的值随 x 值的增大而增大,则常数 m 的取 1
值范围为 m>2 . 5.已知一次函数 y=(k-3)x+1 的图象经过第一、二、四象限,则 k 的 取值范围是 k<3 .
6.在平面直角坐标系中,已知一次函数 y=2x+1 的图象经过 P1(x1,y1), P2(x2,y2)两点,若 x1<x2,则 y1 < y2.
.
第 12 题图
一次函数表达式的确定
13.(2021 甘肃省卷)将直线 y=5x 向下平移 2 个单位长度,所得直线的表
达式为( A )
A.y=5x-2
B.y=5x+2
C.y=5(x+2)
D.y=5(x-2)
14.已知一次函数y=kx+b的图象经过M(0,2),N(1,3)两点,则k,b
拓展训练
8.已知正比例函数 y=kx(k≠0)的图象过点(2,3),把正比例函数 y= k x (k ≠0) 的 图 象 平 移 , 使 它 过 点(1 , - 1) , 则 平 移 后 的 函 数 图 象 大 致 是 ( D)
一 平移前表
次
达式
函
平移方向(m>0)
平移后表达式
数
向左平移m个单位长度 y=k(x m )+b
图
直线
向右平移m个单位长度 y=k(x m )+b
象
的 y=kx+b 向上平移m个单位长度 y=kx+b m
平
(k≠0)
移
向下平移m个单位长度 y=kx+b m
口诀
横坐标左加 右减
等号右边整 体上加下减
4.一次函数 y=(2m-1)x+2 的值随 x 值的增大而增大,则常数 m 的取 1
值范围为 m>2 . 5.已知一次函数 y=(k-3)x+1 的图象经过第一、二、四象限,则 k 的 取值范围是 k<3 .
6.在平面直角坐标系中,已知一次函数 y=2x+1 的图象经过 P1(x1,y1), P2(x2,y2)两点,若 x1<x2,则 y1 < y2.
.
第 12 题图
一次函数表达式的确定
13.(2021 甘肃省卷)将直线 y=5x 向下平移 2 个单位长度,所得直线的表
达式为( A )
A.y=5x-2
B.y=5x+2
C.y=5(x+2)
D.y=5(x-2)
14.已知一次函数y=kx+b的图象经过M(0,2),N(1,3)两点,则k,b
第10课时 一次函数的图象及其性质 课件 2025年中考数学一轮总复习

2x+4与坐标轴分别交于A,B两点,那
么过原点O且将△AOB的面积平分的直
线l2的解析式为( D )
D
A. y= x
B. y=x
C. y= x
D. y=2x
(2)如图2,已知一条直线经过点A
(0,2),点B(1,0),将这条直线
向左平移与x轴、y轴分别交于点C,D.
若DB=DC,则直线CD的函数解析式
y= x-
考点三 一次函数与方程(组)、不
等式
例3 (1)(2024·广东)已知不等式
kx+b<0的解集是x<2,则一次函数y
=kx+b的图象大致是( B )
B
A B C D
一、
二、三
一、
三
一、
三、四Βιβλιοθήκη 一、 二、四
二、
四
二、
三、
四
增大
减小
(1)k的符号决定直线的增减性;
的大小决定直线的倾斜程度,即 越
大,直线与x轴相交的锐角的度数越大
(直线越 ); 越小,直线与x
轴相交的锐角的度数越小(直线越 ).(2)b(称为截距)表示直线y=kx+
图象
关系
一次函数y=kx+b的图象可由正
比例函数y=kx的图象平移得到.
当b>0时,向上平移b个单位长
度;当b<0时,向下平移 个单
位长度
(0,b)
(- ,0)
知识点2 一次函数y=kx+b(k≠0)的
图象与性质
函
数
y=kx+b(k,b为常数,且k≠0)
k>0
k<0
b>0
b=0
b<
0
b>0
b=0
为 ;
么过原点O且将△AOB的面积平分的直
线l2的解析式为( D )
D
A. y= x
B. y=x
C. y= x
D. y=2x
(2)如图2,已知一条直线经过点A
(0,2),点B(1,0),将这条直线
向左平移与x轴、y轴分别交于点C,D.
若DB=DC,则直线CD的函数解析式
y= x-
考点三 一次函数与方程(组)、不
等式
例3 (1)(2024·广东)已知不等式
kx+b<0的解集是x<2,则一次函数y
=kx+b的图象大致是( B )
B
A B C D
一、
二、三
一、
三
一、
三、四Βιβλιοθήκη 一、 二、四
二、
四
二、
三、
四
增大
减小
(1)k的符号决定直线的增减性;
的大小决定直线的倾斜程度,即 越
大,直线与x轴相交的锐角的度数越大
(直线越 ); 越小,直线与x
轴相交的锐角的度数越小(直线越 ).(2)b(称为截距)表示直线y=kx+
图象
关系
一次函数y=kx+b的图象可由正
比例函数y=kx的图象平移得到.
当b>0时,向上平移b个单位长
度;当b<0时,向下平移 个单
位长度
(0,b)
(- ,0)
知识点2 一次函数y=kx+b(k≠0)的
图象与性质
函
数
y=kx+b(k,b为常数,且k≠0)
k>0
k<0
b>0
b=0
b<
0
b>0
b=0
为 ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.一次函数与正比例函数之间的关系: 正比例函数是当b=0时的特殊的一次函 数.
五、一次函数的图象与性质
1.一次函数y=kx+b(k≠0)的图象是一条直 线,称直线y=kx+b.
▪ 2.一次函数y=kx+b(k≠0)的图象的位置及
增减性: y
y
当k>0时
b>0
b=0
o
x
b<0
b<0 b=0
o
b<0
在x轴的下方( 除顶点外)
开口方向
向上
向下
增减性 最值
在对称轴的左侧,y随着x的增大而减小 . 在对称轴的右侧, y随着x的增大而增
大.
当x=0时,最小值为0.
在对称轴的左侧,y随着x的增大而增大 . 在对称轴的右侧, y随着x的增大而减
当x=0时,最大小值. 为0.
开口大小
a 越大,开口越小.
a 越小,开口越大.
二次函数 y=ax2+bx+c的图
象和x轴交点 有两个交点
有一个交点
没有交点
一元二次方程 ax2+bx+c=0的根
有两个相异的 实数根
有两个相等的 实数根
没有实数根
一元二次方程 ax2+bx+c=0根的判
别式Δ=b2-4ac
b2-4ac > 0
b2-4ac = 0
b2-4ac < 0
二十、一元二次方程的图象解法
三、函数表示方法
解析法:用一个式子表示函数关系; 列表法:用列表的方法表示函数关系; 图象法:用图象的方法表示函数关系.
表示 表达式 表格
优点
变量间关系简捷明了,便于分析 计算.
能直接得到某些具体的对应值
缺点 需要通过计算,才能得到所需结 果.
不能反映函数整体的变化情况
图象 直观表示了变量间变化过程和 变化趋势.
4ac b2
2a
4a
在对称轴的左侧,y随着x的增大而增大
. 在对称轴的右侧, y随着x的增大而减
当x
b
时,
小.
最大值为
4ac
b2
2aห้องสมุดไป่ตู้
4a
十七、二次函数y=ax2+bx+c(a≠0)与=ax²的关系
1.相同点: (1)形状相同(图像都是抛物线,开 口方向相同). (2)都是轴对称图形. (3)都有最(大或小)值. (4)a>0时, 开口向上,在对称轴左侧,y都随x 的增大而减小,在对称轴右侧,y都随 x的增大 而增大. a<0时,开口向下,在对称轴左侧,y都 随x的增大而增大,在对称轴右侧,y都随 x的 增大而减小 .
当k<0时
x
驶向胜利 的彼岸
▪ y随x的增大而增大;y随x的增大而减小.
六、一次函数,一元一次方程,一元一次不等式
一次函数,一元一次方程,一元一次不等式的关系
▪ (1)当y=0时,为一元一次方
y
Y=kx+b
程kx+b=0,这时方程的解为:
xb; k
(o,b) y=>0
· Y=0
o
x
▪ (2)当y>0时,为一元一次不 Y<0
等式kx+b>0;当y<0时,为一
元一次不等式kx+b<0.这时 不等式的解集分别为:
驶向胜利 的彼岸
x b;x b.
k
k
七、反比例函数
1.反比例函数的定义
一般地,如果两个变量 x, y之间的关系可以表示成
y k k为常数, k 0的形式那么称 y是x的反比例函数 .
x
▪ 2.要点: ▪ (1)自变量x≠0; ▪ (2)比例系数k=xy;
九、正比例与反比例函数的联系与区别
填表 分析 正比 例函 数和 反比 例函 数的 区别
函数
正比例函数
解析式
图象形状
y=kx ( k≠0 ) 直线
K>0 K<0
位 置
一三象 限
增 减 y随x的增大而增 性大
位 二四象 置限
增
减 y随x的增大而减 性小
反比例函数
y
=
k x
(
k是常数,k≠0
)
双曲线
一三象 限
1.顶点坐标与对称轴 2.位置与开口方向 3.增减性与最值 根据图形填表:
抛物线 顶点坐标
对称轴 位置
开口方向 增减性 最值
y=a(x-h)2+k(a>0)
(h,k)
直线x=h
y=a(x-h)2+k(a<0)
(h,k)
直线x=h
由h和k的符号确定
向上
由h和k的符号确定
向下
在对称轴的左侧,y随着x的增大而减小 . 在对称轴的右侧, y随着x的增大而增
驶向胜利 的彼岸
八、反比例函数的图象及性质
▪ 1.形状 反比例函数的图象是由两支双曲线组 成的.因此称反比例函数的图象为双曲线;
y
y k x
y
y k x
o
x
o
x
驶向胜利 的彼岸
▪ 2.位置 当k>0时,两支双曲线分别位于第一, 三象限内;当k<0时,两支双曲线分别位于第二, 四象限内;
八、反比例函数的图象及性质
十四、二次函数y=a(x-h)2的性质
1.顶点坐标与对称轴 2.位置与开口方向 3.增减性与最值 根据图形填表:
y ax h2
抛物线 顶点坐标
y=a(x-h)2 (a>0) (h,0)
y=a(x-h)2 (a<0) (h,0)
对称轴
直线x=h
直线x=h
位置 在x轴的上方(除顶点外)
在x轴的下方( 除顶点外)
y随x的增大而减 小
二四象 限
y随x的增大而增 大
十、二次函数
1.定义:一般地,形如y=ax²+bx+c(a,b,c 是常数,a≠ 0)的函数叫做x的二次函数.
2.定义要点: (1)关于x的代数式一定是整式,a,b,c为常
数,且a≠0. (2)等式的右边最高次数为2,可以没有一次
项和常数项,但不能没有二次项. 驶向胜利
十八、二次函数y=ax2+bx+c(a≠0)与=ax²的关系
2.不同点: (1)位置不同;
(2)顶点不同:分别是
和(0,0).
b 2a
,
4ac 4a
b2
(3)对称轴不同:分别是 直线x b 和y轴.
(4)最值不同:分别是 4ac b2 和2a0.
4a
3.联系: y=ax2+bx+c(a≠0)的图象可以看成
函数值只能是近似值..
表达式是基础,是重点,表格是画图象的关键,图象是在表达式和表 关系 格的基础上对函数的总体概括和形象化的表达.
四、一次函数
1.若两个变量x,y的关系可以表示成 y=kx+b(k,b是常数,k≠0)的形式,则称y 是做x的一次函数 (x为自变量,y为因变 量).
2. 特 别 地 , 当 常 数 b = 0 时 , 一 次 函 数 y=kx+b(k≠0) 就 成 为 :y=kx(k 是 常 数 ,k≠0),称y是x的正比例函数.
y=ax2+bx+c(a>0)
b 2a
,
4ac 4a
b2
直线x b
2a
由a,b和c的符号确定
向上
y=ax2+bx+c(a<0)
b 2a
,
4ac 4a
b2
直线x b
2a
由a,b和c的符号确定
向下
在对称轴的左侧,y随着x的增大而减小
. 在对称轴的右侧, y随着x的增大而增
当x
b
大.
时, 最小值为
开口方向
向上
向下
增减性 最值
在对称轴的左侧,y随着x的增大而减小 . 在对称轴的右侧, y随着x的增大而增
大.
当x=h时,最小值为0.
在对称轴的左侧,y随着x的增大而增大 . 在对称轴的右侧, y随着x的增大而减
当x=h时,最大小值. 为0.
开口大小
a 越大,开口越小.
a 越小,开口越大.
十五、二次函数y=a(x+h)2+k的图象和性质
当x=h时,最小大值. 为k.
在对称轴的左侧,y随着x的增大而增大 . 在对称轴的右侧, y随着x的增大而减
当x=h时,最大小值. 为k.
十六、二次函数y=ax2+bx+c(a≠0)的图象和性质
1.顶点坐标与对称轴 2.位置与开口方向 3.增减性与最值 根据图形填表:
抛物线 顶点坐标
对称轴 位置
开口方向 增减性 最值
③理解正比例函数。 ④能根据一次函数的图象求二元一 次方程组的近似解。
(4)反比例函数 ①结合具体情境体会反比例函数的
意义,能根据已知条件确定反比例函数 表达式。
②能画出反比例函数的图象,根据 图 象 和 解 析 表 达 式 y = k/x(k≠o) 探 索 并 理解其性质(k>0或k<0时,图象的变 化)。
y单=位ax(²的当图象2ba>先0时沿,x向轴右整平体移左;(当右) 2平ba <移0时| ,向2ba|左个 平移),再沿对称轴整体上(下)平移| 4ac b|2个
单位 (当 4ac b2>0时向上平移;当 4ac b2<4a0时,
向下平移)得4到a 的.
4a
十九、二次函数与一元二次方程
二次函数y=ax2+bx+c的图象和x轴交点的坐标 与一元二次方程ax2+bx+c=0的根有什么关系?
五、一次函数的图象与性质
1.一次函数y=kx+b(k≠0)的图象是一条直 线,称直线y=kx+b.
▪ 2.一次函数y=kx+b(k≠0)的图象的位置及
增减性: y
y
当k>0时
b>0
b=0
o
x
b<0
b<0 b=0
o
b<0
在x轴的下方( 除顶点外)
开口方向
向上
向下
增减性 最值
在对称轴的左侧,y随着x的增大而减小 . 在对称轴的右侧, y随着x的增大而增
大.
当x=0时,最小值为0.
在对称轴的左侧,y随着x的增大而增大 . 在对称轴的右侧, y随着x的增大而减
当x=0时,最大小值. 为0.
开口大小
a 越大,开口越小.
a 越小,开口越大.
二次函数 y=ax2+bx+c的图
象和x轴交点 有两个交点
有一个交点
没有交点
一元二次方程 ax2+bx+c=0的根
有两个相异的 实数根
有两个相等的 实数根
没有实数根
一元二次方程 ax2+bx+c=0根的判
别式Δ=b2-4ac
b2-4ac > 0
b2-4ac = 0
b2-4ac < 0
二十、一元二次方程的图象解法
三、函数表示方法
解析法:用一个式子表示函数关系; 列表法:用列表的方法表示函数关系; 图象法:用图象的方法表示函数关系.
表示 表达式 表格
优点
变量间关系简捷明了,便于分析 计算.
能直接得到某些具体的对应值
缺点 需要通过计算,才能得到所需结 果.
不能反映函数整体的变化情况
图象 直观表示了变量间变化过程和 变化趋势.
4ac b2
2a
4a
在对称轴的左侧,y随着x的增大而增大
. 在对称轴的右侧, y随着x的增大而减
当x
b
时,
小.
最大值为
4ac
b2
2aห้องสมุดไป่ตู้
4a
十七、二次函数y=ax2+bx+c(a≠0)与=ax²的关系
1.相同点: (1)形状相同(图像都是抛物线,开 口方向相同). (2)都是轴对称图形. (3)都有最(大或小)值. (4)a>0时, 开口向上,在对称轴左侧,y都随x 的增大而减小,在对称轴右侧,y都随 x的增大 而增大. a<0时,开口向下,在对称轴左侧,y都 随x的增大而增大,在对称轴右侧,y都随 x的 增大而减小 .
当k<0时
x
驶向胜利 的彼岸
▪ y随x的增大而增大;y随x的增大而减小.
六、一次函数,一元一次方程,一元一次不等式
一次函数,一元一次方程,一元一次不等式的关系
▪ (1)当y=0时,为一元一次方
y
Y=kx+b
程kx+b=0,这时方程的解为:
xb; k
(o,b) y=>0
· Y=0
o
x
▪ (2)当y>0时,为一元一次不 Y<0
等式kx+b>0;当y<0时,为一
元一次不等式kx+b<0.这时 不等式的解集分别为:
驶向胜利 的彼岸
x b;x b.
k
k
七、反比例函数
1.反比例函数的定义
一般地,如果两个变量 x, y之间的关系可以表示成
y k k为常数, k 0的形式那么称 y是x的反比例函数 .
x
▪ 2.要点: ▪ (1)自变量x≠0; ▪ (2)比例系数k=xy;
九、正比例与反比例函数的联系与区别
填表 分析 正比 例函 数和 反比 例函 数的 区别
函数
正比例函数
解析式
图象形状
y=kx ( k≠0 ) 直线
K>0 K<0
位 置
一三象 限
增 减 y随x的增大而增 性大
位 二四象 置限
增
减 y随x的增大而减 性小
反比例函数
y
=
k x
(
k是常数,k≠0
)
双曲线
一三象 限
1.顶点坐标与对称轴 2.位置与开口方向 3.增减性与最值 根据图形填表:
抛物线 顶点坐标
对称轴 位置
开口方向 增减性 最值
y=a(x-h)2+k(a>0)
(h,k)
直线x=h
y=a(x-h)2+k(a<0)
(h,k)
直线x=h
由h和k的符号确定
向上
由h和k的符号确定
向下
在对称轴的左侧,y随着x的增大而减小 . 在对称轴的右侧, y随着x的增大而增
驶向胜利 的彼岸
八、反比例函数的图象及性质
▪ 1.形状 反比例函数的图象是由两支双曲线组 成的.因此称反比例函数的图象为双曲线;
y
y k x
y
y k x
o
x
o
x
驶向胜利 的彼岸
▪ 2.位置 当k>0时,两支双曲线分别位于第一, 三象限内;当k<0时,两支双曲线分别位于第二, 四象限内;
八、反比例函数的图象及性质
十四、二次函数y=a(x-h)2的性质
1.顶点坐标与对称轴 2.位置与开口方向 3.增减性与最值 根据图形填表:
y ax h2
抛物线 顶点坐标
y=a(x-h)2 (a>0) (h,0)
y=a(x-h)2 (a<0) (h,0)
对称轴
直线x=h
直线x=h
位置 在x轴的上方(除顶点外)
在x轴的下方( 除顶点外)
y随x的增大而减 小
二四象 限
y随x的增大而增 大
十、二次函数
1.定义:一般地,形如y=ax²+bx+c(a,b,c 是常数,a≠ 0)的函数叫做x的二次函数.
2.定义要点: (1)关于x的代数式一定是整式,a,b,c为常
数,且a≠0. (2)等式的右边最高次数为2,可以没有一次
项和常数项,但不能没有二次项. 驶向胜利
十八、二次函数y=ax2+bx+c(a≠0)与=ax²的关系
2.不同点: (1)位置不同;
(2)顶点不同:分别是
和(0,0).
b 2a
,
4ac 4a
b2
(3)对称轴不同:分别是 直线x b 和y轴.
(4)最值不同:分别是 4ac b2 和2a0.
4a
3.联系: y=ax2+bx+c(a≠0)的图象可以看成
函数值只能是近似值..
表达式是基础,是重点,表格是画图象的关键,图象是在表达式和表 关系 格的基础上对函数的总体概括和形象化的表达.
四、一次函数
1.若两个变量x,y的关系可以表示成 y=kx+b(k,b是常数,k≠0)的形式,则称y 是做x的一次函数 (x为自变量,y为因变 量).
2. 特 别 地 , 当 常 数 b = 0 时 , 一 次 函 数 y=kx+b(k≠0) 就 成 为 :y=kx(k 是 常 数 ,k≠0),称y是x的正比例函数.
y=ax2+bx+c(a>0)
b 2a
,
4ac 4a
b2
直线x b
2a
由a,b和c的符号确定
向上
y=ax2+bx+c(a<0)
b 2a
,
4ac 4a
b2
直线x b
2a
由a,b和c的符号确定
向下
在对称轴的左侧,y随着x的增大而减小
. 在对称轴的右侧, y随着x的增大而增
当x
b
大.
时, 最小值为
开口方向
向上
向下
增减性 最值
在对称轴的左侧,y随着x的增大而减小 . 在对称轴的右侧, y随着x的增大而增
大.
当x=h时,最小值为0.
在对称轴的左侧,y随着x的增大而增大 . 在对称轴的右侧, y随着x的增大而减
当x=h时,最大小值. 为0.
开口大小
a 越大,开口越小.
a 越小,开口越大.
十五、二次函数y=a(x+h)2+k的图象和性质
当x=h时,最小大值. 为k.
在对称轴的左侧,y随着x的增大而增大 . 在对称轴的右侧, y随着x的增大而减
当x=h时,最大小值. 为k.
十六、二次函数y=ax2+bx+c(a≠0)的图象和性质
1.顶点坐标与对称轴 2.位置与开口方向 3.增减性与最值 根据图形填表:
抛物线 顶点坐标
对称轴 位置
开口方向 增减性 最值
③理解正比例函数。 ④能根据一次函数的图象求二元一 次方程组的近似解。
(4)反比例函数 ①结合具体情境体会反比例函数的
意义,能根据已知条件确定反比例函数 表达式。
②能画出反比例函数的图象,根据 图 象 和 解 析 表 达 式 y = k/x(k≠o) 探 索 并 理解其性质(k>0或k<0时,图象的变 化)。
y单=位ax(²的当图象2ba>先0时沿,x向轴右整平体移左;(当右) 2平ba <移0时| ,向2ba|左个 平移),再沿对称轴整体上(下)平移| 4ac b|2个
单位 (当 4ac b2>0时向上平移;当 4ac b2<4a0时,
向下平移)得4到a 的.
4a
十九、二次函数与一元二次方程
二次函数y=ax2+bx+c的图象和x轴交点的坐标 与一元二次方程ax2+bx+c=0的根有什么关系?