随机微分方程
随机微分方程

一、一维分岔 考虑一维随机微分方程()()()()()()()()()dX = m X dt +X dB t =m X +X X /2dt +X dB t 6.141σσσσ'-⎡⎤⎣⎦ 生成的连续动态系统()()()()()()tt00t x =x +m s x dx + s x dB s 6.142ϕϕσϕ-⎰⎰ () 它是以 x 为初值的(6.1-41)之唯一强解。
假定()()m 0 = 00 = 0 6.143σ-,()从而0是ϕ的一个固定点。
对此固定点,dB(t)是随机参激。
设m(x)有界,对所有x 0≠满足椭圆性条件 ()0 6.144x σ≠-()这保证最多只有一个平稳概率密度。
求解与(6.1-41)相应的平稳FPK 方程得平稳概率密度()()()()122m u p x C x exp[ ] 6.145u xdu σσ-=-⎰() 于是,上述动态系统有两种可能的平稳状态:不动点(平衡状态)与非平凡平稳运动。
前者的不变测度0δ的密度为()x δ,后者的不变测度ν的密度为(6.1-45)。
为研究 D-分岔,需计算这两个不变测度的Lyapunov 指数。
为此,考虑(6.1-41)的线性化方程()()()()dV =m X Vdt +X V dB t =[m (X)((X)(X))/2]Vdt VdB t 6.146σσσσ''''''++- ()利用(2.5-6)之解(2.5-11),得(6.1-46)之解()()()()()ttV t =V 0exp[(m +/2)X ds +X dB s ] 6.147 σσσ''''-⎰⎰()动态系统ϕ关于测度μ的Lyapunov 指数定义为()()1lim ln V t 6.148t tϕλμ→∞=-()(6.1-47)代入(6.1-48),注意()00σ=,得不动点Lyapunov 指数()()()()()()()()001()lim [ln 000]00 lim0(6.1-49)?t tt t B t V m ds dB s m m ttϕλδσσ→∞→∞'''''=++=+=⎰⎰对以(6.1-45)为密度的不变测度ν,(6.1-47)代入(6.1-48), 假定σ'有界,m /2σσ'''+可积,得Lyapunov 指数()01 lim (m /2)(X)ds [m (x)(x)(x)/2]p(x)dx 6.150tt Rt ϕλνσσσσ→∞''''''=+=+-⎰⎰()进行分部积分,并利用(6.1-45),最后得()2m(x) -2p(x)dx 0 6.151(x)R ϕλνσ⎡⎤=<-⎢⎥⎣⎦⎰() 随机跨临界分岔考虑(6.1-41)的特殊情形()()2dX X X dt X dB t 6.152ασ=-+- ()生成的动态系统族αϕ()0exp[()] 6.1531[()]tx t B t t x x s B s dsαασϕασ+=-++⎰ ()(6.1-53)是以 x 为初值的(6.1-52)之解。
随机微分方程 matlab

随机微分方程 matlab随机微分方程是描述随机过程演化的一种数学模型,广泛应用于物理、生物、经济等领域。
Matlab是一种强大的数值计算软件,可用于求解随机微分方程,本文将介绍如何用Matlab求解随机微分方程及其应用。
一、随机微分方程的概念随机微分方程是一种以随机变量为右端函数的微分方程。
在物理、生物、经济等领域中,很多自然现象都是随机的,例如粒子的运动、细胞分裂、金融市场的波动等。
因此,用随机微分方程来描述这些现象就显得尤为重要。
随机微分方程包含两部分——确定性微分方程和随机项。
其中,确定性微分方程用来描述系统的演化规律,而随机项则考虑到随机因素对系统的影响。
二、求解随机微分方程的方法求解随机微分方程的方法有很多,比较常用的是Monte Carlo方法和数值解法。
1. Monte Carlo方法Monte Carlo方法是一种用随机数模拟概率分布的方法,无需求解精确解。
具体来说,可以通过生成大量随机数,对随机微分方程进行模拟。
其中,最简单的方法是欧拉-马尔可夫算法。
该算法模拟的随机过程是离散的,它把时间线离散化并在每个时间点上计算方程的解。
它的主要缺点是精度较低。
2. 数值解法数值解法是常用的求解随机微分方程的方法。
由于随机微分方程难以精确解析,因此数值解法是比较实用的。
数值解法的主要思路是把随机微分方程转化成有限差分方程,在有限时间间隔内求解方程的解。
这种方法需要精确的数值算法,通常使用维纳过程、泊松过程等随机过程进行数值求解。
三、Matlab求解随机微分方程在Matlab中,求解随机微分方程的方法主要是用随机过程来描述随机项,然后使用ODE求解器求解确定性微分方程。
1. 算法概述求解随机微分方程的一般流程如下:生成随机过程,描述随机项的变化规律。
将随机微分方程分解成确定性微分方程和随机项两部分。
通常采用Ito型随机微分方程,在分解时需要注意使用Ito公式。
使用ODE求解器(例如ode45、ode23等)求解确定性微分方程的解。
求解随机微分方程的三级半隐式随机龙格库塔方法

求解随机微分方程的三级半隐式随机龙格库塔方法随机微分方程是具有随机项的微分方程,它在许多领域的研究中发挥着重要的作用。
随机微分方程的数值解法是研究中的一个重要问题,其中随机龙格库塔方法是常用的一种数值解法之一、本文将介绍随机微分方程的一种三级半隐式随机龙格库塔方法。
首先,我们考虑如下形式的随机微分方程:$$dX(t) = a(t,X(t))dt + b(t,X(t))dW(t)$$其中,$X(t)$是未知的随机过程,$a(t,X(t))$和$b(t,X(t))$是已知函数,$W(t)$是一个标准布朗运动。
我们的目标是求解方程在给定的时间间隔$[0,T]$内的数值解。
为了进行时间离散化,我们将时间间隔[0, T]分成N个小时间步长$\Delta t = \frac{T}{N}$。
令$t_i = i\Delta t$,$i = 0,1,2,...,N$,我们可以将方程改写为:$$X(t_{i+1}) = X(t_i) + a(t_i,X(t_i))\Delta t +b(t_i,X(t_i))\Delta W_i$$其中,$\Delta W_i = W(t_{i+1})-W(t_i)$是布朗运动在时间步长$\Delta t$内的增量。
注意到在上式中,$X(t_{i+1})$是未知的,我们需要进行反复迭代求解。
为了简化计算,我们引入半隐式随机龙格库塔方法。
半隐式随机龙格库塔方法将一阶随机微分方程以二阶精度数值求解,其中随机项以前一时间步长$t_i$的值来近似。
在本文中,我们将介绍一种三级半隐式随机龙格库塔方法,采用其中一种方式来估计方程的解。
首先,我们将时间$t$的导数项$a(t,X(t))$以及随机项$b(t,X(t))$在时间步$t_i$进行泰勒展开:$$a(t,X(t)) = a(t_i,X(t_i)) + \frac{\partiala(t,X(t))}{\partial t},_{t_i} (t_{i+1} - t_i) + \frac{\partiala(t,X(t))}{\partial X},_{t_i} (X(t_{i+1}) - X(t_i)) + O(\Deltat^2)$$$$b(t,X(t)) = b(t_i,X(t_i)) + \frac{\partialb(t,X(t))}{\partial t},_{t_i} (t_{i+1} - t_i) + \frac{\partialb(t,X(t))}{\partial X},_{t_i} (X(t_{i+1}) - X(t_i)) + O(\Deltat^2)$$将上述展开式代入原方程,我们可以得到:$$X(t_{i+1}) = X(t_{i}) + (a(t_i,X(t_i)) + \frac{\partiala(t,X(t))}{\partial X},_{t_i} (X(t_{i+1}) - X(t_i)))\Delta t + (b(t_i,X(t_i)) + \frac{\partial b(t,X(t))}{\partial X},_{t_i} (X(t_{i+1}) - X(t_i)))\Delta W_i$$接下来,我们采用不同方式来估计方程的解。
随机微分方程的数值解

随机微分方程的数值解引言随机微分方程(Stochastic Differential Equation,简称SDE)是描述包含随机变量的微分方程,它在金融、物理学、生物学等领域具有广泛的应用。
与确定性微分方程相比,SDE中的随机项引入了不确定性和随机性,使得问题更具挑战性和现实性。
本文将介绍随机微分方程的基本概念、求解方法和数值解的计算。
一、随机微分方程概述1.1 确定性微分方程与随机微分方程的区别•确定性微分方程:一般形式为 dy(t) = f(y(t), t)dt,其中f是已知的函数,表示因变量y的增量与自变量t的关系。
•随机微分方程:一般形式为 dy(t) = f(y(t), t)dt + g(y(t), t)dW(t),其中dW(t)是一个随机项,通常表示为Wiener过程或布朗运动。
1.2 随机微分方程的数学表达一般形式的随机微分方程可以表示为: dy(t) = f(y(t), t)dt + g(y(t),t)dW(t),其中: - y(t)是待求解的随机过程; - f(y(t), t)表示因变量y的增量与自变量t之间的确定性关系; - g(y(t), t)表示因变量y的增量与自变量t 之间的随机关系; - dW(t)是一个随机项,通常表示为Wiener过程或布朗运动。
二、随机微分方程的求解方法2.1 解析解方法对于简单形式的随机微分方程,可以通过解析的方法求得解析解。
然而,大多数情况下,由于随机视频和随机关系的存在,解析解并不存在或难以求得。
2.2 数值解方法数值解是求解随机微分方程的主要方法之一,它通过将时间间隔分割为若干小段,采用数值方法近似求解微分方程。
常用的数值解方法有: 1. 欧拉方法(Euler Method):将时间间隔分割为若干小段,在每个小段内使用线性逼近的方式求解微分方程。
2. 随机插值方法(Stochastic Interpolation Method):利用数值差分逼近计算随机项的变化,并采用插值方法求解微分方程。
随机微分方程

随机微分方程随机微分方程(RDE)是一类在数学物理、工程、生物和社会科学中广泛使用的方程,它们描述了系统中存在的现象,如扩散、涡旋及系统中动力学的变化。
随机微分方程不仅是有效模型研究非线性随机系统,而且可以用来研究各种运动系统,如建筑物动力学、涡旋及垂直运动等。
随机微分方程通常由两部分组成,分别为随机微分方程的微分部分和随机部分。
在随机微分方程的微分部分,有一个变量,它描述了系统中的变化。
在随机微分方程的随机部分,有一个随机变量,它描述了系统中的扰动。
随机变量的取值受噪声因素的影响,可以是随机的,也可以是有规律的。
随机微分方程的主要方法有微分法、函数法和抽象法三种。
微分法求解随机微分方程主要包括解析法、转换法和数值法三类。
解析法利用变量分离、积分变换、积分变量等技巧求解随机微分方程;转换法是把随机微分方程转换成一类新的积分问题,使其可以用积分方法求解;数值法则是使用数值方法求解随机微分方程,包括差分技术和差分进化方法。
函数法是研究以非线性和随机的函数作为系统的动力模型的方法,其研究的核心内容是关于随机函数在随机微分方程空间上的函数变换,从而求解随机微分方程。
抽象法把随机微分方程分解成一类线性系统,并用线性系统的解析和数值解法解决,从而求解实际中的随机微分方程。
随机微分方程具有广泛的应用,可以用来研究扩散性的现象,如扩散现象的实时监测;也可以用来研究各种运动系统,如涡旋、振动以及垂直运动等。
此外,随机微分方程可以用来研究金融市场中的随机现象,如可能出现的风险和投资回报。
总而言之,随机微分方程是一种用于描述非线性随机系统及其动力学行为的有效模型,具有广泛的应用。
举凡物理、工程、生物和社会学等科学领域,都可以利用随机微分方程来描述扩散、涡旋和系统动力学等现象。
随机微分方程课件

1
随机微分方程的重要性
近年来,随机微分方程,随机分析有了迅速发展,随 机微分方程的理论广泛应用于经济、生物、物理、自动 化等领域。 在经济领域,用随机微分方程来解决期权定价的问题, 在产品的销售,市场的价格等随机事件中,可根据大量 的试验数据确定某个随机变量,并附加初始条件建立随 机微分方程的数学模型,从而推断出总体的发展变化规 律。 在生物领域,用于揭示疾病的发生规律以及疾病的 传播流行过程,肿瘤演化机制等。 在物理领域,用于布朗粒子的逃逸与跃迁问题,反 常扩散。
X (0) X 0
根据线性随机微分方程解的形式可以求得此微 t bt 分方程的解为:X (t ) e X 0 eb(t s ) dW
0
7
随机微分方程举例
E( X (t )) e 可以求出X的期望:
bt
E( X 0 )
t b ( t s )
E ( X (t )) E (e
随机微分方程——定义
1、随机微分方程的定义:
设X为n维的随机变量,W为m维的维纳运动,b和B是给定 的函数,并不是随机变量,b : R n 0, T Rn , B : Rn 0, T M nm 那么随机微分方程可以表示成如下形式:
dX b( X , t )dt B( X , t )dW X (0) X 0
从解的形式来看,当t趋于无穷大时,X的渐近分布为正态 分布 N (0, ) ,与初始分布无关。
2
2b
8
随机微分方程举例
例3:乌伦贝克过程 布朗运动的另一随机微分方程模型:
bY Y Y (0) Y0 , Y (0) Y1
其中Y(t)是t时刻布朗粒子的位移,Y0与Y1是给定 的高斯随机变量,b>0是摩擦系数,σ是扩散系数, ξ通常为白噪声。 ,即X表示速率,则原方程等价于以下 若 X Y 朗之万方程:
随机过程与随机微分方程

随机过程与随机微分方程随机过程是指随时间变化的随机现象,具有一定的随机性和不确定性。
而随机微分方程是描述随机过程演化的数学工具。
本文将简要介绍随机过程和随机微分方程的定义和性质,并探讨它们在实际问题中的应用。
一、随机过程的定义与性质1.1 随机过程的定义随机过程是一族随机变量的集合,其中每个随机变量表示系统在不同时间点的状态。
随机过程通常用X(t)表示,其中t可以是离散的(如时间点)或连续的(如时间段)。
1.2 随机过程的分类根据随机过程的状态空间类型,可以将其分为离散随机过程和连续随机过程。
离散随机过程的状态空间是离散集合,如整数集合;而连续随机过程的状态空间是连续集合,如实数集合。
1.3 随机过程的性质随机过程的性质可以通过各阶矩、相关函数和功率谱密度等来描述。
其中,各阶矩描述了随机过程的平均值和方差;相关函数描述了随机过程不同时刻之间的相关性;功率谱密度则描述了随机过程在频域上的特性。
二、随机微分方程的定义与性质2.1 随机微分方程的定义随机微分方程是包含随机项的微分方程,用于描述带有随机现象的动态系统。
一般形式的随机微分方程可以表示为:dX(t) = a(t,X(t))dt + b(t,X(t))dW(t),其中dX(t)表示系统在微小时间段dt内的变化量,a(t,X(t))和b(t,X(t))分别是系统的确定性部分和随机部分,dW(t)表示布朗运动。
2.2 随机微分方程的解由于随机微分方程包含了随机项,因此它的解也是一个随机过程。
随机微分方程的解可以通过数值方法(如欧拉方法和蒙特卡洛方法)或解析方法(如伊藤引理和随机变换法)来求得。
2.3 随机微分方程的应用随机微分方程在金融工程、物理学、化学、生物学和工程学等领域中具有广泛的应用。
例如,随机微分方程常用于金融衍生品的定价与风险管理、生物系统的建模与分析、化学反应过程的模拟与预测等方面。
三、随机过程与随机微分方程的应用实例3.1 金融工程中的应用在金融工程中,随机过程和随机微分方程被广泛应用于衍生品的定价与风险管理。
随机微分方程的定义及其应用

随机微分方程的定义及其应用随机微分方程(Stochastic Differential Equation, SDE)是一种常见的随机过程模型,广泛应用于金融、物理、生物和工程等领域。
随机微分方程描述的是包含随机项的微分方程,是确定性微分方程和随机过程的结合体。
在实际应用中,随机微分方程通常用来描述系统的演化过程,如股票价格、气象预测和细胞生长等。
一、随机微分方程的定义随机微分方程包含如下两个部分。
1. 确定性微分方程确定性微分方程表示系统的演化过程,它是包含未知函数(通常表示为$x_t$)及其导数($dx_t$)的微分方程。
通常采用欧拉方法或改进欧拉方法对其进行求解。
2. 随机项随机项(通常表示为$dW_t$)是为了考虑系统噪声或不确定性而引入的一项。
其中$dW_t$是一个随机过程,表示一个标准布朗运动(Standard Brownian Motion)。
它是一种无法预测的随机变量,具有如下两个特点:(1)它在数学上是连续但处处不可微的。
(2)它的均值为0,方差为t。
由于$dW_t$具有如上两个特点,因此它可以用来模拟真实生活中的一些随机过程,如金融市场、天气预测等。
二、随机微分方程的应用随机微分方程在金融、统计学、生物学和物理学等不同领域中都有广泛应用。
下面将针对其中三个具体应用领域进行介绍。
1. 金融领域随机微分方程在金融领域中的应用已经成为了一种标准方法。
它被用来建立股票价格、波动率与收益率之间的关系、量化风险等。
其中,布莱克﹒斯柯尔斯(Black-Scholes)期权定价模型是其中最为著名的一个。
在这个模型中,股票价格被假设为一个随机微分方程,通过求解这个方程可以得到期权价格。
此外,随机微分方程还被用来建立复杂的金融衍生品定价模型,如利率互换、期权组合等。
2. 生物领域随机微分方程在生物领域中的应用也非常广泛。
例如,在细胞生长模型中,细胞数目被表示为一个随机微分方程。
此外,生物领域中也有很多涉及随机过程的模型,如氧气扩散模型和病毒传播模型等。