2017-2018学年人教版数学 八年级下册《第十九章一次函数》单元测试卷及答案

合集下载

人教版八年级数学下册第十九章《一次函数》单元测试附答案卷

人教版八年级数学下册第十九章《一次函数》单元测试附答案卷

第十九章《一次函数》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.(跨学科融合)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中自变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器2.函数y=√x+1中自变量x的取值范围是()A.x≥2B.x≥-1C.x≤1D.x≠13.下列函数中,不是一次函数的是()A.y=x+1B.y=-xC.y=x2D.y=1-x4.直线y=2x经过()A.第二、四象限B.第一、二象限C.第三、四象限D.第一、三象限5.将函数y=-3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=-3x+2B.y=-3x-2C.y=-3(x+2)D.y=-3(x-2)6.已知关于x的正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是()A.k>5B.k<5C.k>-5D.k<-57.已知点(-1,y1),(4,y2)在一次函数y=3x-2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y18.如图,已知一次函数y=kx+b的图象,则k,b的值为()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0第8题第9题第10题图9.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900 mB.小涛从家去报亭的平均速度是60 m/minC.小涛从报亭返回家中的平均速度是80 m/minD.小涛在报亭看报用了15 min10.(创新题)如图,若输入x的值为-5,则输出的结果为()A.-6B.-5C.5D.6二、填空题(共5小题,每小题3分,共15分)11.若y与x的函数关系式为y=2x-2,当x=2时,y的值为.12.直线y=2x-3与x轴的交点坐标是.13.如图,已知一次函数y1=kx+b与y2=x+a的图象,若y1<y2,则x的取值范围是.14.(跨学科融合)测得一根弹簧的长度与所挂物体质量的关系如下表:(重物不超过20千的函数关系式是(015.(创新题)如图1,在矩形ABCD中,BC=5,动点P从点B出发,沿BC-CD-DA运动至点A 停止.设点P运动的路程为x,△ABP的面积为y,若y关于x的函数图象如图2所示,则DC=,y的最大值是.三、解答题(一)(共3小题,每小题8分,共24分)16.已知一次函数y=2x-6.(1)判断点(4,3)是否在此函数的图象上;(2)此函数的图象不经过第象限,y随x的增大而.17.已知直线y=kx+b经过点A(3,7)和B(-8,-4),求直线AB的解析式.18.如图,已知直线l:y=kx+3经过A,B两点,点A的坐标为(-2,0).(1)求直线l的解析式;(2)当kx+3>0时,根据图象直接写出x的取值范围.。

八年级数学下册《第十九章 一次函数》单元检测卷带答案-人教版

八年级数学下册《第十九章 一次函数》单元检测卷带答案-人教版

八年级数学下册《第十九章 一次函数》单元检测卷带答案-人教版学校:___________班级:___________姓名:___________考号:___________知识点1、定义(1)一般地,形如y =kx (k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫做比例系数。

(2)一般地,形如y =kx +b (k ,b 是常数,k ≠0)的函数叫做一次函数。

当b =0时,y =kx +b 即y =kx ,是正比例函数。

所以说正比例函数是一种特殊的一次函数。

2、正比例函数的图象及性质:正比例函数y =kx (k 是常数,k ≠0)的图象是一条经过原点的直线,称为直线y =kx 。

y =kx 图像 经过象限 增减性k >0三、一 y 随着x 的增大而增大k <0二、四 y 随着x 的增大而减小3、一次函数的图象及性质:一次函数y =kx +b (k 、b 是常数,k ≠0)的图象是一条直线,称为直线y =kx +b 。

当k >0时,直线y =kx +b 从左向右上升,即y 随着x 的增大而增大;当k <0时,直线y =kx +b 从左向右下降,即y 随着x 的增大而减小。

y =kx +b 图像 经过象限 增减性k >0,b >0三、二、一 y 随着x 的增大而增大k >0,b <0三、四、一k <0,b >0二、一、四 y 随着x 的增大而减小k<0,b<0二、三、四一、选择题1.刘师傅到加油站加油,如图是所用的加油机上的某一时刻数据显示牌,则其中的变量是()A.金额B.金额和数量C.数量D.单价2.函数y=1x−5中,自变量x的取值范围是()A.x≠5B.x=5C.x>5D.x<53.在直线y=3x上的点的坐标是()A.(0,3)B.(−2,1)C.(−2,−6)D.(2,−6)4.下列函数中,是一次函数的是()A.y=x2+2B.y=1x+2C.y=kx+2D.y=x+25.若正比例函数y=(3+k)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时y1>y2,则k的取值范围是()A.k>0B.k<0C.k>−3D.k<−36.若直线y=kx+2与两条坐标轴围成的三角形的面积是2,则k的值为()A.1 B.−1C.±1D.±27.观察下列图象,可以得出不等式组{3x+1>0−0.5x+1>0的解集是()A.x<13B.﹣13<x<0 C.0<x<2 D.﹣13<x<28.张师傅驾车从甲地到乙地,两地相距 500 千米,汽车出发前油箱有油 25 升,途中加油若干升,加油前、后汽车都以 100 千米/时的速度匀速行驶,已知油箱中剩余油量 y(升)与行驶时间 t(小时)之间的关系如图所示.以下说法正确的有()个①加油前油箱中剩余油量 y(升)与行驶时间 t(小时)的函数关系是 y=-8t+25②汽车加油后还可行驶 4 小时③途中加油 21 升④汽车到达乙地时油箱中还余油 6 升A.1 B.2 C.3 D.4二、填空题9.平行于直线y=−2x+3,且与y轴交于点(0,2)的直线表达式是.10.如果将直线y=−x+3向下平移2个单位,那么平移后所得直线的表达式为.11.如图,一次函数y=kx+b(k<0)的图象与x轴交于点(2,0),则关于x的不等式kx+b>0的解集为.12.在平面直角坐标系中,已知一次函数y=x+b的图象与y轴交于A(0,2),与x轴交于B点.点M 是直线AB上的一个动点,将点M向下平移4个单位长度得到点N,若线段MN与x轴有一个公共点,设点M的横坐标为m,则m的取值范围是.13.小明租用共享单车从家出发,匀速骑行到相距2400米的图书馆还书.小明出发的同时,他的爸爸以每分钟96米的速度从图书馆沿同一条道路步行回家,小明在图书馆停留了3分钟后沿原路按原速骑车返回.设他们出发后经过t(分)时,小明与家之间的距离为s1(米),小明爸爸与家之间的距离为s2(米),图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.小明从家出发,经过分钟在返回途中追上爸爸.三、解答题14.如图,矩形ABCD的边AB在x轴上,点A,B关于原点对称,点D坐标为(−2,3),求直线AC的解析式.15.一辆轿车在高速公路上匀速行使,油箱存油量Q(升)与行使的路程S(km)成一次函数关系.若行使100km时,油箱存油43.5升,当行使300km时,油箱存油30.5升,请求出这个一次函数关系式,并写出自变量S的取值范围.16.为了预防新冠肺炎,某药店欲购进甲、乙两种防护口罩进行销售,有关信息如表:进价(元/袋)售价(元/袋)甲种防护口罩20 25乙种防护口罩30 37该药店准备购进甲、乙两种防护口罩共40袋,且甲种防护口罩不少于30袋,问应该怎样进货,才能使总获利最大,最大利润为多少元?17.如图.一次函数y=kx+b的图像交x轴于点A,OA=3与正比例函数y=2x的图像交于点B,点B的横坐标为1.(1)求一次函数y=kx+b的解析式.(2)请直接写出kx+b>2x时自变量x的取值范围.18.某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg∼5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货;方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A、方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选用方案A比方案B付款少;(3)某水果批发商计划用20000元选用这两种方案中的一种购买尽可能多的这种苹果,请写出他应选择哪种方案.参考答案1.B2.A3.C4.D5.D6.C7.D8.C9.y=−2x+210.y=−x+111.x<212.−2≤m≤213.65314.解:∵矩形ABCD 的边AB 在x 轴上,点A ,B 关于原点对称,点D 坐标为(−2,3)∴A(−2,0) B(2,0),AB =CD ,AB ∥CD ,∠ABC =∠BCD =∠DAB =90° ∴C(2,3) 设AC 为y =kx +b∴{−2k +b =02k +b =3解得:{k =34b =32 ∴AC 的解析式为:y =34x +32.15.解:设:Q =mS +n根据题意的方程组{43.5=m ×100+n 30.5=m ×300+n解得{m =−13200n =50则该一次函数解析式为:Q =−13200S +50当Q =0时∴S =769313km∴自变量S 的取值范围为0≤S ≤769313.16.解:设购进甲种防护口罩x 袋,则乙种防护口罩(40-x )袋,总利润为W 元,根据题意得:W =(25−20)x +(37−30)(40−x)=−2x +280∵甲种防护口罩不少于30袋∴x ≥30∵-2<0∴W 随x 的增大而减小∴当x=30时,W 最大,最大值为W =−2×30+280=220元此时40-x=10答:购进甲种防护口罩30袋,乙种防护口罩10袋,才能使总获利最大,最大利润为220元.17.(1)∵OA =3∴A(3,0)∵点B 的横坐标为1∴B(1,2)∵{3k +b =0k +b =2∴解得{k =−1b =3故一次函数的解析式为y =−x +3.(2)x <118.(1)解:方案A : 函数表达式为y =5.8x(2000⩽x ⩽5000) 方案B : 函数表达式为y =5x +2000(2000⩽x ⩽5000);(2)解:由题意得:5.8x<5x+2000解得x<2500∴2000≤x <2500;(3)解:方案A :y=5.8x=20000解得x=3448.28方案B :y=5x+2000=20000解得x=3600∵3600>3448.28∴选用B 方案,购买的数量较多.。

人教版八年级数学下册《第十九章一次函数》章节测试卷-带答案

人教版八年级数学下册《第十九章一次函数》章节测试卷-带答案

人教版八年级数学下册《第十九章一次函数》章节测试卷-带答案一、单选题(共10小题,满分40分)1.将直线y = 2x+5沿尤轴向左平移3个单位得到直线则直线&的解析式是()A. y=2x+2B. y=2x+8C. y=2x~lD. y=2x+ll 2.一次函数的图像经过点(1, 2)和(一3, -1),则它的表达式为()A 3 5 4 4A. y= —x — — B. y= —x ——J 4 4 ) 3 53 4C. y= —x+ — )4 53 5D. y= —x+ — '4 43.已知点(-2,叫),(-1见),(1,为)都在直线y=-5x+/?上,则/,力,为的大小关系是( )A. >3<>2<>1B. >1<>2<>34. D.为<乂<力C. >2<>1<>3如果函数y^~2x + m 的图象经过第二、三、四象限,那么农应满足的条件是()A. m>0B. m< 0C. m>0D. m<05.某快递公司每天上午8:00-9:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y (件)与时间工(分)之间的函数图象如图所示,那么当两仓库快递件C. 8:20D. 8:256.如图,直线y = -x + b 和"奴-3交于点尸,根据图象可知kx-3<-x+b 的解集为( )7.关于变量x, C. 0<x<l D. —y 有如下关系:①x-y=5;②y2=2x ; (3): y=|x|;④y=3x 4.其中y 是x 函数的是()A.①②③B.①②③④C.①③D.①③④8.已知两点M (4, 2), N (1, 1),点P 是x 轴上一动点,若使PM+PN 最短,则点P 为()A. (2, 0)B. (2.5, 0)C. (3, 0)D. (4, 0)9.如图是我市某一天内的气温变化图,根据图象,下列说法中错误的是()奇间时A. 这一天中最高气温是26°CB. 这一天中最高气温与最低气温的差为16°CC. 这一天中2时至14时之间的气温在逐渐升高D. 这一天中14时至24时之间的气温在逐渐降低10.已知一次函数y = kx+b (k, 8为常数,5)的图象如图所示,下列说法正确的是( )C.尤 >0 时 yv —2024 B. '随工的增大而减小D.方程kx+b = 0的解是x = 2024二、填空题(共8小题,满分32分)11. 若y 是'的一次函数,且不经过第三象限,请你写出一个符合条件的函数解析式.12. 李红爸爸到加油站加油,他应付的金额随加油量的变化而变化,在这个变化过程中,自变量是y = mx + n,13.如图,直线y^mx+n 与直线y = kx+b 的交点为A,则关于工,了的方程组( z 7的解是[y = kx +b14.已知直线l i:y=-2x+a和/2:>='+人图象上部分点的横坐标和纵坐标如下表所示,则关于X的方程—2x+a=x+Z?的解是-1012y——2x+a852-1y-x+b012315.一个弹簧秤不挂重物时长12cm,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上1kg的物体后,弹簧伸长3cm,则弹簧总长了(单位:cm)与所挂重物质量尤(单位:kg)的函数解析式是.16.一次函数y--5x+b的图象经过和热(1况),则>1,%的大小关系是.2117.若直线AB:y=-x+4与工轴、V轴分别交于点8和点A,直线CD:y=-尹+2与工轴、了轴分别交于点。

人教版八年级下第19章《一次函数》单元测试题(含答案)

人教版八年级下第19章《一次函数》单元测试题(含答案)

第十九章《一次函数》测试题时限:100分钟满分:150分一、选择题(每小题4分,共40分)1.(2017六盘水)使函数y有意义的自变量x的取值范围是( )A.3x£x£ D.0x³ B.0x³ C.32.一次函数y=﹣x+2图象经过()A.一、二、三象限B.一、二、四象限C.一、三、四象限 D.二、三、四象限3.下列图象中,表示y是x的函数的个数有()A. 1个B. 2个C. 3个D. 4个4.如图,一次函数y=(m﹣1)x﹣3的图象分别与x轴、y轴的负半轴相交于A、B,则m的取值范围是()A. m>1 B. m<1 C. m<0 D. m>05.已知一次函数y=kx+b(k≠0)经过(2,﹣1)、(﹣3,4)两点,则它的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2)B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)7.若一次函数y=(2﹣m)x﹣2的函数值y随x的增大而减小,则m的取值范围是()A. m<0 B. m>0 C. m<2 D. m>28.(2017贵阳)若直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),则a﹣b的值为()A.2 B.4 C.6 D.89.关于x的一次函数y=kx+k2+1的图象可能正确的是()A .B .C .D.10.如图,正方形的边长为4,P 为正方形边上一动点,运动路线是A→D→C→B→A,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( )D二、填空题(每小题4分,共32分)11.已知一次函数y=kx+b 的图象经过A (1,﹣1),B (﹣1,3)两点,则k 0(填“>”或“<”) 12.已知点P (a ,b )在一次函数y=4x+3的图象上,则代数式4a ﹣b ﹣2的值等于 .13.如图,直线y=kx+b 经过A (2,1),B (﹣1,﹣2)两点,则不等式x >kx+b >﹣2的解集为 .第13题 第17题14.直线y=2x ﹣1沿y 轴平移3个单位,则平移后直线与y 轴的交点坐标为 .15.函数y 1=k 1x 的图象过点P (2,3),且与函数y 2=k 2x 的图象关于y 轴对称,那么他们的解析式y 1= ,y 2= .16.(2017河北)如果函数y=x﹣2与y=﹣2x+4的图象的交点坐标是(2,0),那么二元一次方程组的解是.17.(2017孝感)如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y 轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为.18.(2017安顺)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A nB n﹣1B n顶点B n的横坐标为.第17题第18题三、解答题(共7小题,共78分)19.根据下列条件,确定函数关系式:(10分)(1)y与x成正比,且当x=9时,y=16;(2)y=kx+b的图象经过点(3,2)和点(﹣2,1).20.已知,直线y=2x+3与直线y=﹣2x﹣1.(10分)(1)求两直线与y轴交点A,B的坐标;(2)求两直线交点C的坐标;(3)求△ABC的面积.21.网络时代的到来,很多家庭都接入了网络,电信局规定了拨号入网两种收费方式,用户可以任选其一:A:计时制:0.05元/分;B:全月制:54元/月(限一部个人住宅电话入网).此外B种上网方式要加收通信费0.02元/分.(10分)(1)某用户某月上网的时间为x小时,两种收费方式的费用分别为y1(元)、y2(元),写出y1、y2与x 之间的函数关系式.(2)在上网时间相同的条件下,请你帮该用户选择哪种方式上网更省钱.22.(2017杭州市)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2)。

人教新版八年级下册数学《第19章 一次函数》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册数学《第19章 一次函数》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册《第19章一次函数》单元测试卷(1)一、选择题1.下列各图表示的函数中y是x的函数的()A.B.C.D.2.若一次函数y=﹣3mx﹣4(m≠0),当x的值增大时,y的值也增大,则m的取值范围为()A.m>0B.m<0C.0<m<3D.无法确定3.正比例函数y=mx的图象经过点(﹣1,2),那么这个函数的解析式为()A.B.y=﹣x C.y=2x D.y=﹣2x4.P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y25.如图(1),在Rt△ABC中,∠ACB=90°,D是斜边AB的中点,动点P从B点出发,=y,点P运动的路程为x,若y与x之间的函数图象如图(2)沿B→C→A运动,设S△DPB所示,则△ABC的面积为()A.4B.6C.12D.146.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.7.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.当x>时,y<0D.y随x的增大而增大8.直线y=﹣x﹣2与直线y=x+3的交点为()A.(,)B.(﹣,)C.(0,﹣2)D.(0,3)9.若P点为y轴上一点,且点P到点A(3,4)、B(2,﹣1)的距离之和最小,则P点的坐标为()A.(0,)B.(0,1)C.(0,)D.(0,0)10.某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶.游客爬山所用时间t与山高h间的函数关系用图形表示是()A.B.C.D.二、填空题11.若y=(m+1)是正比例函数,则m的值为.12.在一次函数y=2x﹣2的图象上,和x轴的距离等于1的点的坐标是.13.平行四边形的周长为240,两邻边长为x、y,则y与x之间的关系是.14.已知,一次函数y=kx+b,当x增加3时,y减少2,则k的值是.15.函数中,自变量x的取值范围是.16.若一次函数y=(m﹣3)x+m2﹣9是正比例函数,则m的值为.17.已知一次函数y=kx+b的图象经过点P(2,﹣1)与点Q(﹣1,5),则当y的值增加4时,x的值将发生的变化是.18.在一次函数y=x+的图象上,和x轴的距离等于1的点的坐标是.19.已知方程组的解为,则一次函数y=2x﹣3与y=﹣x+3的交点P的坐标是.20.如图,某电信公司提供了A,B两种方案的移动通讯费用(元)与通话时间x(分)之间的关系,(1)若通话时间少于120分,则A方案比B方案便宜元.(2)若通讯费用为60元,则B方案比A方案的通话时间(填“多”或“少”).(3)若通话时间超过200分,则B方案比A方案便宜元.(4)若两种方案通讯费用相差10元,则通话时间是分.三、解答题21.已知一条直线经过A(0,4)、点B(2,0),如图.将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC.求直线CD的函数解析式.22.正比例函数y=kx和一次函数y=ax+b的图象都经过点A(1,2),且一次函数的图象交x轴于点B(4,0).求正比例函数和一次函数的表达式.23.某电视厂要印刷产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1000元制版费,乙厂提出:每份材料收2元印刷费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的函数解析式;(2)电视机厂拟拿出3000元用于印刷宣传材料,找哪家印刷厂印刷的宣传材料能多一些?(3)印刷数量在什么范围时,在甲厂印刷合算?24.如图,点A的坐标为(4,0).点P是直线y=x+3在第一象限内的点,过P作PM ⊥x轴于点M,O是原点.(1)设点P的坐标为(x,y),试用它的纵坐标y表示△OPA的面积S;(2)S与y是怎样的函数关系?它的自变量y的取值范围是什么?(3)如果用P的坐标表示△OPA的面积S,S与x是怎样的函数关系?它的自变量的取值范围是什么?(4)在直线y=x+3上求一点Q,使△QOA是以OA为底的等腰三角形.人教新版八年级下册《第19章一次函数》单元测试卷(1)参考答案与试题解析一、选择题1.下列各图表示的函数中y是x的函数的()A.B.C.D.【考点】函数的图象.【分析】找到对于x的一个值,y都有唯一的值与其对应的图象即可.【解答】解:A、B、C、中,对于x的一个值,y都有2个值与其对应,所以y不是x的函数.故选:D.2.若一次函数y=﹣3mx﹣4(m≠0),当x的值增大时,y的值也增大,则m的取值范围为()A.m>0B.m<0C.0<m<3D.无法确定【考点】一次函数图象与系数的关系.【分析】由题意y=﹣3mx﹣4(m≠0),y随x的增大而增大,可得自变量系数大于0,进而可得出m的范围.【解答】解:∵y=﹣3mx﹣4(m≠0),y随x的增大而增大,∴﹣3m>0,∴m<0.故选:B.3.正比例函数y=mx的图象经过点(﹣1,2),那么这个函数的解析式为()A.B.y=﹣x C.y=2x D.y=﹣2x【考点】待定系数法求正比例函数解析式.【分析】把点(﹣1,2)代入y=mx,即可求得m的值,则函数的解析式即可求得.【解答】解:把点(﹣1,2)代入y=mx得:﹣m=2,解得:m=﹣2,则函数的解析式是:y=﹣2x.故选:D.4.P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y2【考点】正比例函数的性质.【分析】根据正比例函数图象的性质可知.【解答】解:根据k<0,得y随x的增大而减小.①当x1<x2时,y1>y2,②当x1>x2时,y1<y2.故选:C.5.如图(1),在Rt△ABC中,∠ACB=90°,D是斜边AB的中点,动点P从B点出发,=y,点P运动的路程为x,若y与x之间的函数图象如图(2)沿B→C→A运动,设S△DPB所示,则△ABC的面积为()A.4B.6C.12D.14【考点】动点问题的函数图象.【分析】根据函数的图象知BC=4,AC=3,根据直角三角形的面积的求法即可求得其面积.【解答】解:∵D是斜边AB的中点,∴根据函数的图象知BC=4,AC=3,∵∠ACB=90°,=AC•BC=×3×4=6.∴S△ABC故选:B.6.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.【考点】一次函数的图象;根据实际问题列一次函数关系式.【分析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【解答】解:由题意知,函数关系为一次函数y=﹣2x+4,由k=﹣2<0可知,y随x的增大而减小,且当x=0时,y=4,当y=0时,x=2.故选:D.7.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.当x>时,y<0D.y随x的增大而增大【考点】一次函数的性质.【分析】根据凡是函数图象经过的点比能使解析式左右相等,故A错误;根据k、b的值进行分析可得B错误;根据解析式y=﹣2x+1可得x=﹣,再由x>可得﹣,再解不等式即可得到C正确;根据一次函数的性质可得D错误.【解答】解:A、当x=﹣2时,y=﹣2×(﹣2)+1=5≠1,故图象不经过点(﹣2,1),故此选项错误;B、k=﹣2<0,b=1经过第一、二、四象限,故此选项错误;C、由y=﹣2x+1可得x=﹣,当x>时,y<0,故此选项正确;D、y随x的增大而减小,故此选项错误;故选:C.8.直线y=﹣x﹣2与直线y=x+3的交点为()A.(,)B.(﹣,)C.(0,﹣2)D.(0,3)【考点】两条直线相交或平行问题.【分析】直接联立两个函数解析式组成方程组,再解方程组即可得到两函数图象的交点.【解答】解:联立两个函数解析式得,解得则两个函数图象的交点为(﹣,),故选:B.9.若P点为y轴上一点,且点P到点A(3,4)、B(2,﹣1)的距离之和最小,则P点的坐标为()A.(0,)B.(0,1)C.(0,)D.(0,0)【考点】轴对称﹣最短路线问题;坐标与图形性质.【分析】先求出点A关于y轴的对称点A′的坐标,再用待定系数法求出直线A′B的解析式,求出直线与y轴的交点即可.【解答】解:∵A(3,4),∴点A关于y轴的对称点A′的坐标为(﹣3,4),设直线A′B的解析式为y=kx+b(k≠0),则,解得,∴直线A′B的解析式为y=﹣x+1,∴P(0,1).故选:B.10.某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶.游客爬山所用时间t与山高h间的函数关系用图形表示是()A.B.C.D.【考点】函数的图象.【分析】根据题意,第1小时高度上升至2千米,1到1.5小时,高度不变,应为平行于t轴的线段,1.5小时之后1小时到达山顶,时间为2.5小时,高度为3千米.所以图象应是三条线段,结合图象选取即可.【解答】解:根据题意,先用1小时爬了2千米,是经过(0,0)到(1,1)的线段,休息0.5小时,高度不变,是平行于t轴的线段,用3小时爬上山顶,是经过(1.5,1),(2.5,3)的线段.只有D选项符合.故选:D.二、填空题11.若y=(m+1)是正比例函数,则m的值为1.【考点】正比例函数的定义.【分析】根据正比例函数的定义列式求解即可.一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.【解答】解:由题意得,2﹣m2=1且m+1≠0,解得m=±1且m≠﹣1,所以,m=1.故答案为:1.12.在一次函数y=2x﹣2的图象上,和x轴的距离等于1的点的坐标是(1.5,1)(0.5,﹣1).【考点】一次函数图象上点的坐标特征.【分析】与x轴的距离等于1,那么点的纵坐标为±1,代入一次函数可得其横坐标.【解答】解:和x轴的距离等于1的点的纵坐标为±1,当y=1时,x=1.5;当y=﹣1时,x=0.5,故答案为:(1.5,1)(0.5,﹣1).13.平行四边形的周长为240,两邻边长为x、y,则y与x之间的关系是y=120﹣x.【考点】平行四边形的性质.【分析】由平行四边形的性质可直接求解.【解答】解:∵平行四边形的周长为240,两邻边长为x、y,∴2(x+y)=240,∴y=120﹣x,故答案为:y=120﹣x.14.已知,一次函数y=kx+b,当x增加3时,y减少2,则k的值是﹣.【考点】待定系数法求一次函数解析式.【分析】将x+3代入函数解析式可得出对应的y2值,根据题意y2﹣y=﹣2可得出k的值.【解答】解:将x+3代入得:y2=k(x+3)+b,y2﹣y=k(x+3)+b﹣kx﹣b=﹣2,解得:k=﹣.故填﹣.15.函数中,自变量x的取值范围是x≥1.【考点】函数自变量的取值范围.【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得:x﹣1≥0,解得:x≥1,故答案为:x≥1.16.若一次函数y=(m﹣3)x+m2﹣9是正比例函数,则m的值为﹣3.【考点】正比例函数的定义.【分析】根据一次函数和正比例函数的定义,可得出m的值.【解答】解:∵y=(m﹣3)x+m2﹣9是正比例函数,∴.解得m=﹣3.17.已知一次函数y=kx+b的图象经过点P(2,﹣1)与点Q(﹣1,5),则当y的值增加4时,x的值将发生的变化是减小2.【考点】一次函数图象上点的坐标特征;一次函数的性质.【分析】先待定系数法求函数解析式,根据k的值即可确定变化率以及增减性,即可确定答案.【解答】解:将点P(2,﹣1)与点Q(﹣1,5)代入y=kx+b,得,解得,∴y=﹣2x+3,可知每当x增加1,y的值将减小2,∴当y的值增加4时,x的值减小2.故答案为:减小2.18.在一次函数y=x+的图象上,和x轴的距离等于1的点的坐标是(1,1)和(﹣3,﹣1).【考点】一次函数图象上点的坐标特征.【分析】分别代入y=1及y=﹣1求出x的值,进而可得出符合题意的点的坐标.【解答】解:当y=1时,x+=1,解得:x=1,∴点(1,1)符合题意;当y=﹣1时,x+=﹣1,解得:x=﹣3,∴点(﹣3,﹣1)符合题意.故答案为:(1,1)和(﹣3,﹣1).19.已知方程组的解为,则一次函数y=2x﹣3与y=﹣x+3的交点P 的坐标是(,1).【考点】一次函数与二元一次方程(组).【分析】利用函数图象交点坐标为两函数解析式组成的方程组的解进行回答.【解答】解:∵方程组的解为,∴一次函数y=2x﹣3与y=﹣x+3的交点P的坐标为(,1).故答案为(,1).20.如图,某电信公司提供了A,B两种方案的移动通讯费用(元)与通话时间x(分)之间的关系,(1)若通话时间少于120分,则A方案比B方案便宜20元.(2)若通讯费用为60元,则B方案比A方案的通话时间多(填“多”或“少”).(3)若通话时间超过200分,则B方案比A方案便宜12元.(4)若两种方案通讯费用相差10元,则通话时间是145或195分.【考点】函数的图象.【分析】(1)通话时间少于120分,A方案费用30元,B方案费用50元;(2)费用为60元时,对应的时间从图中(绿线)两个交点位置可以比较;(3)【解答】解:(1)通话时间少于120分,A方案费用30元,B方案费用50元,所以A 方案比B方案便宜20元.故答案为:20;(2)从图中绿线可以看出,当通讯费用为60元,那么A方案比B方案的通话时间多.故答案为:多;(3)当x>120,y A=30+(x﹣120)×[(50﹣30)÷(170﹣120)]=0.4x﹣18;当x>200,y B=50+[(70﹣50)÷(250﹣200)](x﹣200)=0.4x﹣30,∴当x≥200时,B方案比A方案便宜12元,故答案为:12;(4)当B方案为50元,A方案是40元或者60元时,两种方案通讯费用相差10元,将y A=40或60代入,得x=145分或195分,故答案为:145或195.三、解答题21.已知一条直线经过A(0,4)、点B(2,0),如图.将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC.求直线CD的函数解析式.【考点】待定系数法求一次函数解析式;一次函数图象与几何变换.【分析】先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.【解答】解:设直线AB的解析式为y=kx+b,把A(0,4)、点B(2,0)代入得,解得,故直线AB的解析式为y=﹣2x+4;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC时,因为平移后的图形与原图形平行,故平移以后的函数解析式为:y=﹣2x﹣4.22.正比例函数y=kx和一次函数y=ax+b的图象都经过点A(1,2),且一次函数的图象交x轴于点B(4,0).求正比例函数和一次函数的表达式.【考点】待定系数法求一次函数解析式.【分析】由题意正比例函数y=kx过点A(1,2),代入正比例函数求出k值,从而求出正比例函数的解析式,由题意y=ax+b的图象都经过点A(1,2)、B(4,0),把此两点代入一次函数根据待定系数法求出一次函数的解析式.【解答】解:由正比例函数y=kx的图象过点(1,2),得:k=2,所以正比例函数的表达式为y=2x;由一次函数y=ax+b的图象经过点(1,2)和(4,0)得解得:a=,b=,∴一次函数的表达式为y=x+.23.某电视厂要印刷产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1000元制版费,乙厂提出:每份材料收2元印刷费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的函数解析式;(2)电视机厂拟拿出3000元用于印刷宣传材料,找哪家印刷厂印刷的宣传材料能多一些?(3)印刷数量在什么范围时,在甲厂印刷合算?【考点】一元一次不等式的应用;根据实际问题列一次函数关系式;一元一次方程的应用.【分析】(1)直接根据题意列出函数解析式即可;(2)把y=3000分别代入(1)中所求的函数关系式中求出x的值,比较大小即可;(3)根据“甲厂的费用<乙厂的费用”列出不等式x+1000<2x求解即可.【解答】解:(1)甲厂的收费y(元)与印刷数量x(份)之间的函数解析式为:y=x+1000;乙厂的收费y(元)与印刷数量x(份)之间的函数解析式为:y=2x;(2)根据题意可知,若找甲厂印刷,设可以印制x份,则:3000=x+1000,解得:x=2000;若找乙厂印刷,设可以印制x份,则:3000=2x,解得:x=1500.所以,甲厂印制的宣传材料多一些;(3)设印刷x份时,在甲厂印刷合算.根据题意可得:x+1000<2x,解得:x>1000.∴当印制数量大于1000份时,在甲厂印刷合算.24.如图,点A的坐标为(4,0).点P是直线y=x+3在第一象限内的点,过P作PM ⊥x轴于点M,O是原点.(1)设点P的坐标为(x,y),试用它的纵坐标y表示△OPA的面积S;(2)S与y是怎样的函数关系?它的自变量y的取值范围是什么?(3)如果用P的坐标表示△OPA的面积S,S与x是怎样的函数关系?它的自变量的取值范围是什么?(4)在直线y=x+3上求一点Q,使△QOA是以OA为底的等腰三角形.【考点】一次函数综合题.【分析】(1)根据直线解析式确定出B坐标,设P(x,y),以OA为底,P的纵坐标为高表示出S与y的关系式即可;(2)判断出S与y的函数关系式,并求出y的范围即可;(3)以OA为底,PM为高列出S与x的函数解析式,求出x的范围即可;(4)△QOA是以OA为底的等腰三角形,可得出点Q在OA的中垂线上,求出Q坐标即可.【解答】解:(1)直线y=﹣x+3与y轴的交点为B(0,3),设点P(x,y),∵点P在第一象限,x>0,y>0,∴S=OA•PM=×y×4=2y;(2)S是y的正比例函数,自变量y的取值范围是0<y<3;(3)S=2y=2(﹣x+3)=﹣x+6,S是x的一次函数,自变量的取值范围是0<x<6.(4)∵△QOA是以OA为底的等腰三角形,∴点Q在OA的中垂线上,设Q(x0,y0),则有,解得:,则点Q的坐标为(2,2).。

人教版八年级数学下册 第19章 一次函数 单元测试题精选(配套练习附答案)

人教版八年级数学下册 第19章 一次函数 单元测试题精选(配套练习附答案)
②由图可知,超过10千克以后,超过的那部分种子的单价降低,而由购买50千克比购买10千克种子多付100元,求出超过10千克以后,超过的那部分种子的单价,再计算出一次购买30千克种子时的付款金额;
③根据一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以可以求出打的折数;
考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.
二、填空题。(每小题3分,共18分)仔细审题,认真填写哟!
11.在平面直角坐标系中,已知一次函数 的图像经过 , 两点,若 ,则 _______ .(填”>”,”<”或”=”)函数 的增减性有两种情况:①当 时,函数 的值随x的值增大而增大;②当 时,函数 y的值随x的值增大而减小.
A. 21cmB. 22cmC. 23cmD. 24cm
【答案】C
【解析】
【分析】
【详解】试题分析:设碗的个数为x个,碗的高度为ycm,由题意可知碗的高度和碗的个数的关系式为y=kx+b,
由题意得, ,
解得: ,
则11只饭碗摞起来的高度为: ×11+5= (cm).
更接近23cm.
故选C.
考点:二元一次方程组的应用.
【答案】D
【解析】
设正比例函数的解析式为y=kx(k≠0),
因为正比例函数y=kx的图象经过点(-1,2),
所以2=-k,
解得:k=-2,
所以y=-2x,
把这四个选项中的点的坐标分别代入y=-2x中,等号成立的点就在正比例函数y=-2x的图象上,
所以这个图象必经过点(1,-2).
故选D.
4.对于一次函数y=kx+k-1(k≠0),下列叙述正确的是( )

人教版八年级数学下册 第19章《一次函数》 单元综合测试卷(含答案)

20.解:(1)7 (2)设当 x>2 时,y 与 x 之间的函数解析式为 y=kx+b,分别代入点(2,7),(4,10)的坐标,得 2k+b=7,
4k+b=10, 7/8
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
解得k=32, b=4.
∴y 与 x 之间的函数解析式为 y=32x+4(x>2). (3)∵18>2,
20.(10 分) 某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问 题: (1)该地出租车的起步价是________元; (2)当 x>2 时,求 y 与 x 之间的函数解析式; (3)若某乘客有一次乘出租车的里程为 18 km,则这位乘客需付出租车车费多少元?
D.x≥-1 且 x≠2
2.如果函数 y=kx+b(k,b 是常数)的图象不经过第二象限,那么 k,b 应满足的条件是( )
A.k≥0 且 b≤0 B.k>0 且 b≤0
C.k≥0 且 b<0 D.k>0 且 b<0
3.已知一次函数 y=(a+1)x+b 的图象如图所示,那么 a,b 的取值范围分别是( )
5/8
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
21.(10 分) 为加快“智慧校园”建设,某市准备为试点学校采购一批 A,B 两种型号的一体机.经过 市场调查发现,今年每套 B 型一体机的价格比每套 A 型一体机的价格多 0.6 万元,且用 960 万元恰 好能购买 500 套 A 型一体机和 200 套 B 型一体机. (1)求今年每套 A 型、B 型一体机的价格各是多少万元? (2)该市明年计划采购 A 型、B 型一体机共 1 100 套,考虑物价因素,预计明年每套 A 型一体机的价 格比今年上涨 25%,每套 B 型一体机的价格不变,若购买 B 型一体机的总费用不低于购买 A 型一体 机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?

【精品】新人教版八年级下《一次函数》测试题及答案【3套】试题

新人教版八年级下《一次函数》测试题及答案人教版初中数学八年级下册第十九章一次函数单元测试班级____姓名_____得分_____一、 选择题(本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。

A .(0,2-) B .(32,0) C .(8,20) D .(12,12) 2.变量x,y 有如下关系:①x+y=10②y=x5-③y=|x-3④y 2=8x.其中y 是x 的函数的是 A. ①②②③④ B. ①②③ C. ①②D. ①3. 下列各曲线中不能表示y 是x 的函数是( ).A .B .C .D .4. 已知一次函数2y x a =+与y x b =-+的图象都经过A (2-,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为 ( ).A . 4B . 5C . 6D . 7 5.已知正比例函数y=(k+5)x,且y 随x 的增大而减小,则k 的取值范围是 A.k >5 B.k <5C.k >-5D.k <-56.在平面直角坐标系xoy 中,点M(a,1)在一次函数y=-x+3的图象上,则点N(2a-1,a)所在的象限是 A.一象限B. 二象限C. 四象限D.不能确定7.如果通过平移直线3x y =得到53x y +=的图象,那么直线3xy =必须( ). A .向上平移5个单位 B .向下平移5个单位C .向上平移53个单位D .向下平移53个单位8.经过一、二、四象限的函数是题号 1 2 3 4 5 6 7 8 9 10 11 12 答案A.y=7B.y=-2xC.y=7-2xD.y=-2x-79.已知正比例函数y=kx(k ≠0)的函数值y 随x 的增大而减小,则函数y=kx-k 的图象大致是10.若方程x-2=0的解也是直线y=(2k-1)x+10与x 轴的交点的横坐标,则k 的值为 A.2B.0C.-2D. ±211. 根据如图的程序,计算当输入3x =时,输出的结果y = .12.已知直线y 1=2x 与直线y 2= -2x+4相交于点A.有以下结论:①点A 的坐标为A(1,2);②当x=1时,两个函数值相等;③当x <1时,y 1<y 2④直线y 1=2x 与直线y 2=2x-4在平面直角坐标系中的位置关系是平行.其中正确的是A. ①③④B. ②③C. ①②③④D. ①②③二、填空题(本大题共5个小题,每小题4分,共20分。

最新人教版初二数学下册第19章一次函数单元测试卷含答案

2017-2018学年八年级数学下册第19章一次函数单元检测卷姓名:__________ 班级:__________一、选择题(共11题;共33分)1.下列函数中为一次函数的是()A. B. C. D. (、是常数)2.下列函数中,“y是x的一次函数”的是()A. y=2x﹣1B. y=x2C. y=1D. y=1﹣x3.一次函数y=kx+b的图象经过第一、三、四象限,则()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<04.下列函数(1)y=πx;(2)y=2x﹣1;(3)y=;(4)y=22﹣x;(5)y=x2﹣1中,一次函数的个数是()A. 4个B. 3个C. 2个D. 1个5.如图1,在矩形MNPQ中,动点R从点N出发,沿着N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则下列说法不正确的是()A. 当x=2时,y=5B. 矩形MNPQ的面积是20C. 当x=6时,y=10D. 当y=时,x=106.对于函数,下列说法不正确的是()A. 其图象经过点(0,0)B. 其图象经过点(﹣1,)C. 其图象经过第二、四象限D. y随x的增大而增大7.如图,把直线y=-2x向上平移后得到直线AB,直线AB经过点(m,n),且2m+n=6,则直线AB的解析式是()A. y=-2x-3B. y=-2x-6C. y=-2x+3D. y=-2x+68.结合正比例函数y=4x的图象回答:当x>1时,y的取值范围是()A. y=1B. 1≤y<4C. y=4D. y>49.“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是()A. 2小时B. 2.2小时C. 2.25小时D. 2.4小时10.函数y= 中,自变量x的取值范围是()A. x>2B. x≥﹣3C. x>﹣3D. x≥211.把直线y=﹣x+l沿y轴向上平移一个单位,得到新直线的关系式是()A. y=﹣xB. y=﹣x+2C. y=﹣x﹣2D. y=﹣2x二、填空题(共11题;共33分)12.甲、乙两名大学生去距学校36千米的某乡镇进行社会调查.他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车前往,乙骑电动车按原路返回.乙取相机后(在学校取相机所用时间忽略不计),骑电动车追甲.在距乡镇13.5千米处追上甲后同车前往乡镇.乙电动车的速度始终不变.设甲与学校相距y甲(千米),乙与学校相离y乙(千米),甲离开学校的时间为t(分钟).y甲、y乙与x之间的函数图象如图所示,则乙返回到学校时,甲与学校相距________千米.13.已知正比例函数y=mx的图象经过(3,4),则它一定经过________ 象限.14.如图,已知一次函数y=kx+b,观察图象回答下列问题:x________ 时,kx+b<0.15.已知一次函数y=2x+4的图象经过点(m,8),则m=________16.函数中,自变量x的取值范围是________。

【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)

【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)一、选择题(每题3分,共30分)1.寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( ) A .每小时用电量 B .室内温度 C .开机设置温度 D .用电时间2.【2022·恩施州】函数y =x +1x -3的自变量x 的取值范围是( )A .x ≠3B .x ≥3C .x ≥-1且x ≠3 D.x ≥-13.【教材P 82习题T 7变式】下列图象中,表示y 是x 的函数的是( )4.一个正比例函数的图象经过点(2,-1),则它的解析式为( )A .y =-2xB .y =2xC .y =-12xD .y =12x5.把直线y =x 向上平移3个单位长度,下列点在该平移后的直线上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)6.【2022·邵阳】在直角坐标系中,已知点A ⎝ ⎛⎭⎪⎫32,m ,点B ⎝⎛⎭⎪⎪⎫72,n 是直线y =kx+b (k <0)上的两点,则m ,n 的大小关系是( ) A .m <n B .m >n C .m ≥n D .m ≤n7.【2021·海南】李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是( )8.表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象可能是( )9.【2021·安徽】某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16 cm,44码鞋子的长度为27 cm,则38码鞋子的长度为( )A.23 cm B.24 cm C.25 cm D.26 cm10.【传统文化】北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片,用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③春分和秋分,昼夜时长大致相等.其中正确的是( )A.①②B.②③C.②D.③二、填空题(每题3分,共24分)11.函数y=(m-2)x|m|-1+m+2是关于x的一次函数,则m=________. 12.【开放题】【2022·上海】已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:______________.13.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.14.如图,直线y=x+2与直线y=ax+4相交于点A(1,3),则关于x的不等式ax+4≥x+2的解集为__________.(第14题) (第17题) (第18题)15.关于x的一次函数y=(2-m)x-3m的图象经过第一、三、四象限,则m的取值范围为__________.16.声音在空气中传播的速度简称音速,科学研究发现声音在空气中传播的速度(m/s)与气温(℃)有关,下表列出了一组不同气温时的音速:用y(m/s)表示音速,用x(℃)表示气温,则y与x之间的关系式为____________.17.【教材P97图19.2-8变式】如图,AB,CB表示某工厂甲、乙两车间产品的总量y(t)与生产时间x(天)之间的函数图象,第30天结束时,甲、乙两车间产品总量为________t.18.【2022·天津四十三中模拟】日常生活中常用的二维码是由许多大小相同的黑白两色小正方形按某种规律组成的一个大正方形,图①是一个20×20格式(即黑白两色小正方形个数的和是400)的二维码,左上角、左下角、右上角是三个相同的7×7格式的正方形,将其中一个放大后如图②,除这三个正方形外,图①中其他的黑色小正方形个数y与白色小正方形个数x正好满足图③所示的函数图象,则图①所示的二维码中共有个白色小正方形.三、解答题(19,20题每题12分,其余每题14分,共66分)19.【教材P107复习题T4(2)改编】一次函数的图象经过(-2,1)和(1,4)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.20.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=-x -2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.21.【立德树人】【2022·成都】随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18 km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数解析式;(2)何时乙骑行在甲的前面?22.【数学建模】【2022·云南】某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十九章一次函数单元检测题
一、选择题(本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,
只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。

A.(0,2-)B.(
3
2
,0)C.(8,20)D.(
1
2

1
2

2.变量x,y有如下关系:①x+y=10②y=
x
5
-
③y=|x-3④y2=8x.其中y是x的函数的是
A.①②②③④
B. ①②③
C. ①②
D. ①
3.下列各曲线中不能表示y是x的函数是().
A.B.C.D.
4.已知一次函数2
y x a
=+与y x b
=-+的图象都经过A(2
-,0),且与y轴分别交于B、C两点,则△ABC的面积为().
A.4 B.5 C.6 D.7
5.已知正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是
A.k>5
B.k<5
C.k>-5
D.k<-5
6.在平面直角坐标系xoy中,点M(a,1)在一次函数y=-x+3的图象上,则点N(2a-1,a)所在
的象限是
A.一象限
B. 二象限
C. 四象限
D.不能确定
7.如果通过平移直线
3
x
y=得到
5
3
x
y
+
=的图象,那么直线
3
x
y=必须().A.向上平移5个单位B.向下平移5个单位
C.向上平移
5
3
个单位D.向下平移
5
3
个单位
8.经过一、二、四象限的函数是
A.y=7
B.y=-2x
C.y=7-2x
D.y=-2x-7
9.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则函数y=kx-k的图象大致是
10.若方程x-2=0的解也是直线y=(2k-1)x+10与x 轴的交点的横坐标,则k 的值为 A.2
B.0
C.-2
D. ±2
11. 根据如图的程序,计算当输入3x =时,输出的结果y = .
12.已知直线y 1=2x 与直线y 2= -2x+4相交于点A.有以下结论:①点A 的坐标为A(1,2);②当
x=1时,两个函数值相等;③当x <1时,y 1<y 2④直线y 1=2x 与直线y 2=2x-4在平面直角坐标系中的位置关系是平行.其中正确的是
A. ①③④
B. ②③
C. ①②③④
D. ①②③
二、填空题(本大题共5个小题,每小题3分,共15分。

请把答案填在题中的横线上)。

13.已知1(2)3n y m x -=-+是关于x 的一次函数,则m ,n .
直线23y x =-与x 轴的交点坐标是__________,与y 轴的交点坐标是__________. 14.当直线2y x b =+与直线1y kx =-平行时,k __________,b ___________.
15.汽车行驶前,油箱中有油55升,已知每百千米汽车耗油10升,油箱中的余油量Q (升)与它行驶的距离s (百千米)之间的函数关系式为___ ________;为了保证行车安全,油箱中至少存油5升,则汽车最多可行驶____________千米.
16.已知一次函数y kx b =-,请你补充一个条件 ,使y 随x 的增大而减小. 17.四边形有2条对角线,五边形有5条对角线,六边形有9条对角线,……n 边形有 条对角线.
三、解答题(本大题共7个小题,共67分。

解答应写出文字说明、证明过程或演算步骤)。

18.(满分8分)希望中学学生从2014年12月份开始每周喝营养牛奶,单价为2元/盒,总
价y 元随营养牛奶盒数x 变化.指出其中的常量与变量,自变量与函数,并写出表示函数与自变量关系的式子.
40
12 19.(满分8分)根据下列条件分别确定函数y=kx+b 的解析式: (1)y 与x 成正比例,当x=2时,y=3;
(2)直线y=kx+b 经过点(2,4)与点()3
1,31
.
20.(满分8分)如图正比例函数y=2x 的图像与一次函数 y=kx+b 的图像交于点A (m,2),
一次函数的图像经过点B (-2,-1)与y 轴交点为C 与x 轴交点为D. (1)求一次函数的解析式; (2)求C 点的坐标; (3)求△AOD 的面积。

21.(满分8分)已知长方形周长为20.
(1)写出长y 关于宽x 的函数解析式(x 为自变量); (2)在直角坐标系中,画出函数图像.
22.(满分10分)右图是某汽车行驶的路程s(km)与时间t(分钟) 的函数关系图。

观察图中所提供的信息,解答下列问题: (1)汽车在前9分钟内的平均速度是 ; (2)汽车在中途停了多长时间? ; (3)当16≤t ≤30时,求S 与t 的函数关系式。

23.(满分10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)
与通话时间t (分钟)之间的函数关系的图象. (1)写出y 与t•之间的函数关系式;
(2)通话2分钟应付通话费多少元?通话7分钟呢?
24.(满分12分)A 市和B 市分别有库存的某联合收割机12台和6台,现决定开往C 市10台和D 市8台,已知从A 市开往C 市、D 市的油料费分别为每台400元和800元,从B 市开往C 市和D 市的油料费分别为每台300元和500元.
(1)设B 市运往C 市的联合收割机为x 台,求运费w 关于x 的函数关系式. (2)若总运费不超过9000元,问有几种调运方案? (3)求出总运费最低的调运方案,并求出最低运费.
第十九章 一次函数
参考答案
一、1-12 CBBCDA CCDCAC
二、13、2m ≠;2n = ;(3
2
,0);(0,3-) 14.2k =;1b ≠-
15.5510Q s =-;500 16.0k <即可
17、n(n-3)/2 三、
18、y=2x;常量:2;变量:x,y ;自变量:x ;y 是x 的函数 19、(1)y=3x/2;(2)y=13x/5-6/5 20、(1)y=x+1;(2)C(0,1);(3)1 21、(1)y=10-x(0<x <10 );(2)略 22、(1)80km/h ;(2)7分钟;(3)S=2t-20
23、(1)当0<t ≤3时,y=2.4;当t>3时,y=t-0.6;(2)2.4元;6.4元
24、(1)2008600w x =+(06x ≤≤);(2)有三种方案;(3)总运费最低的方案是,
A C →10台,A D →2台,
B
C →0台,B
D →6台,此时总运费为8600元.。

相关文档
最新文档