辽宁省绥中县2018---2019学年度九年级数学第一学期期末考试题及答案人教版

合集下载

2018-2019学年(人教版)九年级数学上册期末测试卷(含答案)

2018-2019学年(人教版)九年级数学上册期末测试卷(含答案)

2018-2019学年第一学期期末水平测试试卷九年级数学(测试时间:100分钟,满分:120分)一、单项选择题(共10个小题,每小题3分,满分30分) 1.下列图形中既是中心对称图又是轴对称图形的是 ( )A .B .C .D .2.从数据21-,—6,1.2,π,—2中任取一个数,则该数为无理数的概率为( ) A .51 B .52 C .53 D .543.若关于x 的方程01)2(2=-+-mx x m 是一元二次方程,则m 的取值范围是( ) A .m ≠2B .m =2C .m ≥2D .m ≠04.若反比例函数()0≠=k xky 的图象过点(2,1),则这个函数的图象一定过点 ( ) A .(2,—1) B .(1,—2) C .(—2,1) D .(—2,—1) 5.商场举行抽奖促销活动,对于宣传语“抽到一等奖的概率为0.1”,下列说法正确的是( )A .抽10次奖必有一次抽到一等奖B .抽一次不可能抽到一等奖C .抽10次也可能没有抽到一等奖D .抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖 6.如果一个扇形的弧长是π34,半径是6,那么此扇形的圆心角为 ( ) A .40° B .45° C .60° D .80° 7.抛物线3)1(22---=x y 与y 轴交点的横坐标为( ) A .—3 B .—4 C .—5D .—18.直角三角形两直角边长分别为3-和1,那么它的外接圆的直径是( )A .1B .2C .3D .49.如图,过⊙O 上一点C 作⊙O 的切线,交直径AB 的延长线于点D ,若∠D =40°,则∠A 的度数为( )A .20°B .25°C .30°D .40°10.二次函数y =a (x +m )2+n 的图象如图所示,则一次函数y =mx +n 的图象经过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限二、填空题(共6个小题,每小题4分,满分24分)11.如图,在△ABC 中, ∠BAC =60°,将△ABC 绕着点A 顺时针旋转40°后得到△ADE ,则∠BAE =度.12.已知方程032=++mx x 一个根是1,则它的另一个根是 .13.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是白球的概率为41”,则这个袋中白球大约有 个. 14.如图,已知点P (1,2)在反比例函数xky =的图象上,观察图象可知,当x <1时,y的取值范围是 .15.如图,二次函数y =ax 2+bx +c 的图象经过点(—1,0)、(3,0)和(0,2),当x =2时,y 的值为 .第9题图 第10题图第11题图第14题图第15题图 第16题图16.如图,等边三角形ABC 的内切圆的面积为9π,则△ABC 的周长为 .三、解答题(一)(共3个小题,每小题6分,满分18分) 17.(6分)解方程:122=+x x .18.(6分)已知:二次函数m x m x y ---=)1(2.(1)若图象的对称轴是y 轴,求m 的值;(2)若图象与x 轴只有一个交点,求m 的值. 19.(6分)在如图所示的直角坐标系中,解答下列问题:(1)将△ABC 绕点A 顺时针旋转90°,画出旋转后的△A 1B 1C 1; (2)求经过A 1B 1两点的直线的函数解析式.四、解答题(二)(共3个小题,每小题7分,满分21分) 20.(7分)如图,⊙O 的半径为10cm ,弦AB ∥CD ,AB =16cm ,CD =12cm ,圆心O 位于AB 、CD 的上方,求AB 和CD 间的距离.21.(7分)将分别标有数字1,3,5的三张卡牌洗匀后,背面朝上放在桌面上. (1)随机抽取一张卡片,求抽到数字恰好为1的概率;(2)请你通过列表或画树状图分析,随机地抽取一张作为十位数上的数字(不放回),再抽取一张作为个位上的数字,求所组成的两位数恰好是“35”的概率.22.(7分)反比例函数xky =在第一象限的图象如图所示,过点A (1,0)作x 轴的垂线, 交反比例函数xky =的图象于点M ,△AOM 的面积为3. (1)求反比例函数的解析式; (2)设点B 的坐标为(t ,0),其中t >1,若以AB 为一边的正方形有一个顶点在反比例函第19题图C D 第20题图数xky的图象上,求t 的值.五、解答题(三)(共3个小题,每小题9分,满分27分) 23.(9分)如图,O 为正方形ABCD 对角线AC 上的一点,以O 为圆心,OA 长为半径的⊙O 与BC 相切于点M .(1)求证:CD 与⊙O 相切;(2)若⊙O 的半径为1,求正方形ABCD 的边长. 24.(9分)将一条长度为40cm 的绳子剪成两段,并以每一段绳子的长度为周长围成一个正方形.(1)要使这两个正方形的面积之和等于58cm 2,那么这段绳子剪成两段后的长度分别是多少?(2)求两个正方形的面积之和的最小值,此时两个正方形的边长分别是多少? 25.(9分)如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =—1,且抛物线经过A (1,0),C (0,3)两点,与x 轴相交于点B . (1)求抛物线的解析式;(2)在抛物线的对称轴x =—1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标; (3)设点P 为抛物线的对称轴x =—1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.MA第22题图 C DA B O 第23题图 M第25题图2018—2019学年度上学期期末水平测试九年级数学参考答案及评分建议一、1.C ; 2.B ; 3.A ; 4.D ; 5.C ; 6.A ; 7.C ; 8.B ; 9.B ; 10.C . 二、11.100; 12.3; 13.2 ; 14. 0<y <2; 15.2. ; 16.318 三、17.解 :0122=-+x x (1)分02122=-++x x …………………………………………………………2分2122=++x x ………………………………………………………3分2)1(2=+x ………………………………………………………… 4分21,2121--=+-=x x ………………………………………… 6分18.解:(1)若图象的对称轴是y 轴,∴=-a b 2021=-m ,………………………………………………………………………………………… 2分∴m=1; …………………………………………………………………………………… 3分(2)若图象与x 轴只有一个交点,则△=0,……………………………………………………………………4分即0)(14)1(2=-⨯⨯--m m , …………………………………………………… 5分∴m =﹣1. (6)分19. 解:(1)(图略) ………………………………………………………………………… 3分(2)设线段B 1A 所在直线l 的解析式为:)0(≠+=k b kx y ,…………………………………… 4分∵B 1(﹣2,3),A (2,0), ∴⎩⎨⎧=+=+-0232b k b k , ………………………………………………………………………………………… 5分23,43=-=b k , ……………………………………………………………………………………… 6分∴线段B 1A 所在直线l 的解析式为:2343+-=x y , ……………………………………………………7分20.解:过点O 作弦AB 的垂线,垂足为E ,延长OE 交CD 于点F ,连接OA ,OC , 1分∵AB ∥CD ,∴OF ⊥CD , (2)分∵AB =16cm ,CD =12cm , ∴AE =21AB =21×16=8cm , CF =21CD =21×12=6cm ,…………………………………… 3分在Rt △AOE 中,OE =22AE OA -=22810-=6cm ,………………………………………… 4分在Rt △OCF 中,OF=22CF OC -=22610-=8cm , ……… …… …………………… 5分∴EF =OF ﹣OE =8﹣6=2cm .∴AB 和CD 的距离为2cm . …………………………………………………………… …… 6分21.解:(1)∵卡片共有3张,“1”有一张,∴抽到数字恰好为1的概率31=P ;……………………………………………………………3分 (2)画树状图:………………………………………6分由树状图可知,所有等可能的结果共有6种,其中两位数恰好是“35”有1种. ∴组成两位数恰好是35的概率P=61. …………………………………………… 7分 22. 解:(1)∵△AOM 的面积为3,∴|k |=3,而k >0,∴k =6,∴反比例函数解析式为xy 6=; ………………………… 2分 (2)当以AB 为一边的正方形ABCD 的顶点D 在反比例函数xy 6=的图象上,则D 点与M 点重合,即AB =AM ,6,61===y xy x 得代入把,∴M 点坐标为(1,6),∴AB =A M =6, 761=+=t ; ……………………………………………………… 4分 当以AB 为一边的正方形ABCD 的顶点C 在反比例函数xy 6=的图象上, )1,(,1-∴-==t t C t BC AB 点坐标为则,∴6)1(=-t t , ……………………………………………………………………………………… 5分062=--t t 整理得,)(2,321舍去解得-==t t ,∴3=t , ………………………………………………………………………………………………… 6分 ∴以AB 为一边的正方形有一个顶点在反比例函数xy 6=的图象上时,t 的值为7或3. (7)分 23.(1)证明:过O 作ON ⊥CD 于N ,连接OM ,……………………………………… 1分∵⊙O 与BC 相切于点M , ∴OM ⊥BC ,∵AC 为正方形ABCD 对角线, ∴∠BAC =∠ACB =45°, ………………………………………………………………………………………………… 2分 ∵四边形ABCD 为正方形, ∴∠B =90°,AB ∥CD ∴AB ∥OM ∥DC ,∴∠NOC =∠NCO =∠MOC =∠MCO =45°, 且OC 为公共边,易知△OMC ≌△ONC (SAS ) ………………………………………………………………………… 3分 ∴ON =OM ,且ON ⊥CD∴CD 与⊙O 相切; ………………………………………………………………………………………………… 4分 (2)解:由(1)易知△MOC 为等腰直角三角形,OM 为半径, ∴1==MC OM ,∴211222=+=+=MC OM OC , ∴2=OC , ……………………………………………………………………………………………… 5分∴21+=+=OC AO AC ,………………………………………………………………… 6分在R t △ABC 中,BC AB =,222BC AB AC +=,∴222AC AB =, ……………………………………………………………………………………… 7分 ∴222221+=+=AB . 故正方形ABCD 的边长为222+.………………………………………………………………………………… 9分24. 解:(1)设其中一个正方形的边长为xcm ,则另一个正方形的边长为(10﹣x )cm ,………………………………… 1分依题意列方程得58)10(22=-+x x , …………………………………………………………………………… 3分整理得:021102=+-x x ,解方程得7,321==x x , ……………………………………………………………………………… 4分.1228-402874,281240,1243cm cm cm cm ==⨯=-=⨯,或因此这段绳子剪成两段后的长度分别是12cm 、28cm ; ……………………………………… 5分 (2)设两个正方形的面积和为y ,则50)5(2)10(222+-=-+=x x x y , …………………………………… 7分.5,50,55-105052cm cm cm y x 都为此时两个正方形的边长最小值是即两个正方形的面积和,此时的最小值时,当===∴……………9分25.解:⎪⎪⎩⎪⎪⎨⎧==++-=-3012)1(c c b a a b依题意得,⎪⎩⎪⎨⎧=-=-=321c b a 解得:,∴抛物线解析式为322+--=x x y . ……………………………………… 2分分别代入直线、把)3,0()0,3(C B - n mx y +=, ⎩⎨⎧-==+-303n n m 得,⎩⎨⎧==31n m 解得:, 3+=∴x y 直线解析式为;……………………………………………… 3分(2)设直线BC 与对称轴x =﹣1的交点为M ,则此时MA +MC 的值最小.,231=+=-=y x y x ,得代入直线把∴M (﹣1,2),即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(﹣1,2);……… 5分)3,0(),0,3(),,1()3(C B t P --又设 ,1061)3(,4)31(,182********+-=+-=+=++-==t t t PC t t PB BC2:,106418,22222-=+-=++=+t t t t PC PB BC B 解得即:为直角顶点,则若点 ………………………………… 6分;4:,410618,22222=+=+-+=+t t t t PB PC BC C 解得即:为直角顶点,则若点 (7)分.2173,2173:,181064,2122222-=+==+-++=+t t t t t BC PC PB P 解得即:为直角顶点,则若点)21731-21731-4,1-2-1--+,)或(,)或()或(,的坐标为(综上所述P (9)分。

2018—2019学年第一学期九年级数学期末试题(含答案)

2018—2019学年第一学期九年级数学期末试题(含答案)

2018—2019学年度第一学期期末考试九年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.关于x的方程ax2-3x+2=0是一元二次方程,则A.a>0 B.a≠0 C.a=1 D.a≥02.用配方法解方程3x2-6x+1=0,则方程可变形为A.(x-3)2=13B.3(x-1)2=13C.(x-1)2=23D.(3x-1)2=13.在平面直角坐标系中,将抛物线y=3x2+2先向左平移2个单位,再向上平移6个单位后所得到的抛物线的顶点坐标是A.(-2,6)B.(2,-6)C.(-2,8)D.(2,-8)4.下列事件中,是必然事件的是A.将油滴入水中,油会浮在水面上B.车辆随机到达一个路口,遇到红灯C.掷一枚质地均匀的硬币,一定正面向上D.如果a2=b2,那么a=b5.在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共50个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复以A.20 B.25 C.30 D.356.下列两个图形一定相似的是A.两个矩形B.两个等腰三角形 C .两个正方形 D .两个菱形 7.下列每张方格纸上都有一个三角形,只用圆规就能作出这个三角形的外接圆的是A .①②B .①③C .②④D .③④ 8.如图,CD 是⊙O 的直径,AB 是弦(不是直径),AB ⊥CD 于点E ,则下列结论正确的是 A.∠ADC =12∠AEC B.∠ADC =∠ABC C .AE >BE D .AD =BC9.如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将△BCE 绕点C 顺时针方向旋转90°得到△DCF ,连接EF ,若∠BEC =65°,则∠EFD 的度数是 A .15° B .20° C .25° D .30° 10.如图,在平面直角坐标系中,已知点A (-3,6)、B (-9,-3),以原点O 为位似中心,相似比为13,把△ABO 缩小,则点B 的对应点B ′的坐标是 A .(-3,-1)B .(-1,2)C .(-9,1)或(9,-1)D .(-3,-1)或(3,1)11.在函数21a y x--=(a 为常数)的图象上有三点(-3,y 1),(1,y 2),(2,y 3),则函数值y 1,y 2,y 3的大小关系是 A .y 2<y 3<y 1 B .y 3<y 2<y 1 C .y 3<y 1<y 2D .y 1<y 2<y 312.2则下面对于该函数性质的判断①该二次函数有最大值; ②不等式y >-1的解集是x <0或x >2;(第8题图) (第9题图) (第10题图)③方程ax 2+bx +c =0的两个实数根分别位于12-<x <0之间和2<x <52之间; ④当x >0时,函数值y 随x 的增大而增大.其中正确的是 A .②③ B .②④ C .①③D .③④第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.已知点M (a,N (2,b )关于原点对称,则ab = . 14.已知圆内接正六边形的边长是1,则这个圆的内接正方形的边长是 . 15.关于x 的方程x 2-2x +3=0的根的情况是 . 16.已知一个两位数,它的十位数字比个位数字小3,个位数字的平方恰好等于这个两位数.如果设它的个位数字是x ,则列得方程为 . 17.两个相似三角形的面积比为4∶25,则它们的相似比为 .18.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口时都是绿灯,但实际这样的概率是 .19.若75°的圆心角所对的弧长是2.5πcm ,则此弧所在圆的半径是 cm . 20.如图,在Rt △ABC 中,∠A =60°,AB =2,以点B 为圆心,BC 为半径的弧交AB 于点D ,以点A 为圆心,AC 为半径的弧交AB 于点E ,则图中阴影部分的面积为 . 21.如图,某水渠的横截面呈抛物线形,当水面宽8m 时,水深4m ,当水面下降1m 时,水面宽为 m .22.如图,在反比例函数10y x=(x >0)的图象上,有点P 1,P 2,P 3,P 4,…,它们的横坐标依次为2,4,6,8,…,分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次记为S 1,S 2,S 3,…,n S ,则123n S S S S ++++ = (用含n 的代数式表示)三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.如图,有一段15m 长的旧围墙AB ,现打算利用 该围墙的一部分(或全部)为一边,再用32m 长 的篱笆围成一块长方形场地CDEF .(1)怎样围成一个面积为126m 2的长方形场地?(第22题图)(第21题图) (第20题图)(第23题图)(2)长方形场地面积能达到130m 2吗?如果能,请给出方案,如果不能,请说明理由. 24.在一个箱子中有三个分别标有数字1,2,3的材质、大小都相同的小球,从中任意摸出一个小球,记下小球的数字x 后,放回箱中并摇匀,再摸出一个小球,又记下小球的数字y ,以先后记下的两个数字(x ,y )作为点P 的坐标. (1)求点P 的横坐标与纵坐标的和为4的概率;(2)求点P25.如图,□ABCD 中,E 为BC 边上一点,连接DE ,F 为线段DE 上一点,∠AFE =∠B . (1)求证:△ADF ∽△DEC ;(2)若AB =8,AD=AF=DE 的长.26.如图,在矩形OABC 中,OA =3,OC =2,点F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数ky x=的图象与BC 边交于点E . (1)当F 为AB 的中点时,求该函数的解析式;(2)当k 为何值时,△EF A 的面积最大,最大面积是多少?27.如图,点E 在x 轴正半轴上,以点E 为圆心,OE 为半径的⊙E 与x 轴相交于点C ,直线AB 与⊙E 相切于点D ,已知点A 的坐标为(3,0),点B 的坐标为(0,4). (1)求线段AD 的长;(2)连接BE 、CD ,求证:BE ‖CD .28.如图,过点A (-1,0)、B (3,0)的抛物线2y x bx c =-++与y 轴交于点C ,它的对称轴与x 轴交于点E . (1)求抛物线解析式; (2)求抛物线顶点D 的坐标;(3)若抛物线的对称轴上存在点P 使3PCBPOC SS=,求此时DP 的长.(第25题图)(第26题图)(第28题图) (第27题图)2018—2019学年第一学期九年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.13; 14 15.无实数根 ; 16.210(3)x x x =-+;17.2∶5; 18. 18; 19.6; 20;21. 22.1010n -.三、解答题:(共74分)23. 解:(1)设CD =x m ,则DE =(32﹣2x )m ,依题意得:x (32﹣2x )=126,…………………………………………………2分 整理得 x 2﹣16x +63=0,解得 x 1=9,x 2=7, …………………………………………………4分 当x 1=9时,(32﹣2x )=14当x 2=7时 (32﹣2x )=18>15 (不合题意舍去)∴能围成一个长14m ,宽9m 的长方形场地. ………………………5分 (2)设CD =y m ,则DE =(32﹣2y )m ,依题意得 y (32﹣2y )=130 …………………………………………………7分 整理得 y 2﹣16y +65=0△=(﹣16)2﹣4×1×65=﹣4<0故方程没有实数根, …………………………………………………9分 ∴长方形场地面积不能达到130m 2.…………………………………………10分 24. 解:(1…………………5分则点M 坐标的所有可能的结果有9个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3),和为4的有(1,3)、(2,2)、(3,1)这3种, ……………………………………7分故P (和为4)=31=93. ……………………………………8分(2)∵点M∴x 2+y 2<10,这样的点M 有4种形式(1,1)、(1,2)、(2,1)、(2,2), ……………………………………10分∴点M P =49.……………………………………12分25. (1)证明:∵四边形ABCD 是平行四边形,∴AB ‖DC ,AD ‖BC , ……………………………………2分∴∠C +∠B =180°,∠ADF =∠DEC .……………………………………4分 ∵∠AFD +∠AFE =180°,∠AFE =∠B ,∴∠AFD =∠C , ………………………………………………………6分 ∴△ADF ∽△DEC .………………………………………………………7分 (2)∵四边形ABCD 是平行四边形,AB =8,∴CD =AB =8, ………………………………………………………8分 ∵△ADF ∽△DEC , ∴AD DEAF DC =, ………………………………………………………10分又CD =8,AD =AF =∴=12AD CD DE AF ⋅==. ………………………………………12分 26.解:(1)∵在矩形OABC 中,OA =3,OC =2,∴B (3,2), ………………………………………………………2分 ∵F 为AB 的中点,∴F (3,1), ………………………………………………………3分∵点F 在反比例函数ky x=的图象上, ∴k =3, ………………………………………………………5分∴该函数的解析式为3y x=; ………………………………………6分(2)由题意知E ,F 两点坐标分别为E (2k ,2),F (3,3k),………7分∴111(3)2232EFA kS AF BE k ∆==⨯- ………………………………9分=2133)124k --+( ………………………………11分 当k =3时,△EF A 的面积最大,最大面积是34. ………………13分27.(1)解:∵A 的坐标为(3,0),点B 的坐标为(0,4),∴OA =3,OB =4,…………………………………………………………2分∴AB ,………………………………………………………3分 ∵以点E 为圆心,OE 为半径的⊙E 与x 轴相交于点C ,且BO ⊥OC , ∴OB 与⊙E 相切于点O ,………………………………………………4分 又直线AB 与⊙E 相切于点D ,∴DB =OB = 4, ………………………………………………………6分 ∴AD =5-4=1. ………………………………………………………7分(2)证明:连接ED 、OD . ∵AB 与⊙E 相切于点D , OB 切⊙E 于点O ,∴OB =BD ,∠OBE =∠DBE ,………9分 ∴BE ⊥OD , ………………………10分 ∵OC 为直径,∴∠ODC =90°,……………………11分 ∴CD ⊥OD ,………………………12分 ∴BE ‖CD . …………………………13分28. 解:(1)将A (﹣1,0),B (3,0)代入2y x bx c =-++得10930b c b c --+=⎧⎨-++=⎩, ………………………………2分解得 b =2,c =3,∴抛物线解析式为y =﹣x 2+2x +3. ………………………………4分 (2)∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴顶点D 的坐标为(1,4). ………………………………6分 (3)设BC 与抛物线的对称轴交于点F ,如图所示:则点F 的横坐标为1, ∵y =﹣x 2+2x +3当x =0时,y =3,∴OC =3, ……………………………………………7分∴△POC 的面积=12×3×1=32,……8分又△PCB 的面积=△PCF 的面积+△PBF 的面积=12PF (1+2)=32PF , ∴32PF =3×32, 解得 PF =3, ………………………………9分设直线BC 的解析式为y =kx +a ,则 330a k a =⎧⎨+=⎩, ………………………………10分 解得 a =3,k =-1,∴直线BC 的解析式为y =-x +3, ……………………………11分 当x =1时,y =2, ∴F 的坐标为(1,2),∴EF =2, ……………………………………12分 当点P 在F 的上方时,PE =PF +EF =5,∴DP =5-4=1; ……………………………………13分 当点P 在F 的下方时,PE =PF -EF =3-2=1, ∴DP =4+1=5;(第28题答案图)综上所述,DP的长为1或5.…………………………………14分。

2018-2019人教版九年级数学上册期末测试题及答案

2018-2019人教版九年级数学上册期末测试题及答案

2018-2019年人教版九年级数学上册期末考试试卷一、选择题(每小题3分,共30分) 1.点M (1,-2)关于原点对应的点的坐标是()A .(-1,2)B .(1,2)C .(-1,-2)D .(-2,1) 2.下列图形中,是中心对称图形的是( )A .B .C .D .3.将函数231y x =-+的图象向右平移2个单位得到的新图象的函数解析式为( ) A.()2321y x =--+ B.()2321y x =-++C.232y x =-+D.232y x =--4.如图,在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧AC 沿弦AC 翻折交AB 于点D ,连接CD .如果∠BAC=20°,则∠BDC=( ) A.80° B.70° C.60° D.50°5.下列事件中,必然发生的事件是( )A .明天会下雨B .小明数学考试得99分C .今天是星期一,明天就是星期二D .明年有370天6.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为()A .-1B . 0C . 1D .-2 7.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )8.如果关于x 的方程(m ﹣3)7-m 2x ﹣x+3=0是关于x 的一元二次方程,那么m的值为( ) A .±3B .3C .﹣3D .都不对9.如果一个扇形的半径为1,弧长是3π,那么此扇形的圆心角的大小为() A . 300B . 450C . 600D . 90010.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是() A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --= 二、填空题(每小题3分,共24分)11.方程 x 2 = x 的解是______________________12.如图所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O 至少经过____________次旋转而得到, 每一次旋转_______度. 13.若实数a 、b 满足11122+-+-=a a ab ,则a+b 的值为________.图7图614.圆和圆有不同的位置关系.与下图不同的圆和圆的位置关系是_____.(只填一种)15.若关于x 方程kx 2–6x+1=0有两个实数根,则k 的取值范围是 .16.如图6,在Rt △ABC 中,∠C=90°,CA=CB=2。

2018-2019学年新人教版九年级上册期末数学试卷(含答案解析)

2018-2019学年新人教版九年级上册期末数学试卷(含答案解析)

2018-2019学年九年级(上)期末数学试卷一、选择题(本大题共16个小题,1-10题每小题3分,11-16每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形是天气预报使用的图标,其中是中心对称图形的是()A.B.C.D.2.图中的两个三角形相似,且AB=2,A′B′=1,则△A′B′C′与△ABC的相似比是()A.1:2B.2:1C.3:1D.1:33.抛物线y=﹣2(x+3)2+1对称轴是()A.直线x=3B.直线x=1C.直线x=﹣1D.直线x=﹣34.在下图中,反比例函数的图象大致是()A.B.C.D.5.连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是()A.必然事件B.不可能事件C.随机事件D.概率为1的事件6.如图,在正三角形网格中,菱形M经过旋转变换能得到菱形N,下列四个点中能作为旋转中心的是()A.点A B.点B C.点C D.点D7.已知A(﹣1,y1),B(2,y2)是抛物线y=﹣(x+2)2+3上的两点,则y1,y2的大小关系为()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y8.如果圆O是△ABC的外接圆,AC=BC,那么下列四个选项中,直线l必过圆心O的是()A.l⊥AC B.l平分AB C.l平分∠C D.l平分9.当k=﹣2时,下列双曲线中,在每一个象限内,y随x增大而减小的是()A.y=﹣B.y=C.y=D.y=10.起重机的滑轮装置如图所示,已知滑轮半径是10cm,当物体向上提升3πcm时,滑轮的一条半径OA绕轴心旋转的角度为()A.108°B.60°C.54°D.27°11.(2分)将方程x2﹣6x+3=0左边配成完全平方式,得到的方程是()A.(x﹣3)2=﹣3B.(x﹣3)2=6C.(x﹣3)2=3D.(x﹣3)2=1212.(2分)如图,⊙O中,弦AB⊥AC,OE⊥AB,垂足为E,OF⊥AC,垂足为F,若AB+AC=10,则四边形OEAF的周长为()A.10.B.9C.8D.713.(2分)在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中的白棋子数量为()A.60枚B.50枚C.40枚D.30枚14.(2分)如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B 为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2:1,则点C′的坐标为()A.(0,0)B.(0,1)C.(1,﹣1)D.(1,0)15.(2分)在正六边形ABCDEF的中,若BE=10,则这个正六边形外接圆半径是()A.B.5C.D.516.(2分)如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b二、填空题(本大题共3个小题,19小题4分,17、18每小题3分,共计10分.)17.若3是一元二次方程x2+bx+3=0的一个根,则常数b的值为.18.抛物线y=ax2经过点(3,5),则a=.19.(4分)参加一次足球联赛的每两队之间都进行一场比赛,共要比赛28场,设有x 个队参赛,根据题意列出的方程是.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤) 20.(9分)若点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,求a,b的值.21.(9分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数y(度)是镜片焦距x(厘米)(x>0)的反比例函数,调查数据如表:(1)求y与x的函数表达式;(2)若小明所戴近视眼镜镜片的度数为500度,求该镜片的焦距.22.(9分)在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机从箱子里取出1个球,则取出黄球的概率是多少?(2)随机从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示出所有可能出现的结果,并求两次取出的都是白色球的概率.23.(9分)已知关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根(1)求k的取值范围;(2)若k为大于3的整数,且该方程的根都是整数,求k的值.24.(10分)如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.25.(10分)如图,P是⊙O的切线FA上的点,点A为切点,连接OP,OP的垂直平分线FE交OA于点E,连接EP,过点P作PC⊥EP(1)已知OA=8,AP=4,求OE的长(2)求证:PC与⊙O相切.26.(12分)某造纸厂生产甲、乙两种生活用纸的相关信息如下表,其中x(吨)表示甲、乙两种生活用纸的月产量,请根据表中的信息解答后面的问题:(1)设该造纸厂每月生产甲、乙两种生活用纸的利润分别为y1元和y2元,分别求出y1和y2与x的函数关系式(注:利润=总收入﹣总支出);(2)若某月要生产甲、乙两种生活用纸共300吨,求该月生产甲、乙两种生活用纸各多少吨,获得的总利润最大?最大利润是多少?九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共16个小题,1-10题每小题3分,11-16每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形是天气预报使用的图标,其中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.图中的两个三角形相似,且AB=2,A′B′=1,则△A′B′C′与△ABC的相似比是()A.1:2B.2:1C.3:1D.1:3【分析】根据相似三角形相似比等于对应边的比解答.【解答】解:∵AB=2,A′B′=1,∴△A′B′C′与△ABC的相似比=A′B′:AB=1:2.故选:A.【点评】本题考查了相似三角形的性质,求两三角形的相似比时要注意两个相似三角形的先后顺序.3.抛物线y=﹣2(x+3)2+1对称轴是()A.直线x=3B.直线x=1C.直线x=﹣1D.直线x=﹣3【分析】根据抛物线的顶点式方程y=﹣2(x +3)2+1可以直接写出它的对称轴直线方程.【解答】解:∵抛物线y=﹣2(x +3)2+1的对称轴直线是该图象的顶点坐标的横坐标, ∴抛物线的对称轴是直线x=﹣3;故选:D .【点评】本题考查了二次函数的性质.抛物线的顶点式方程为y=a (x ﹣h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .4.在下图中,反比例函数的图象大致是( )A .B .C .D .【分析】由于y=,比例系数4>0,根据反比例函数的性质,可得图象在第一和第三象限.【解答】解:∵k=4,可根据k >0,反比例函数图象在第一、三象限;∴在每个象限内,y 随x 的增大而减小.故选:D .【点评】本题考查了反比例函数图象的性质:①k <0,反比例函数图象在第二、四象限,在每个象限内,y 随x 的增大而增大;②k >0,反比例函数图象在第一、三象限,在每个象限内,y 随x 的增大而减小. 5.连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是( ) A .必然事件B .不可能事件C .随机事件D .概率为1的事件【分析】根据随机事件的定义即可判断.【解答】解:“第五次抛掷正面朝上”是随机事件.故选:C .【点评】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.如图,在正三角形网格中,菱形M经过旋转变换能得到菱形N,下列四个点中能作为旋转中心的是()A.点A B.点B C.点C D.点D【分析】直接利用旋转的性质结合等边三角形的性质进而分析得出答案【解答】解:如图所示:菱形M绕点D经过顺时针旋转60°变换能得到菱形N,故选:D.【点评】此题主要考查了旋转的性质以及等边三角形的性质,正确把握旋转的性质是解题关键.7.已知A(﹣1,y1),B(2,y2)是抛物线y=﹣(x+2)2+3上的两点,则y1,y2的大小关系为()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y【分析】抛物线的对称轴为直线x=﹣2,根据二次函数的性质,抛物线开口向下,在对称轴的右侧y随x的增大而减小,即可判定.【解答】解:∵y=﹣(x+2)2+3,∴抛物线的对称轴为直线x=﹣2,抛物线开口向下,∴当x>﹣2,y随x的增大而减小,∵﹣2<﹣1<2,所以y1>y2.故选:A.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.8.如果圆O是△ABC的外接圆,AC=BC,那么下列四个选项中,直线l必过圆心O的是()A.l⊥AC B.l平分AB C.l平分∠C D.l平分【分析】根据等腰三角形三线合一的性质即可得出结论.【解答】解:∵圆O是△ABC的外接圆,∴点O在三边的垂直平分线上.∵AC=BC,∴当l平分∠C时,l也是AB边的垂直平分线.故选:C.【点评】本题考查的是三角形的外接圆与外心,熟知三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心是解答此题的关键.9.当k=﹣2时,下列双曲线中,在每一个象限内,y随x增大而减小的是()A.y=﹣B.y=C.y=D.y=【分析】利用反比例函数的性质可解.【解答】解:当k=﹣2时,y=﹣的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y 随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第一、第三象限,在每一象限内y 随x的增大而减小;故选:D.【点评】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是本题的关键.10.起重机的滑轮装置如图所示,已知滑轮半径是10cm,当物体向上提升3πcm时,滑轮的一条半径OA绕轴心旋转的角度为()A.108°B.60°C.54°D.27°【分析】本题实质上还是一道利用弧长公式计算的题.【解答】解:,解得n=54度.故选:C.【点评】本题是一道弧长公式的实际应用题,学生平时学习要紧密联系实际,学以致用,不可死学.11.(2分)将方程x2﹣6x+3=0左边配成完全平方式,得到的方程是()A.(x﹣3)2=﹣3B.(x﹣3)2=6C.(x﹣3)2=3D.(x﹣3)2=12【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:移项,得x2﹣6x=﹣3,等式两边同时加上一次项系数一半的平方(﹣3)2,得x2﹣6x+(﹣3)2=﹣3+(﹣3)2,即(x﹣3)2=6.故选:B.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12.(2分)如图,⊙O中,弦AB⊥AC,OE⊥AB,垂足为E,OF⊥AC,垂足为F,若AB+AC=10,则四边形OEAF的周长为()A.10.B.9C.8D.7【分析】先判断出四边形OEAF的形状,再根据垂径定理得出AF+AE的长,进而可得出结论.【解答】解:∵AB⊥AC,OE⊥AB,OF⊥AC,∴四边形OEAF是矩形,∴四边形OEAF的周长=2(AF+AE)=2×(AB+AC)=10.故选:A.【点评】本题考查的是垂径定理,熟知垂直于弦的直径平分线是解答此题的关键.13.(2分)在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中的白棋子数量为()A.60枚B.50枚C.40枚D.30枚【分析】利用已知提供的数据求出黑棋子的比例,进而假设出白棋子个数,列出方程,解方程即可得出白棋子个数.【解答】解:根据试验提供的数据得出:黑棋子的比例为:(1+3+0+2+3+4+2+1+1+3)÷100=20%,所以白棋子比例为:1﹣20%=80%,设白棋子有x枚,由题意,得=80%,x=0.8(x+10),x=0.8x+8,0.2x=8,所以x=40,经检验,x=40是原方程的解,即袋中的白棋子数量约40颗.故选:C.【点评】此题主要考查了利用频率估计概率,根据试验次数得出黑棋子的比例,从而得出白棋子个数是解决问题的关键.14.(2分)如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B 为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2:1,则点C′的坐标为()A.(0,0)B.(0,1)C.(1,﹣1)D.(1,0)【分析】利用位似图形的性质结合位似比得出△BA′C′,进而得出C′点坐标.【解答】解:如图所示:△A′BC′与△ABC位似,相似比为2:1,点C′的坐标为:(1,0).故选:D.【点评】此题主要考查了位似变换以及坐标与图形的性质,正确得出对应点位置是解题关键.15.(2分)在正六边形ABCDEF的中,若BE=10,则这个正六边形外接圆半径是()A.B.5C.D.5【分析】根据正六边形的性质解答即可.【解答】解:因为正六边形ABCDEF的中,BE=10,所以这个正六边形外接圆半径是,故选:B.【点评】此题考查了正六边形的性质.此题难度适中,注意掌握数形结合思想的应用.16.(2分)如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b【分析】根据对折表示出小长方形的长和宽,再根据相似多边形的对应边成比例列式计算即可得解.【解答】解:对折两次后的小长方形的长为b,宽为a,∵小长方形与原长方形相似,∴=,∴a=2b.故选:B.【点评】本题考查了相似多边形对应边成比例的性质,准确表示出小长方形的长和宽是解题的关键.二、填空题(本大题共3个小题,19小题4分,17、18每小题3分,共计10分.)17.若3是一元二次方程x2+bx+3=0的一个根,则常数b的值为﹣4.【分析】已知了一元二次方程的一个实数根,可将其代入该方程中,即可求出b的值.【解答】解:∵3是一元二次方程x2+bx+3=0的一个根,∴32+3b+3=0,∴b=﹣4.故答案为﹣4.【点评】此题主要考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.将方程的根代入方程即可得到关于b的一元一次方程,解此一元一次方程即可.18.抛物线y=ax2经过点(3,5),则a=.【分析】此题考查了待定系数法,把点代入即可求得.【解答】解:把点(3,5)代入y=ax2中,得:9a=5,解得a=.【点评】本题考查了点与函数的关系,考查了用待定系数法,难度不大.19.(4分)参加一次足球联赛的每两队之间都进行一场比赛,共要比赛28场,设有x个队参赛,根据题意列出的方程是x(x﹣1)=28.【分析】设有x个队参赛,根据参加一次足球联赛的每两队之间都进行一场比赛,共要比赛28场,可列出方程.【解答】解:设有x个队参赛,x(x﹣1)=28.故答案为:x(x﹣1)=28.【点评】本题考查由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(9分)若点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,求a,b的值.【分析】根据关于原点对称的点的坐标特点进行解答即可.【解答】解:∵点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,∴a﹣2=﹣(﹣1),3=﹣(2b+2),解得a=3,b=﹣.【点评】本题考查的是关于原点对称的点的坐标特点,即关于原点对称的点的坐标,横、纵坐标均互为相反数.21.(9分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数y(度)是镜片焦距x(厘米)(x>0)的反比例函数,调查数据如表:(1)求y与x的函数表达式;(2)若小明所戴近视眼镜镜片的度数为500度,求该镜片的焦距.【分析】(1)根据图表可以得到眼镜片的度数与焦距的积是一个常数,因而眼镜片度数与镜片焦距成反比例函数关系,即可求解;(2)在解析式中,令y=500,求出x的值即可.【解答】解:(1)根据题意得:与x之积恒为10000,则函数的解析式是y=;(2)令y=500,则500=,解得:x=20.即该镜片的焦距是20cm.【点评】考查了反比例函数的应用,正确理解反比例函数的特点,两个变量的乘积是常数,是解决本题的关键.22.(9分)在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机从箱子里取出1个球,则取出黄球的概率是多少?(2)随机从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示出所有可能出现的结果,并求两次取出的都是白色球的概率.【分析】(1)由在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出白颜色球的情况,再利用概率公式即可求得答案.【解答】解:(1)∵在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,∴随机地从箱子里取出1个球,则取出黄球的概率是:;(2)画树状图得:由树形图可知所有可能的情况有9种,其中两次取出的都是白色球有1种,所以两次取出的都是白色球的概率=.【点评】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于放回实验.23.(9分)已知关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根(1)求k的取值范围;(2)若k为大于3的整数,且该方程的根都是整数,求k的值.【分析】(1)根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k 的不等式,求出不等式的解集即可得到k的范围;(2)找出k范围中的整数解确定出k的值,再将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.【解答】解:(1)△=(﹣6)2﹣4(k+3)=36﹣4k﹣12=﹣4k+24,∵原方程有两个不相等的实数根,∴﹣4k+24>0.解得k<6;(2)∵k<6且k为大于3的整数,∴k=4或5.①当k=4时,方程x2﹣6x+7=0的根不是整数.∴k=4不符合题意;②当k=5时,方程x2﹣6x+8=0根为x1=2,x2=4均为整数.∴k=5符合题意.综上所述,k的值是5.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了一元二次方程的解法.24.(10分)如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.【分析】(1)根据题意可得∠B+∠A=90°,∠A+∠F=90°,则∠B=∠F,从而得出△ADF∽△EDB;(2)由(1)得∠B=∠F,再CD是Rt△ABC斜边AB上的中线,得出CD=DB,根据等边对等角得∠DCE=∠F,则可证明△CDE∽△FDC,从而得出=,化为乘积式即可CD2=DF•DE.【解答】证明:(1)在Rt△ABC中,∠B+∠A=90°∵DF⊥AB∴∠BDE=∠ADF=90°∴∠B=∠F,∴△ADF∽△EDB;(2)由(1)可知△ADF∽△EDB ∴∠B=∠F,∵CD是Rt△ABC斜边AB上的中线∴CD=AD=DB,∴∠DCE=∠B,∴∠DCE=∠F,∴△CDE∽△FDC,∴=,∴CD2=DF•DE.【点评】本题考查了相似三角形的判定和性质,以及直角三角形斜边上的中线等于斜边的一半.25.(10分)如图,P是⊙O的切线FA上的点,点A为切点,连接OP,OP的垂直平分线FE交OA于点E,连接EP,过点P作PC⊥EP(1)已知OA=8,AP=4,求OE的长(2)求证:PC与⊙O相切.【分析】(1)由AP是⊙O的切线,得到∠OAP=90°,根据勾股定理列方程即可得到结论;(2)过O作OG⊥PC于G,根据余角的性质得到∠OPE+∠OPC=90°=∠AOP+∠OPA,等量代换得到∠OPC=∠OPA,推出△AOP≌△GOP,根据全等三角形的性质得到OG=OA,即可得到结论.【解答】(1)解:∵AP是⊙O的切线,∴PE2﹣AE2=AP2,∵OA=8,AP=4,∵OP的垂直平分线FE交OA于点E,∴OE=PE,∴OE2﹣(8﹣OE)2=42,∴OE=5;(2)证明:过O作OG⊥PC于G,∵CE垂直平分OP,∴∠AOP=∠OPE,∴∠OPE+∠OPC=90°=∠AOP+∠OPA,∴∠OPC=∠OPA,在△AOP与△POG中,,∴△AOP≌△GOP(AAS),∴OG=OA,∴PC与⊙O相切.【点评】本题考查了切线的判定和性质.全等三角形的判定和性质,线段垂直平分线的性质,正确的作出辅助线构造全等三角形的是解题的关键.26.(12分)某造纸厂生产甲、乙两种生活用纸的相关信息如下表,其中x(吨)表示甲、乙两种生活用纸的月产量,请根据表中的信息解答后面的问题:(1)设该造纸厂每月生产甲、乙两种生活用纸的利润分别为y1元和y2元,分别求出y1和y2与x的函数关系式(注:利润=总收入﹣总支出);(2)若某月要生产甲、乙两种生活用纸共300吨,求该月生产甲、乙两种生活用纸各多少吨,获得的总利润最大?最大利润是多少?【分析】(1)根据:总利润=每吨净利润﹣每月设备管理、维护费,分别列出函数解析式即可;(2)设该月生产乙种生活用纸m吨,则生产甲种生活用纸(300﹣m)吨,总利润为W 元,由(1)中函数关系式将甲、乙两种生活用纸的利润y1+y2列出W关于m的函数关系式,配方可得函数的最值情况.【解答】解:(1)依题意得:y1=(4800﹣2200﹣200)x﹣20000=2400x﹣20000y2=(7000﹣10x﹣1600﹣400)x=﹣10x2+5000x;(2)设该月生产乙种生活用纸m吨,则生产甲种生活用纸(300﹣m)吨,总利润为W 元,依题意得:W=2400(300﹣m)﹣20000﹣10m2+5000m=720000﹣2400 m﹣20000﹣10 m2+5000m=﹣10 m2+2600 m+700000∵W=﹣10(m﹣130)2+869000.∵﹣10<0∴当m=130时,W最大=869000即生产甲、乙生活用纸分别为170吨和130吨时总利润最大,最大利润为869000元.【点评】本题主要考查二次函数的实际应用能力,弄清题意抓住相等关系列出函数关系式是解题的关键.。

2018-2019第一学期九年级数学期末考试试卷(有答案)

2018-2019第一学期九年级数学期末考试试卷(有答案)

2018~2019学年度第一学期九年级数学期末教学质量检测试卷查考答案及评分标准1.C ; 2.B ; 3.B ; 4.C ; 5.D ; 6.C ; 7.D ; 8.B ; 9.C ;10.A.11.m=1; 12.3π;13.25°;14.65; 15.2+; 16.-1或2或1; 17.50°;18.②④.19.(1)x 1=-2+,x 2=-2-. (2)x 1=2,x 2=-1.20.解:(1)小明小军共有20种等可能的结果;(5分)(2) 在20种结果中,两支笔颜色相同的结果有8种,∴小明获胜的概率为P =208=52,小军获胜的概率为P =2012=53.(10分)21.解:(1)如图1,C 1(1,﹣2);(3分)(2)如图2,C 2(﹣1,1);(6分)(3)如图3,B 3(﹣3,﹣4).(10分)22. (1)证明:∵ED =EC ,∴∠EDC =∠C ,∵∠EDC =∠B ,∴∠B =∠C ,∴AB =AC.(5分)(2)如图所示,连接BD ,∵AB 为直径,∴BD ⊥AC ,设CD =a ,由(1)知AC =AB =4,则AD =4-a ,在Rt △ABD 中,由勾股定理可得BD 2=AB 2-AD 2=42-(4-a)2.在Rt △CBD 中,由勾股定理可得BD 2=BC 2-CD 2=(2)2-a 2.∴42-(4-a)2=(2)2-a 2,整理得a =23,即CD =23.(10分)23.证明:(1)如图所示,连接AC ,AC ′,∵四边形ABCD 为矩形,∴∠ABC =90°,即AB ⊥CC ′,∵将矩形ABCD 绕点A 顺时针旋转,得到矩形AB ′C ′D ′,∴AC =AC ′,∴BC =BC ′.(6分)(2)∵四边形ABCD 为矩形,∴AD =BC ,∠D =∠ABC ′=90°,将矩形ABCD 绕点A 顺时针旋转,得到矩形AB ′C ′D ′,∴AD =AD ′,∵BC =BC ′,∴BC ′=AD ′,在△AD ′E 与△C ′BE 中, AD ′=BC ′,∠AED ′=∠BEC ′,∴△AD ′E ≌△C ′BE ,∴BE =D ′E ,设AE =x ,则D ′E =2-x ,在Rt △AD ′E 中,∠D ′=90°,由勾股定理,得x 2-(2-x)2=1,解得x =45,∴AE =45. (12分)24.(1)设2014至2016年该市投入科研经费的年平均增长率为x ,根据题意,得:500(1+x)2=720,解得x 1=0.2=20%,x 2=-2.2(舍)答:2014至2016年该市投入科研经费的年平均增长率为20%.(6分)(2)根据题意,得720a -720×100%≤15%,解得a ≤828,又∵该市计划2017年投入的科研经费比2016年有所增加,故a 的取值范围为720<a ≤828.(12分)25.(1)证明:如图所示,连接OC ,∵直线y =33x +2与y 轴相交于点E ,∴点E 的坐标为(0,2),即OE =2.又∵点B的坐标为(0,4),∴OB =4,∴BE =OE =2,又∵OA 是⊙P 的直径,∴∠ACO =90°,即OC ⊥AB ,∴OE =CE.(6分)(2)直线CD 是⊙P 的切线.证明:连接PC ,PE ,由(1)可知OE =CE.在△POE 和△PCE 中, OE =CE ,PE =PE ,∴△POE ≌△PCE ,∴∠POE =∠PCE.又∵x 轴⊥y 轴,∴∠POE =∠PCE =90°,∴PC ⊥CE ,即PC ⊥CD.又∵直线CD 经过半径PC 的外端点C ,∴直线CD 是⊙P 的切线.∵对y =33x +2,当y =0时,x =-6,即OD =6,在Rt △DOE 中,DE ===4,∴CD =DE +EC =DE +OE=4+2=6.设⊙P 的半径为r ,则在Rt △PCD 中,由勾股定理知PC 2+CD 2=PD 2,即 r 2+(6)2=(6+r)2,解得r =6,即⊙P 半径的值为6.(12分)26..解:(1)∵点A (4,0)在抛物线y 1=-x 2+413x +c 上, ∴-42+413×4+c =0,解得c =3,∴抛物线解析式为y 1=-x 2+413x +3, 第26题解图∵点B 是抛物线y 1与y 轴的交点,∴点B 的坐标为(0,3).(4分)(2)根据图可知,当x >4或x <0时,y 1<y 2;(8分)(3)取AB 的中点为C ,∵点A (4,0),点B (0,3),∴点C (2,23),过点C 作CE ⊥AB ,交x 轴于E ,交y 轴于F .在Rt △ABO 中,AO =4,BO =3,∴AB =5,∵C 是AB 的中点,∴AC =25,∵∠ACE =∠AOB =90°,∠EAC =∠BAO , ∴△AEC ∽△ABO ,∴AB AE =AO AC ,即5AE =2,解得AE =825,∴OE =OA -AE =4-825=87,此时点P 与点E 重合,坐标为(87,0).∵∠FBC =∠ABO ,∠FCB =∠AOB , ∴△ABO ∽△FBC ,∴AB BF =BO BC ,即53+OF =2,解得OF =67,∴此时点P 的坐标为(0,-67).(14分)。

2018-2019学年人教版九年级(上)期末数学试卷含解析

2018-2019学年人教版九年级(上)期末数学试卷含解析

2018-2019学年人教版九年级(上)期末数学试卷含解析一、选择题(本大题共12个小题,每小题3分,满分36分)1.如图所示的几何体,上下部分均为圆柱体,其左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】从侧面看圆柱的视图为矩形,据此求解即可.【解答】解:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选:C.2.下列说法:(1)直径是弦;(2)弦是直径;(3)半圆是弧,但弧不一定是半圆;(4)半径相等的两个圆是等圆;(5)长度相等的两条弧是等弧.其中错误的个数是()A.1个B.2个C.3个D.4个【考点】M1:圆的认识.【专题】67:推理能力.【分析】(1)直径的两个端点在圆上,符合弦的概念.(2)弦是连接圆上两点间的线段,只有过圆心的弦才是直径.(3)半圆是弧,但弧不一定是半圆.比半圆大的弧是优弧,比半圆小的弧是劣弧.(4)(5)等弧是能完全重合的两条弧,长度相等的两条弧不一定能重合.【解答】解:(1)根据弦的概念,直径是一条线段,且两个端点在圆上,满足弦是连接圆上两点的线段这一概念,所以(1)正确;(2)弦是连接圆上两点的线段,只有过圆心的弦才是直径,其它的弦不是直径,所以(2)错误;(3)圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆.所以(3)正确;(4)由等圆的定义可知,半径相等的两个圆面积相等、周长相等,所以为等圆,所以(4)正确;(5)等弧是能完全重合的弧,只有长度相等的两条弧不一定能重合.所以(5)错误.故选:B.3.暑假快到了,父母打算带兄妹俩去某个景点旅游一,长长见识,可哥哥坚持去黄山,妹妹坚持去泰山,争执不下,父母为了公平起见,决定设计一款游戏,若哥哥赢了就去黄山,妹妹赢了就去泰山.下列游戏中,不能选用的是()A.掷一枚硬币,正面向上哥哥赢,反面向上妹妹赢B.同时掷两枚硬币,两枚都正面向上,哥哥赢,一正一反向上妹妹赢C.掷一枚骰子,向上的一面是奇数则哥哥赢,反之妹妹赢D.在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球则哥哥赢,是红球则妹妹赢【考点】X7:游戏公平性.【分析】判断游戏的公平性,首先要计算出游戏双方赢的概率,概率相等则公平,否则不公平,由此逐项分析即可.【解答】解:A、掷一枚硬币,正面向上的概率为,反面向上的概率为,概率相等可选,故此选项不符合题意;B、画出树形图可知:两枚都正面向上的概率为,一正一反向上的概率为,概率不相等可选,故此选项符合题意;C、掷一枚骰子,向上的一面是奇数和偶数的概率都为,概率相等,故此选项不符合题意;D、在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球的概率为,是红球的概率为,概率相等,故此选项不符合题意,故选:B.4.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A.100°B.110°C.115°D.120°【考点】M5:圆周角定理.【分析】连接AC,根据圆周角定理,可分别求出∠ACB=90°,∠ACD=20°,即可求∠BCD的度数.【解答】解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AED=20°,∴∠ACD=20°,∴∠BCD=∠ACB+∠ACD=110°,故选:B.5.“奔跑吧,兄弟!”节目组,预设计一个新的游戏:“奔跑”路线需经A、B、C、D四地.如图,其中A、B、C三地在同一直线上,D地在A地北偏东30°方向、在C地北偏西45°方向.C地在A地北偏东75°方向.且BD=BC=30m.从A地到D地的距离是()A.30m B.20m C.30m D.15m【考点】TB:解直角三角形的应用﹣方向角问题.【分析】过点D作DH垂直于AC,垂足为H,求出∠DAC的度数,判断出△BCD是等边三角形,再利用三角函数求出AB的长,从而得到AB+BC+CD的长.【解答】解:过点D作DH垂直于AC,垂足为H,由题意可知∠DAC=75°﹣30°=45°,∵△BCD是等边三角形,∴∠DBC=60°,BD=BC=CD=30m,∴DH=×30=15,∴AD=DH=15m.答:从A地到D地的距离是15m.故选:D.6.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.7.如图,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合.若BC=4,则图中阴影部分的面积是()A.2+πB.2+2πC.4+πD.2+4π【考点】KW:等腰直角三角形;MO:扇形面积的计算.【分析】如图,连接CD,OD,根据已知条件得到OB=2,∠B=45°,根据三角形和扇形的面积公式即可得到结论.【解答】解:如图,连接CD,OD,∵BC=4,∴OB=2,∵∠B=45°,∴∠COD=90°,∴图中阴影部分的面积=S△BOD+S扇形COD=2×2+=2+π,故选:A.8.下列关于二次函数的说法错误的是()A.抛物线y=﹣2x2+3x+1的对称轴是直线B.函数y=2x2+4x﹣3的图象的最低点在(﹣1,﹣5)C.二次函数y=(x+2)2+2的顶点坐标是(﹣2,2)D.点A(3,0)不在抛物线y=x2﹣2x﹣3上【考点】H3:二次函数的性质.【分析】利用二次函数的性质对四个选项逐一判断即可得到答案.【解答】解:A、抛物线y=﹣2x2+3x+1的对称轴是直线x=﹣=,正确,选项不符合要求;B、函数y=2x2+4x﹣3=(x+1)2﹣5的最低点是(﹣1,﹣5),正确,选项不符合要求;C、二次函数y=(x+2)2+2的顶点坐标是(﹣2,2),正确,选项不符合要求;D、当x=3时y=x2﹣2x﹣3≠0,错误,选项符合要求.故选:D.9.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A.B.2C.D.【考点】M5:圆周角定理;T1:锐角三角函数的定义.【分析】作直径CD,根据勾股定理求出OD,根据正切的定义求出tan∠CDO,根据圆周角定理得到∠OBC =∠CDO,等量代换即可.【解答】解:作直径CD,在Rt△OCD中,CD=6,OC=2,则OD==4,tan∠CDO==,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故选:C.10.几个相同的小正方体所搭成的几何体的俯视图和左视图如图所示,则小正方体的个数最多是()A.5个B.7个C.8个D.9个【考点】U3:由三视图判断几何体.【专题】1:常规题型;55F:投影与视图.【分析】根据俯视图知几何体的底层有4个小正方形组成,而左视图是由3个小正方形组成,故这个几何体的后排最有1个小正方体,前排最多有2×3=6个小正方体,即可解答.【解答】解:由俯视图及左视图知,构成该几何体的小正方形体个数最多的情况如下:故选:B.11.如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B时,人影的长度()A.增大1.5米B.减小1.5米C.增大3.5米D.减小3.5米【考点】SA:相似三角形的应用.【分析】小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【解答】解:设小明在A处时影长为x,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴,,则,∴x=5,,∴y=1.5,∴x﹣y=3.5,减少了3.5米.故选:D.12.如图,⊙O的半径为2,点A的坐标为(2,2),直线AB为⊙O的切线,B为切点.则B点的坐标为()A.(﹣,)B.(﹣,1)C.(﹣,)D.(﹣1,)【考点】D5:坐标与图形性质;MC:切线的性质.【专题】16:压轴题.【分析】先利用切线AC求出OC=2=OA,从而∠BOD=∠AOC=60°,则B点的坐标即可求出.【解答】解:过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,∵⊙O的半径为2,点A的坐标为(2,2),即OC=2,∴AC是圆的切线.∵点A的坐标为(2,2),∴OA==4,∵BO=2,AO=4,∠ABO=90°,∴∠AOB=60°,∵OA=4,OC=2,∴sin∠OAC=,∴∠OAC=30°,∴∠AOC=60°,∠AOB=∠AOC=60°,∴∠BOD=180°﹣∠AOB﹣∠AOC=60°,∴OD=1,BD=,即B点的坐标为(﹣1,).故选D.二、填空题(本大题共6个小题,每小题4分,满分24分)13.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为0.【考点】HA:抛物线与x轴的交点.【专题】31:数形结合.【分析】依据抛物线的对称性求得与x轴的另一个交点,代入解析式即可.【解答】解:设抛物线与x轴的另一个交点是Q,∵抛物线的对称轴是过点(1,0),与x轴的一个交点是P(4,0),∴与x轴的另一个交点Q(﹣2,0),把(﹣2,0)代入解析式得:0=4a﹣2b+c,∴4a﹣2b+c=0,故答案为:0.14.如图,已知在△ABC中,AB=AC.以AB为直径作半圆O,交BC于点D.若∠BAC=40°,则的度数是140度.【考点】KH:等腰三角形的性质;M5:圆周角定理.【分析】首先连接AD,由等腰△ABC中,AB=AC,以AB为直径的半圆交BC于点D,可得∠BAD=∠CAD=20°,即可得∠ABD=70°,继而求得∠AOD的度数,则可求得的度数.【解答】解:连接AD、OD,∵AB为直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴∠BAD=∠CAD=∠BAC=20°,BD=DC,∴∠ABD=70°,∴∠AOD=140°∴的度数为140°;故答案为140.15.如图,在△ABC中,AC=4,将△ABC绕点C按逆时针旋转30°得到△FGC,则图中阴影部分的面积为.【考点】MO:扇形面积的计算;R2:旋转的性质.【专题】11:计算题;558:平移、旋转与对称.【分析】根据旋转的性质得到△CAB的面积=△CFG的面积,得到阴影部分的面积=扇形CAF的面积,根据扇形面积公式计算即可.【解答】解:由题意得,△CAB的面积=△CFG的面积,由图形可知,阴影部分的面积=△CFG的面积+扇形CAF的面积﹣△CBA的面积,∴阴影部分的面积=扇形CAF的面积==π,故答案为:.16.在⊙O中,圆心角∠AOB=100°,则弦AB所对的圆周角=50°或130°.【考点】M5:圆周角定理.【分析】此题要分情况考虑:弦对了两条弧,则两条弧所对的圆周角有两类.再根据一条弧所对的圆周角等于它所对的圆心角的一半,进行计算.【解答】解:根据圆周角定理,得弦AB所对的圆周角=100°÷2=50°或180°﹣50°=130°.17.如图,在平面直角坐标系中,矩形OABC顶点A、C分别在x轴、y轴的正半轴上,顶点B在反比例函数y=(x>0)的图象上,点P是矩形OABC内的一点,连接PO、P A、PB、PC,若图中阴影部分的面积10,则k为20.【考点】G5:反比例函数系数k的几何意义;G6:反比例函数图象上点的坐标特征;LB:矩形的性质.【专题】534:反比例函数及其应用;66:运算能力;67:推理能力.【分析】作PE⊥OC于E,EP的延长线交AB于F,由题意得到S阴=•OC•PE+•AB•PF=•CO•EF ==S矩形ABCO=10,进一步得到S矩形ABCO=20,根据反比例函数系数k的几何意义即可求得k =20.【解答】解:作PE⊥OC于E,EP的延长线交AB于F.∵S阴=•OC•PE+•AB•PF=•CO•EF==S矩形ABCO=10,∴S矩形ABCO=20,∴k=20.故答案为20.18.如图,直角三角形ABC中,∠ACB=90°,AC=6,BC=4,在△ABC内部以AC为斜边任意作Rt△ACD,连接BD,则线段BD长的最小值是2.【考点】KQ:勾股定理;M5:圆周角定理;M8:点与圆的位置关系.【专题】11:计算题.【分析】取AC的中点O,根据圆周角定理得到点D在以AC为直径的圆上,根据勾股定理可计算出OB =5,当D点在OB上时,BD的值最小,最小值为5﹣3=2.【解答】解:取AC的中点O,∵在△ABC内部以AC为斜边任意作Rt△ACD,∴点D在以AC为直径的圆上,∴当D点在OB上时,BD的值最小,在Rt△BOC中,OC=AC=3,BC=4,∴OB==5,∴BD的值最小为5﹣3=2.故答案为2.三、解答题(第19题4分,第20、21题各7分,第22题8分,第23、24题各9分,第25题11分)19.计算:tan45°﹣sin260°﹣+2cos30°.【考点】T5:特殊角的三角函数值.【专题】511:实数;62:符号意识.【分析】直接利用特殊角的三角函数值进而计算得出答案.【解答】解:原式=1﹣()2﹣(﹣1)+2×=1﹣﹣+1+=.20.如图,一个工件是由大长方体上面中间部位挖去一个小长方体后形成,主视图是凹字形的轴对称图形.(1)请在答题卷指定的位置补画该工件的俯视图;(2)若该工件的前侧面(即主视图部位)需涂油漆,根据图中尺寸(单位:cm),计算需涂油漆部位的面积.【考点】U4:作图﹣三视图.【分析】(1)俯视图为左右相邻的3个长方形,并且两边的长方形的宽度相同,小于中间的长方形的宽度;(2)主视图的面积为两边长为11,7的长方形的面积减去两边长为5,4的长方形的面积.【解答】解:(1)俯视图(看形状、大小基本正确)(2)需涂油漆(主视图)面积:11×7﹣5×4=57(cm2)21.一个不透明的口袋中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用树状图或列表法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.【考点】X7:游戏公平性.【专题】16:压轴题.【分析】(1)首先根据题意画出树状图,由树状图求得所有等可能的结果与两指针所指数字之和和小于4的情况,则可求得小颖参加比赛的概率;(2)根据小颖获胜与小亮获胜的概率,比较概率是否相等,即可判定游戏是否公平;使游戏公平,只要概率相等即可.【解答】解:(1)画树状图得:∵共有12种等可能的结果,所指数字之和小于4的有3种情况,∴P(和小于4)==,∴小颖参加比赛的概率为:;(2)不公平,∵P(小颖)=,P(小亮)=.∴P(和小于4)≠P(和大于等于4),∴游戏不公平;可改为:若两个数字之和小于5,则小颖去参赛;否则,小亮去参赛.22.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨,写出这两种蔬菜所获得的利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时获得的利润之和最大,最大利润是多少?【考点】FH:一次函数的应用;HE:二次函数的应用.【分析】(1)把(5,3)代入正比例函数即可求得k的值也就求得了y1的关系式;把原点及(1,2),(5,6)代入即可求得y2的关系式;(2)销售利润之和W=甲种蔬菜的利润+乙种蔬菜的利润,利用配方法求得二次函数的最值即可.【解答】解:(1)由题意得:5k=3,解得k=0.6,∴y1=0.6x;由,解得:.∴y2=﹣0.2x2+2.2x;(2)W=0.6(10﹣t)+(﹣0.2t2+2.2t)=﹣0.2t2+1.6t+6=﹣0.2(t﹣4)2+9.2.所以甲种蔬菜进货量为6吨,乙种蔬菜进货量为4吨时,获得的销售利润之和最大,最大利润是9200元.23.图1是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图2.已知铁环的半径为25cm,设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα=.(1)求点M离地面AC的高度BM;(2)设人站立点C与点A的水平距离AC=55cm,求铁环钩MF的长度.【考点】T8:解直角三角形的应用.【分析】(1)过M作与AC平行的直线,与OA、FC分别相交于H、N.那么求BM的长就转化为求HA 的长,而要求出HA,必须先求出OH,在直角三角形OHM中,sinα的值,且铁环的半径为5个单位即OM=5,可求得HM的值,从而求得HA的值;(2)因为∠MOH+∠OMH=∠OMH+∠FMN=90°,∠FMN=∠MOH,又因为sin∠MOA=,所以可得出FN和FM之间的数量关系,即FN=FM,再根据MN=11﹣3=8,利用勾股定理即可求出FM=10个单位.【解答】解:(1)过点M作MD⊥OA交OA于点D,在RT△ODM中,sinα=,∴DM=15cm∴OD=20 cm,∴AD=BM=5cm;(2)延长DM交CF于点E,易得:∠FME=∠AOM=α,∵ME=AC﹣DM=55﹣15=40cm,∴cosα=∴MF=50cm.24.已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):∠BAE=90°或者∠EAC=∠ABC.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.【考点】MD:切线的判定.【专题】16:压轴题.【分析】(1)求出∠BAE=90°,再根据切线的判定定理推出即可;(2)作直径AM,连接CM,根据圆周角定理求出∠M=∠B,∠ACM=90°,求出∠MAC+∠CAE=90°,再根据切线的判定推出即可.【解答】解:(1)①∠BAE=90°,②∠EAC=∠ABC,理由是:①∵∠BAE=90°,∴AE⊥AB,∵AB是直径,∴EF是⊙O的切线;②∵AB是直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∵∠EAC=∠ABC,∴∠BAE=∠BAC+∠EAC=∠BAC+∠ABC=90°,即AE⊥AB,∵AB是直径,∴EF是⊙O的切线;(2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线.25.如图,已知抛物线过点A(3,0),B(﹣1,0),C(0,3),连接AC,点M是抛物线AC段上的一点,且CM∥x轴.(1)求抛物线的解析式;(2)求∠CAM的正切值;(3)点Q在抛物线上,且∠BAQ=∠CAM,求点Q的坐标.【考点】HF:二次函数综合题.【专题】15:综合题.【分析】(1)设抛物线的解析式为y=a(x﹣3)(x+1),将点C的坐标代入求得a的值即可;(2)过点M作MD⊥AC,垂足为D,先求得点M的坐标,然后利用勾股定理求得DM和CD的长,再依据勾股定理求得AC的长,进而求得AD的长,最后,依据锐角三角函数的定义求解即可;(3)设点Q(x,﹣x2+2x+3),然后∠BAQ=∠CAM且tan∠BAQ=,列方程求解即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣3)(x+1),将点C的坐标代入得:﹣3a=3,解得:a=﹣1,∴抛物线的解析式为y=﹣x2+2x+3.(2)作MD⊥AC于D,∵CM∥AB,由抛物线y=﹣x2+2x+3可知M点的坐标为(2,3),∵C(0,3),A(3,0)∴AO=OC=3,∵∠MDC=90°∴∠OAC=∠ACO=45°,∴∠ACM=45°,∴CD=DM,∵CM=2,∴DM=CM=,∴CD=,∵AC2=OA2+OC2∴AC=3.∴AD=AC﹣CD=2,∴tan∠CAM===;③设点Q(x,﹣x2+2x+3).∵∠BAQ=∠CAM且tan∠CAM=,∴=±,整理得:x+1=±,解得:x=﹣或x=﹣.当x=﹣时,y=,∴Q(﹣,).当x=﹣时,y=﹣.∴Q(﹣,﹣).综上所述,点Q的坐标为(﹣,)或(﹣,﹣).。

2018—2019学年上期期末考试九年级数学参考答案

2018—2019学年上期期末考试九年级数学参考答案

2018—2019学年上期期末考试九年级数学 参考答案一、选择题(每小题3分,共30分)1.A2.B3.D4.B5.C6.B7.D8.C9.C 10.A二、填空题(每小题3分,共15分) 11.43; 12.15°; 13.k >0且k ≠1; 14.39; 15.178817或三、解答题(75分)16.解:(1﹣)÷=•=• =, ……………………………………………………4分a (a +1)=0的解为120, 1.a a ==- ……………………………………………………6分因为0,a ≠所以 当a =﹣1时,原式==. ………………………………………………8分17.解:(1)80, 0.2;…………………………………………………………4分(2)“D”对应扇形的圆心角的度数为:36° ; ……………………………6分(3)2000×0.25=500(人);答:估计该校2000名学生中最喜欢“数学编程”创客课程的人数为500人.… 9分18. (1)证明:∵AG ∥BC ,∴∠EAD=∠DCF ,∠AED=∠DFC . ………………………………1分 ∵D 为AC 的中点,∴AD=CD . ………………………………………………………2分 在△ADE 和△CDF 中,∵,∴△ADE ≌△CDF (AAS ).∴DE=DF .∴四边形AFCE 是平行四边形; …………………………………5分(2)① 8; …………………………………7分② t =165或163. …………………………………………………9分 19.解:(1)设DF 的延长线交AB 于点G , BG=x 米,因为∠BFG =45°,所以FG=BG=x 米, ……………………………………2分∵∠BDG =40°,∴DG =tan 0.84BG x BDG =∠. ………3分 ∵DG ﹣FG=DF , ∴0.84x ﹣x =53.…………5分 解得,x =278.25.…………7分278.25+1.5=279.75 280(米).………8分答: 郑州会展宾馆的高度约为280米.………………………9分20.解:(1)过点B 作BF ⊥x 轴于点F .∵∠BCA =90°,∴∠BCF +∠ACO =90°.又∵∠CAO +∠ACO =90°,∴∠BCF =∠CAO .∵90BFC COA ∠=∠=,BC=AC .∴BFC ∆≌COA ∆.∴CF=OA=2, BF=OC=1.∴点B 的坐标为(﹣3,1).…………………………………………4分 将点B 的坐标代入反比例函数解析式可得:1=3-k , 解得:k =﹣3, 故可得反比例函数解析式为y =x3-; …………………………6分 (2) 结合点B 的坐标及图象,可得当x <0时,kx +b xm -<0的解集为:﹣3<x <0. ………………………9分21.解:(1)设甲种笔记本的进价为m 元/本,则乙种笔记本的进价为n 元/本,根据题意得10,4(2)3(1)47.m n m n +=⎧⎨+++=⎩…………………2分 解得6,4.m n =⎧⎨=⎩ 答:甲种笔记本的进价为6元/本,乙种笔记本的进价为4元/本.………4分(2)设购入甲种笔记本a 本,则购入乙种笔记本(60﹣a )本.根据题意得:64(60)296a a +-≤.解得28a ≤.设利润为y 元,则2(60)y a a =+- , y 60a =+.因为k =1,所以y 随a 的增大而增大,所以当a =28时利润最大.………………………………7分(3)设把两种笔记本的价格都提高x 元的总利润为w 元,根据题意得:w =(2+x )(350﹣50x )+(1+x )(150﹣40x )=﹣90(x ﹣2)2+1210,…………………………8分∵在w =﹣90(x ﹣2)2+1210中,a =﹣90<0,∴当x =2时,w 取最大值,最大值为1210.答:当x 定为2元时,才能使该文具店每天销售甲、乙笔记本获取的利润最大,最大利润为1210元. ……………………………………10分22. (1)证明:∵△ABC 和△ADE 是等腰直角三角形,∠BAC =∠DAE =90°, ∴AB=AC =3,AD=AE =2,∠DAB =∠CAE .∴△ADB ≌△AEC .∴∠ABD =∠ACE . …………………………………4分(2)(1)中结论成立,理由:在Rt △ABC 中,∠ABC =30°,∴AB =3AC .在Rt △ADE 中,∠ADE =30°,∴AD=3AE , ∴ACAE AB AD =. ∵∠BAC=∠DAE =90°,∴∠BAD=∠CAE .∴△ADB ∽△AEC .∴∠ABD=∠ACE . ……………………………8分(3)PB 的长为13或13. ………………………………10分23.(1)将A (-2,0)、C (-4,4)代入y =﹣21x 2+bx +c 中, 得:220844b c b c --+=⎧⎨--+=⎩,解得:58b c =-⎧⎨=-⎩, ∴二次函数的解析式为y =﹣21x 2﹣5x ﹣8.……………………………4分 (2) 当y =0时,有﹣21x 2-5x ﹣8=0, 解得:x 1=-2,x 2=-8,∴点B 的坐标为(-8,0).设BC 的解析式为y=kx +a (k ≠0),将B (-8,0)、C (-4,4)代入y =kx +a 中,得:44,80.k a k a -+=⎧⎨-+=⎩解得:1,8.k a =⎧⎨=⎩ ∴直线BC 的解析式为y =x +8.…………………………6分设点E 的坐标为(m ,m +8),则点D 的坐标为(m +2, m +10),点G 的坐标为[m+2,﹣21(m+2)2-5(m+2)﹣8],点F 的坐标为(m ,﹣21m 2-5m ﹣8). ∵四边形DEFG 为平行四边形, ∴DG=EF ,即﹣21(m+2)2-5(m+2)﹣8﹣(m +10)=﹣21m 2-5m ﹣8-(m +8). 解得:7,m =- m +8=1 . ………………… 8分∴点E 的坐标为(7-,1).当图中四边形DEFG 是平行四边形时,此时直尺左边边缘与直线BC的交点E的刻度是1 .……………9分(3)(-4,6)或(-4,﹣6).…………………………11分。

2018-2019学年度九年级上数学期末复习试卷(带答案)

2018-2019学年度九年级上数学期末复习试卷(带答案)

2018—2019学年第一学期期末复习九 年 级 数 学 试 卷一、选择题(本题共 10 题,每小题 3 分,共 30 分)下列各题均有四个备选答案, 其中有且仅有个答案是正确的, 请用2B 铅笔在答题卡上将正确的答案代号涂黑.1.下列四个图形中,不是中心对称图形的是( )A .①③B .②④C .①④D .②③2.如图,ABC △内接于O ⊙,OD ⊥BC 于D ,若70A ∠=︒,则OCD ∠的大小为 ( )A .35°B .30°C .25°D .20°3.一元二次方程230x x -=的根为( )A .x =3B .x =-3C .x 1=0,x 2=3D .x 1=0,x 2=-34.若函数1k y x -=的图象与直线y x =没有交点,则k 的取值范围是( )A .k >1B .k <1C .k >-1D .k <-15.小明要给朋友小林打电话,电话号码是七位正整数,他只记住了电话号码前四位顺序,后三位是3,6,7三位数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨对的概率是( )A .112B .61C .41 D .13 6.已知⊙O 的半径为5cm ,弦AB 长为8cm ,则这条弦的中点到弦所对劣弧的中点的距离为( )A .1B .2C .3D .47.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸出一个球,那么两次都摸到黄球的概率是( )A .21B .41C .61D .81 8.在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为( )A .10π BCD .π9.如图,点A 在双曲线6y x=上,且OA =4,过A 作AC ⊥x 轴, 垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为( ) A. BC. D .5(第2题图) (第8题图) (第9题图)10.如图,二次函数c bx ax y ++=2(a ≠0)的图象经过点(1,2)且与x 轴交点的横坐标分别为x 1,x 2,其中一1<x 1<0,1<x 2<2, 下列结论:①c b a ++24<0;②b a +2<0;③a b 82+>4ac ;④a <-1.其中结论正确的个数有( )A .1个B .2个C .3个D .4个二、填空题:(本题有6个小题,每小题3分,共18分)11.如图,P 是正△ABC 内的一点,若将△PBC 绕点B 旋转到△P BA ',则∠PBP '的度数是 .12.十张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则(P 摸到数字大于4)= .13.某种型号的笔记本电脑,原售价7500元/台,经连续两次降价后,现售价为4800元/台,则平均每次降价的百分率为 .14.将抛物线222y x x =-+沿y 向下平移1个单位,则所得的抛物线的顶点坐标是 .15.如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于E .则阴影部分面积为 (结果保留π).16.如图,正方形ABCD 的边BC 在x 轴上,E 是对角线AC 、BD 的交点,反比例函数y = 2 x(x >0)的图象经过A 、E 两点,则点D的坐标为____________.三、解答题(本题有9个小题,共72分)17.(本题满分6分) 用公式法解方程:230x x --=18.(本题满分6分)从男女学生共48人的班级中,选一名班长,假设任何人都有同样的当选机会,如果选得男生的概率为32,求男女学生人数. 19.(本题满分7分) 如图,AB 是⊙O 的直径,直线PQ 过⊙O 上的点C ,PQ 是⊙O 的切线.求证:∠BCP =∠A .(第15题图) (第10题图)1 2 (第16题图) (第11题图) (第19题图)20.(本题满分7分) 某电脑公司现有A ,B ,C 三种型号的甲品牌电脑和D ,E 两种型号的乙品牌电脑. 东沟中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)若各种选购方案被选中的可能性相同,求选中A 型号电脑的概率;(2)已知东沟中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A 型号电脑,求购买的A 型号电脑有几台.21.(本题满分7分)已知关于x 的一元二次方程04222=-++k x x 有两个不相等的实数根(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.22.(本题满分8分)如图,正比例函数12y x =的图象与反比例函数k y x=第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知△OAM 的面积为1..(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使P A +PB 最小.23.(本题满分9分)武当超市购进一批每千克价格为6元的新上市西瓜,在超市试销中发现:销售单价x (元/千克)与每天销售量y (千克)之间满足如图所示的一次函数关系.(1)求y 与x 之间的函数关系式;(2)写出每天的利润w 与销售单价x 之间的函数关系式,为了缩短西瓜销售期,规定每千克销售单价不超过12元,若你是超市负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?(第22题图)(第23题图)E24.(本题满分10分) 如图,在△ABC中,AB= AC,D是BC中点,AE平分∠BAD交BC于点E,点O是AB上一点,⊙O过A、E两点, 交AD于点G,交AB于点F.(1)求证:BC与⊙O相切;(2)当∠BAC=120°,AD=3时,求BF的长.25.(本题满分12分)如图,已知抛物线2(1)y a x=-+a≠0)经过点(2)A-,0,抛物线的顶点为D,过O作射线OM AD∥.过顶点D作平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.(1)求该抛物线的解析式;(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为()t s.问当t为何值时,四边形DAOP分别为直角梯形?等腰梯形?(3)若OC OB=,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t()s,连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.参考答案一、选择题(10×3分=30分)1.C;2.D;3.C;4.A;5.B;6.B;7.B;8.C;9.C;10.D.二、填空题(6×3分=18)11.60°;12.12;13.20%;14.(1,0);15.6π-;16.(3,2) .三、解答题(72分)17.(6分)解:a=1, b=1-, c=3-.------------ 1分(第24题图)(第25题图)方程有两个不等的实数根x == ------------ 5分即12x x == ----------- 6分 18.(6分)解:设该班男生人数为x 人,依题意得: -2483x = ------------ 4分 解得:x =32, 48-x =16 ------------ 5分即该班男生人数为32人,女生人数为16人. ------------ 6分19.(7分)证明:连OC ,则OC ⊥PQ∴∠BCP +∠BCO =90° ------------ 2分又∵AB 是直径, ∴∠ACB =90°∴∠A +∠B =90° ------------ 4分∵OB =OC∴∠B =∠BCO ------------ 6分∴∠BCP =∠A ------------ 7分20.(7分)解:(1)画树形图:------------ 2分∴21(63P A ==选中型号电脑) ------------ 3分 (2) 设购买A 型号电脑x 台,由(1)知,则购买D 型号电脑或E 型号电脑(36-x )台. 依题意得:①6000x +5000(36-x )=100000 ------------ 4分方程解不合题意,舍去. ------------ 5分②6000x +2000(36-x )=100000 ------------ 6分解得:x =7 ------------7分综合①、②知购买A 型号电脑7台.21.(7分)解:(1)由题知△=2241(24)0k -⨯⨯->, ------------ 2分 解得:52k < ------------ 3分 (2)由(1)知52k <,又k 为正整数,∴k =1或k =2 ------------ 4分 ①当k =1时,原方程可化为:2220x x +-=该方程的两根都不是整数,不合题意,舍去. ------------ 5分②当k =2时,原方程可化为:220x x +=该方程的两根都是整数,符合题意. ------------ 6分∴k =2. ------------ 7分22.(8分)解:(1)设A (a ,b ) 由11122OAM S OM AM ab ∆=== 得:2ab = ------------ 2分∴2k ab == ------------ 3分∴反比例函数解析式为:2y =(2)由122y x y x ⎧=⎪⎪⎨⎪=⎪⎩解得点A 的坐标为A (2,1) ------------ 4分由题知B (1,2) ------------ 5分延长AM 到A ',使AM =A 'M ,连A 'B 交x 轴于点P ,则P 为所求由B (1,2),(2,1)A '-求得直线A 'B 的解析式为:35y x =-+ ------------ 6分在35y x =-+中,令y =0,得x =53 ------------ 7分 ∴所求点P 坐标为P (53,0). ------------ 8分 23.(8分)解:(1)设所求函数关系式为:y kx b =+由图象知:360830010k b k b =+⎧⎨=+⎩,解得:30300k b =-⎧⎨=⎩∴所求函数关系式为:y =-30x +600 ------------ 3分(2) 2(6)30(13)1470w y x x =-=--+ ------------ 5分∵a =-30<0,对称轴为x =13 ------------ 6分∴当x ≤13时,w 随x 增大而增大 ------------ 7分∴当x =12时,w 值最大,且最大值为1440元. ------------ 8分24.(10分)(1)证明:连OE .∵AB =AC ,D 是BC 中点∴AD ⊥BC ------------ 1分∵OA =OE , ∴∠OAE =∠OEA∵AE 平分∠BAD , ∴∠DAE =∠OAE∴∠DAE =∠OEA ------------ 2分∴OD ∥AC∴OE ⊥BC ------------ 3分又∵点E 在⊙O 上∴BC 与⊙O 相切. ------------ 4分(2)解:∵AB =AC ,D 是BC 中点∴AD ⊥BC ,∠BAD =∠CAD∵AE 平分∠BAD , ∠BAC =120°∴∠DAE =∠EAF =∠B =30° ------------ 5分在Rt △DAE 中:由2222(2)AD DE AE DE +==,得:2223(2)DE DE +=解得:DE------------ 7分∴AE =2 DE =在Rt △AEF 中,由勾股定理,同上可得:EF =2 ------------ 8分∴AF =2 EF =4在Rt △ABD 中,∵∠B =30°∴AB =2 AD =6 ------------ 9分∴BF =AB -AF =2. ------------ 10分25.(12分)解:(1)把A (-2,0)代入y =a (x -1)2+33,得0=a (-2-1)2+33.∴a =-33 ∴该抛物线的解析式为y =-33(x -1)2+33 ------------ 2分即y =-33x 2+332x +338. (2)设点D 的坐标为(x D ,y D ), 则x D =-)(-332332 =1,y D =-33×1 2+332×1+338=33. ∴顶点D 的坐标为(1,33). ------------ 3分 如图,过点D 作DN ⊥x 轴于N ,则DN =33,AN =3,∴AD =22333)+(=6.∴∠ADN =60°∴∠DAO =60° ------------ 4分 ∵OM ∥AD①当DP ⊥OM 时,四边形DAOP 为直角梯形.过点O 作OE ⊥AD 轴于E .在Rt △AOE 中,∵AO =2,∠EAO =60°,∴AE =1.∵四边形DEOP 为矩形,∴OP =DE =6-1=5.∴t =5(s ) ------------ 5分②当PD =OA 时,四边形DAOP 为等腰梯形,此时OP =AD -2AE =6-2=4.∴t =4(s ) ------------ 6分综上所述,当t =5s ,4s 时,四边形DAOP 分别为直角梯形,等腰梯形.(3)由题知DAOC 是平行四边形.∵∠DAO =60°,OM ∥AD ,∴∠COB =60°.又∵OC =OB ,∴△COB 是等边三角形,∴OB =OC =AD =6.∵BQ =2t ,∴OQ =6-2t (0<t <3) ------------ 7分过点P 作PF ⊥x 轴于F ,则PF =23t . ∴S 四边形BCPQ =S △COB -S △POQ=21×6×33-21×(6-2t )×23t =23(t -23)2+8363 ------------ 10分 ∴当t =23(s )时,S 四边形BCPQ 的最小值为8363. ------------ 11分 此时OQ =6-2t =6-2×23=3,OP =23,OF =43, ∴QF =3-43=49,PF =433.∴PQ =22QF PF +=2249433)+()(=233. ------------ 12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019~2019学年度(上学期)期末考试九年级数学试题一.选择题(每题3分,共30分,下列各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的,请把你认为正确结论的代号填入下面表格中) 1.下列图形中,既是中心对称又是轴对称的图形是( ☆ )A B C D2.下列事件中,必然发生的为( ☆ ) A. 我市冬季比秋季的平均气温低 B. 走到车站公共汽车正好开过来C. 打开电视机正转播奥运会实况D. 掷一枚均匀硬币正面一定朝上3.在平面直角坐标系中,点P (2,-3)关于原点对称的点的坐标是( ☆ ) A .(2,3) B .(-2,3) C .(-2,-3) D .(-3,2) 4.下列各式正确的是( ☆ ) A.5323222=+=+ B. 32)53(3523++=+ C.94)9()4(⨯=-⨯- D.212214= 5.一元二次方程2x -2x +3=0的根的情况是( ☆ )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.有两个实数根6.若⊙1O 的半径为cm 3,⊙2O 的半径为cm 4,且圆心距121cm O O =,则⊙1O 与⊙2O 的位置关系是( ☆ )A .外离B .内含C .相交D .内切7.把二次函数2114y x x =+-化为y =a (x +m )2+n 的形式是( ☆ ) A .21(1)24y x =++ B .21(2)24y x =+-C .21(2)24y x =-+D .21(2)24y x =--8.某种商品零售价经过两次降价后,每件的价格由原来的800元降为现在的578元,则平均每次降价的百分率为( ☆ ) A .10% B .12% C .15% D .17%9.如图所示的向日葵图案是用等分圆周画出的,则⊙O 与半圆P 的半径的比为( ☆ )A.5﹕3B.4﹕1C.3﹕1D.2﹕1 10.如图,若000a b c <><,,,则抛物线2y ax bx c =++的图象大致为( ☆ )二.填空题(每题3分,共18分,直接填写结果)11.若式子5+x 在实数范围内有意义,则x 的取值范围是 .12.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .13.已知P 是⊙O 外一点,PA 切⊙O 于A ,PB 切⊙O 于B.若PA =6,则PB = . 14.将抛物线21(5)33y x =--+向左平移5个单位,再向上平移3个单位后得到的抛物线的解析式为 .15.已知抛物线2(0)y ax bx c a =++≠与x 轴的两个交点的坐标分别是(-3,0), (2,0),则方程20(0)ax bx c a ++=≠的解是____________________.16.如图,粮仓的顶部是圆锥形状,这个圆锥底面圆的半径长为3m ,母线长为6m ,为防止雨水,需在粮仓顶部铺上油毡,如果油毡的市场价是每平方米10元钱,那么购买油毡所需要的费用是 元(结果保留整数).三.解答题(学好数学要有坚固的基础知识!本大题有4个小题,共34分)17.(8分)计算:)6332(2)23(2-+-18.(8分)解方程x (x -1)=2. 有学生给出如下解法:∵ x (x -1)=2=1×2=(-1)×(-2),∴ 1,12;x x =⎧⎨-=⎩或2,11;x x =⎧⎨-=⎩或1,12;x x =-⎧⎨-=-⎩或2,1 1.x x =-⎧⎨-=-⎩解上面第一、四方程组,无解;解第二、三方程组,得 x =2或x =-1. ∴ x =2或x =-1.请问:这个解法对吗?试说明你的理由.如果你觉得这个解法不对,请你求出方程的解.19.(6分)如图,P 为等边△ABC 的中心. (1)画出将△ABP 绕A 逆时针旋转60°的图形;(不写画法,保留作图痕迹)(2)经过什么样的图形变换,可以把△ABP 变换到右边的△CMN ,请写出简要的文字说明.20.(12分)如图,⊙C 经过原点且与两坐标轴分别交于点A 和点B ,点A 的坐标为 (0,2),D 为⊙C 在第一象限内的一点且∠ODB=60°,解答下列各题: (1)求线段AB 的长及⊙C 的半径; (2)求B 点坐标及圆心C 的坐标. M四.解答题(学会用数学知识解决身边的实际问题!本大题有2个小题,共20分)21.(10分)在数学活动课上,同学们用一根长为1米的细绳围矩形.(1)小芳围出了一个面积为600㎝2的矩形,请你算一算,她围成的矩形的边长是多少?(2)小华想用这根细绳围成一个面积尽可能大的矩形,请你用所学过的知识帮他分析应该怎么围,并求出最大面积.22.(10分)宝宝和贝贝是一对双胞胎,他们参加迎新年长跑旗手选拔并与甲、乙、丙三人都进入了前5名.现从这5名入选者中确定2名作为旗手.试用画树形图或列表的方法求出:(1)宝宝和贝贝同时入选的概率;(2)宝宝和贝贝至少有一人入选的概率.五.解答题(学数学要善于观察思考,勇于探索!本大题有2个小题,共18分)23.(6分)先阅读,再回答问题:如果x 1,x 2是关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个根,那么x 1+x 2,x 1x 2与系数a ,b ,c 的关系是:x 1+x 2=-b a ,x 1x 2=ca.例如:若x 1,x 2是方程2x 2-x -1=0的两个根,则x 1+x 2=-b a =--12=12,x 1x 2=c a =-12=-12.(1)若x 1,x 2是方程2x 2+x -3=0的两个根,则x 1+x 2= ,x 1x 2= ;(2)若x 1,x 2是方程x 2+x -3=0的两个根,求x 2x 1+x 1x 2的值.解:(1)x 1+x 2= ,x 1x 2= . (2)24.(12分)已知一条抛物线与y 轴的交点为C ,顶点为D ,直线CD 的解析式为3y x =+,并且线段CD 的长为23.(1)求这条抛物线的解析式;(2)设(1)中的抛物线与x 轴有两个交点A (1x ,0)、B (2x ,0),且点A 在点B 的左侧,求线段AB 的长;(3)若以AB 为直径作⊙M ,请你判断直线CD 与⊙M 的位置关系,并说明理由.九年级数学试题答案和评分说明1~10:C A B C A D B C D B 11. x ≥-5 12.0.3 13.6 14.6312+-=x y 15.1232x x =-=, 16.565 17.原式=3+2-62+62-36=5-36.……8分18.解法不对……1分,理由略……4分,正确解法得到x =2或x =-1……8分. 19.(1)图形略……3分;(2)先将△ABP 绕A 逆时针旋转60°,然后再将△ABP 绕B 顺时针旋转90°……6分;本题也可以先旋转,后平移,方法略. 20.(1)连接AB ,∵∠ODB=∠OAB ,∠ODB=60°∴∠OAB=60°,∵∠AOB 是直角∴AB 是⊙C 的直径,∠OBA=30°,∴AB=2OA=4,∴⊙C 的半径r=2 ……5分 (2)在Rt △OAB 中,由勾股定理得:OB 2+ OA 2= AB 2, ∴OB=B 的坐标为:(0)……8分过C 点作CE ⊥OA 于E ,CF ⊥OB 于F ,由垂径定理得: OE=AE=1,OF=BF=,∴CF=1,∴C,1)……12分21.(1)设她围成的矩形的一边长为xcm ,得:60050=-)(x x ……2分,302021==x x ,,当x =20时,3050=-x ㎝;当x =30时,cm x 2050=-,…4分所以小芳围成的矩形的两邻边分别是20㎝,30㎝……5分(2)设围成矩形的一边长为xcm ,面积为2ycm ,则有:50y x x =-(),即250y x x =-+, 225625y x =--+()……8分 当25x =时,y最大值=625;此时,2550=-x ,矩形成为正方形。

即用这根细绳围成一个边长为25㎝的正方形时,其面积最大,最大面积是6252cm ……10分22.树形图如下:贝贝 甲 乙 丙 宝宝 甲 乙 丙 宝宝 贝贝 乙 丙 甲 丙 甲 宝宝 贝贝 乙宝宝 贝贝 宝宝 贝贝 甲丙乙共20种情况……6分,(1)宝宝和贝贝同时入选的概率为2010=……8分 (2)宝宝和贝贝至少有一人入选的概率为1472010=……10分 23.(1)-12,-32.…………2分 (2)由2x +x -3=0,可得x 1+x 2=-1,x 1x 2=-3. …………3分;x 2x 1+x 1x 2=x 22+x 21x 1x 2=2121212()2x x x x x x +-……5分=(-1)2-2×(-3)-3=-73.……6分24.(1)由题得C (0,3),设顶点D (x ,y ),∵点D 在直线y=x+3上,∴D (x ,x+3),得2222x 2)3y (x CD =-+=,18x 223CD 2=∴=,,解得3x 3x 21-==,,0y 6y 21==∴,,∴D (3,6)或'D (-3,0),当D (3,6)时,设抛物线为6)3x (a y 2+-=,∵抛物线过(0,3)点,∴3x 2x 31y 31a 2++-=∴-=,;当'D (-3,0)时,同理可得3x 2x 31y 2++=。

∴所求抛物线为:3x 2x 31y 3x 2x 31y 22++=++-=或 ……5分(2)∵抛物线与x 轴有两个交点,=∴y 3x 2x 312++不合题意,舍去。

抛物线应为:3x 2x 31y 2++-=,令y=0,得03x 2x 312=++-,解得233x 233x 21-=+=,,∵点A 在B 的左侧,∴A (233-,0),B (233+,0),26AB =∴……8分(3)直线CD 与⊙M 相切……9分,⊙M 的半径23r =,M (3,0),设直线3x y +=与x 轴交于点E ,则E (-3,0),ME=6,∴OE=OC ,∴∠OEC=45°,作MG ⊥CD 于G ,则CE=CM ,得222ME GM GE =+,23MG =,即圆心M 到直线CD 的距离等于⊙M 的半径23r =,∴直线CD 与⊙M 相切……12分(答案仅参考,若有不同解法,过程和。

相关文档
最新文档