医学图像处理综述参考模板
医疗图像处理与分析技术综述

医疗图像处理与分析技术综述随着医疗技术的不断进步,医学影像技术也越来越被广泛应用。
医疗图像处理与分析技术作为其中一项重要技术,被广泛应用于医学影像的处理和诊断中。
本文将综述医疗图像处理与分析技术在医疗领域中的应用和发展现状。
一、医疗图像处理技术医疗图像处理技术通过对医学影像的数字化处理,使医生可以更加清晰地观察和分析病例,从而能够更快速、准确地做出诊断和制定治疗方案。
目前,医疗图像处理技术主要包括以下几个方面:1、数字化处理医学影像的数字化处理主要包括图像采集、图像重建、图像增强、噪声去除和几何校正等处理。
数字化处理能够大大提高诊断的准确度,减少误诊的可能。
2、图像配准图像配准是指将两幅或多幅医学影像据几何、亮度等特征进行配准,从而使医生可以更直观、准确地进行对比分析。
图像配准技术不仅可以用于医学影像的对比分析,还可以在手术导航和生物活体测量等领域中发挥重要作用。
3、三维重建三维重建技术可以通过对医学影像的二维图像进行重建,得到更为直观、形象的三维效果。
三维重建技术广泛应用于肝脏、心脏等部位的手术导航、病理分析和治疗方案的制定等方面。
二、医疗图像分析技术医疗图像分析技术是指通过对医学影像的数据进行统计、分析和挖掘,帮助医生发现疾病的特征和规律,从而提高诊断的准确性和治疗的效果。
目前,医疗图像分析技术主要包括以下几个方面:1、图像分割图像分割技术可以将医学影像中不同组织和器官分离出来,以便医生可以更准确地对不同组织进行分析。
图像分割技术在肝脏、肺部等器官的分割、肿瘤和异常病变的定位和分析等方面有着广泛的应用。
2、特征提取特征提取技术是通过对医学影像中的特征进行分析和提取,帮助医生识别疾病的特征,从而更准确地进行诊断和制定治疗方案。
目前,特征提取技术在肺部结节、肝脏肿瘤、乳腺癌等领域中得到了广泛的应用。
3、图像分类和诊断图像分类和诊断技术是指将医学影像进行分类和诊断,分类可以将不同类型的疾病进行区分,诊断则可以通过对医学影像进行分析,判断病灶的性质和范围。
医学影像图像处理技术综述

医学影像图像处理技术综述一、引言医学影像是一种利用大量设备及技术手段对人体进行非侵入性或微创性检查的科技领域,可以为医生提供诊断和治疗方案。
影像图像处理技术可以提高影像的质量和信息含量,方便医生进行精准诊断和治疗,因此在医学影像学领域起到了重要作用。
二、医学影像技术分类根据检查部位不同,医学影像技术可以分为X线检查、CT检查、MRI检查、PET检查、超声检查、放射性核素检查等。
这些技术对于各种疾病的诊断和治疗都有重要意义。
三、医学影像图像处理技术概述医学影像图像处理技术是指对获取的医学影像图像进行数字信号处理和分析,提高图像质量、诊断信息的获取及分析,以实现对患者病情的诊断和治疗。
下面具体介绍医学影像图像处理技术常用方法。
1.噪声去除医学影像图像中可能存在各种不同的噪声,会影响到医生对该影像图像的准确判断。
因此,对医学影像图像进行噪声去除是一种常见的图像处理技术。
主要方法有中值滤波、平滑滤波、Wiener滤波等。
2.图像增强图像增强是指通过一系列数字图像处理方法,提高图像的质量和信息含量,帮助医生更好地进行诊断和治疗。
常见的图像增强方法有灰度变换、线性滤波、非线性滤波等。
3.图像配准医学影像图像配准是指将不同影像之间的空间和形状统一,以便医生进行比较分析,掌握病情的变化情况。
常见的方法有基于标记点的配准、基于互信息的配准、基于形状的配准等。
4.分割与测量图像分割是指将医学影像图像中的不同组织分割出来,以便医生进行病情分析和诊断。
常见的图像分割方法有阈值分割、区域生长法、边缘检测法等。
医学影像图像分割之后,还需要进行测量,例如测量病灶的大小、形态等。
5.三维可视化三维可视化是指将医学影像图像转化为三维图像,以便医生进行更加全面、深入地分析和诊断。
常见的三维可视化方法有动态体绘、表面重建、体绘等。
四、结论医学影像图像处理技术在医疗领域中的应用越来越广泛。
本文对医学影像技术进行了分类介绍,并详细阐述了医学影像图像处理技术常用方法,包括噪声去除、图像增强、图像配准、分割与测量、三维可视化等。
基于深度学习的医学像处理与分析综述

基于深度学习的医学像处理与分析综述基于深度学习的医学图像处理与分析综述深度学习技术近年来在医学领域的应用得到了广泛关注和探索。
医学图像处理与分析作为其中的重要应用领域,通过利用深度学习技术,可以对医学图像进行更加准确和高效的处理与分析。
本文将对基于深度学习的医学图像处理与分析进行综述,并对其在不同领域的应用进行概述和分析。
一、深度学习在医学图像处理中的应用1. 图像预处理深度学习技术可以用于医学图像的去噪、增强、解析度提升等预处理过程。
例如,通过使用卷积神经网络(CNN)对医学图像进行降噪处理,可以提高图像质量和医生的诊断准确性。
2. 特征提取与表示学习深度学习技术可以利用卷积神经网络自动提取特征,学习到更具有判别性的特征表示。
这些特征可以用于医学图像的分类、检测、分割等任务。
例如,在肺癌检测中使用卷积神经网络提取肺部肿瘤的特征,可以帮助医生更准确地判断患者是否患有肺癌。
3. 医学图像分割深度学习技术可以应用于医学图像的分割任务,通过对图像进行像素级别的分类,将图像中感兴趣的区域从背景中分离出来。
例如,在病理组织图像分割中,利用卷积神经网络可以将不同组织的区域准确地进行分割,有助于医生进行病变区域的定位和诊断。
4. 疾病诊断与预测深度学习技术可以应用于医学图像的疾病诊断与预测任务。
通过对大量的医学图像进行学习和训练,深度学习模型可以帮助医生准确地判断患者是否患有某种疾病,并可以预测疾病的发展趋势。
例如,在眼科领域,利用深度学习技术可以对眼底图像进行分析,帮助医生进行糖尿病视网膜病变的早期诊断与预测。
二、深度学习在医学图像处理与分析中的挑战1. 数据量不足医学图像数据的采集和标注需要专业知识和大量的时间与人力投入,导致医学图像数据集通常较小。
由于深度学习模型需要大量的训练数据进行学习,这给深度学习在医学图像处理与分析中的应用带来了挑战。
2. 不平衡样本分布医学图像中不同疾病的样本数量往往不均衡,导致深度学习模型容易出现偏差。
图像处理技术综述

图像处理技术综述图像处理技术是应用于计算机视觉、计算机图形学、人工智能等领域的一种技术,用于改善或增强图像的质量、可视性、信息含量或拟合特定需求。
在当今信息技术快速发展的时代,图像处理技术已被越来越广泛地应用于医学、军事、安全监控、遥感、交通、广告等领域。
一、图像处理的基本流程1、获取图像首先需要获得图像,其方式很多。
例如,用专业摄像机或手机或扫描仪捕获图像。
另外,从互联网或其他共享资源中获取的图像也可以作为处理对象。
2、预处理图像在采集到图像数据后,需要对图像进行预处理。
这主要是为了去除噪声和畸变,以便更好地处理图像数据。
一些常见的操作包括滤波、均衡化、归一化和旋转等。
3、分割图像将图像分成若干个区域,通过分析这些区域来获取有用的信息。
分割可以基于颜色、亮度、纹理、图像特征、形状等进行。
4、提取特征提取图像中的特征是使用智能算法和其他技术来描述图像中重要的信息。
这些特征可以是纹理、边缘、角点或其他模式,并且可以用来判断图片是否满足特定要求。
5、抽取结构信息对于一些需要对图像进行量化和分析的应用,可以从图像中提取出具有代表性的结构信息。
应用某些算法,通过获取的特征和结构信息来分析图像。
根据分析的结果,可以识别物体、建立模型、人机交互等等。
图像滤波是一种常用的基本方法,它主要用于去除图像中的噪声。
常见的滤波方法有平均滤波、高斯滤波、中值滤波等。
图像增强技术是指通过算法将低质量的图像improved以获得更高质量的图像,例如提高对比度、清晰度、亮度等。
图像压缩是将数字图像压缩到尽可能小的空间,使其更容易存储和传输。
最常用的压缩方式是JPEG和PNG。
图像分割是将图像分割成不同的部分,每个部分对应相应的特征,这些部分组成面向目标识别和跟踪的区域。
常用而有效的算法包括K均值聚类、分水岭算法等。
特征提取是将图像中的信息抽象化作为特定可识别模式。
从图像中提取特征通常需要使用泛函分析和模式识别技术。
6、目标识别目标识别即在图像中找到和辨识特定目标,它应用于许多领域,例如医疗图像识别、移动机器人、军事目标等重要领域。
医学图像处理综述(精编文档).doc

医学图像处理综述(精编文档).doc【最新整理,下载后即可编辑】医学图像处理综述墨南-初夏2010-07-24 23:51:56医学图像处理的对象是各种不同成像机理的医学影像。
广泛使用的医学成像模式主要分为X射线成像(X—CT) ,核磁共振成像(MRI),核医学成像(NMI)和超声波成像(UI) 这四类。
(1)x射线成像:传统x射线成像基于人体不同器官和组织密度不同。
对x射线的吸收衰减不同形成x射线影像。
(例如人体中骨组织密度最大,在图像上呈白影,肺是软组织并且含有气体,密度最低,在照片上的图像通常是黑影。
)常用于对人体骨骼和内脏器官的疾病或损伤进行诊断和定位。
现代的x射线断层成像(x—cT) 发明于20世纪70年代,是传统影像技术中最为成熟的成像模式之一,其速度已经快到可以对心脏实现动态成像。
其缺点是医生要在病人接收剂量和片厚之间进行折衷选择,空间分辨率和对比度的还需进一步提高。
(2)核磁共振成像(MIR) 发展于20世纪70年代,到80年代才进入市场,这种成像设备具有在任意方向上的多切片成像、多参数和多核素成像、可实现整个空问的真三维数据采集、结构和功能成像,无放射性等优点。
目前MRI的功能成像(fMRI) 是MIR设备应用的前沿领域,广泛应用于大脑功能性疾病的诊断,并为肿瘤等占位性病变提供功能信息。
MRI 受到世人的广泛重视,其技术尚在迅速发展过程中。
(3)核医学成像(NMI ) ,目前以单光子计算机断层成像(SPECT) 和正电子断层成像(PET) 为主,其基本原理是向人体注射放射性核素示踪剂,使带有放射性核素的示踪原子进入人体内要成像的脏器或组织通过测量其在人体内的分布来成像。
NMI 不仅可以提供静态图像,而且可提供动态图像。
(4)超声波成像(Ultrasonic Imaging ) ,属于非电离辐射的成像模态,以二维平面成像的功能为主,加上血液流动的彩色杜普勒超声成像功能在内,在市场上已经广泛使用。
医学图像处理技术综述

一、医学图像处理技术综述1摘要:随着医学成像和计算机辅助技术的发展,从二维医学图像到三维可视化技术成为研究的热点,本文介绍了医学图像处理技术的发展动态,对图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。
在比较各种技术在相关领域中应用的基础上,提出了医学图像处理技术发展所面临的相关问题及其发展方向。
关键词:医学图像处理;图像分割;图像配准;图像融合;纹理分析1.引言近20 多年来,医学影像已成为医学技术中发展最快的领域之一,其结果使临床医生对人体内部病变部位的观察更直接、更清晰,确诊率也更高。
20 世纪70 年代初,X-CT 的发明曾引发了医学影像领域的一场革命,与此同时,核磁共振成像象(MRI :Magnetic Resonance Imaging)、超声成像、数字射线照相术、发射型计算机成像和核素成像等也逐步发展。
计算机和医学图像处理技术作为这些成像技术的发展基础,带动着现代医学诊断正产生着深刻的变革。
各种新的医学成像方法的临床应用,使医学诊断和治疗技术取得了很大的进展,同时将各种成像技术得到的信息进行互补,也为临床诊断及生物医学研究提供了有力的科学依据。
在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,往往需要借助医生的经验来判定。
至于准确的确定病变体的空间位置、大小、几何形状及与周围生物组织的空间关系,仅通过观察二维切片图象是很难实现的。
因此,利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,可以大大提高医疗诊断的准确性和可靠性。
此外,它在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用。
本文对医学图像处理技术中的图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。
2.医学图像三维可视化技术2.1三维可视化概述医学图像的三维可视化的方法很多,但基本步骤大体相同,如图.。
图像处理文献综述【范本模板】

信息工程学院毕业设计文献综述姓名:学号:专业:班级:此栏为论文题目作者姓名:(塔里木大学信息工程学院**系**班,电话号码)摘要:在图像处理中,图像滤波起着重要作用。
它可以有效地抑制(平滑)各种噪声、保持边缘信息,从而改善后续处理工作的质量(如提高图像分割精度等)。
图像滤波的方法有很多,比如说中值滤波、均值滤波、高斯滤波、维纳滤波等,中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,均值滤波是把每个像素都用周围的8个像素来做均值操作,高斯滤波实质上是一种信号的滤波器,其用途是信号的平滑处理,本文着重对中值滤波、均值滤波和高斯滤波进行分析,进一步了解它们的原理、特点、改进的算法及其应用.关键词:图像;滤波;中值滤波;均值滤波;高斯滤波一、引言图像滤波就是采用一定的算法对数字图像进行处理,以获得人眼视觉或者某种接受系统所需要的图像处理过程。
[1]对图像滤波的要求是,既能滤除图像中的噪声又能保持图像的细节。
[2]由于噪声和图像细节的混叠,所以在图像滤波中,图像的去噪与细节的保留往往是一对矛盾。
数字图像滤波技术是20世纪60年代发展起来的一门新兴学科,随着图像滤波理论和方法的进一步完善,[3]使得数字图像滤波技术在各个领域得到了广泛应用,并显示出广阔的应用前景。
面对数字化时代的来临,图像滤波知识显得越来越重要,实际上图像滤波已经渗透到计算机、电子、地质、气象、医学等诸多领域.二、正文1、**的发展状况图像滤波的发展大致经历了初创期、发展期、普及期和实用化期4个阶段.初创期开始于20世纪60年代,当时的图像采用像素型光栅进行少秒显示,大多采用中、大型机对其处理.[5]在这一时期,由于图像存储成本高、处理设备昂贵,其应用面很窄。
进入20世纪70年代的发展期,开始大量采用中、小型机进行处理,图像处理也逐渐改用光栅扫描方式,特别是CT和卫星遥感图像的出现,对图像处理技术的发展起到了很好的推动作用。
医学图像处理技术综述

医学图像处理技术综述2阐述了医学图像处理技术的发展动态,介绍了目前国内在三维医学图像的可视化和基于PACS的医学图像压缩在医学图像处理方面的进展。
在比较各种技术在相关领域中应用的基础上,提出了医学图像处理技术发展所面临的相关问题及其发展方向。
关键词医学图像处理; 可视化; 图像分割; 图像匹配; 图像融合; 图像存档通信系统近20多年来,医学影像已成为医学技术中发展最快的领域之一,其结果使临床医生对人体内部病变部位的观察更直接、更清晰,确诊率也更高。
70年代初,X-CT的发明曾引发了医学影像领域的一场革命,与此同时,核共振成像、超声成像、数字射线照相术、发射型计算机成像和核素成像等也逐步发展。
计算机和医学图像处理技术作为这些成像技术的发展基础,带动着现代医学诊断正产生着深刻的变革。
各种新的医学成像方法的临床应用,使医学诊断和治疗技术取得了很大的进展,同时将各种成像技术得到的信息进行互补,也为临床诊断及生物医学研究提供了有力的科学依据。
因此,医学图像处理技术一直受到国内外有关专家的高度重视。
医学图像处理技术医学图像处理技术包括很多方面,本文主要介绍分析图像分割、图像配准和融合以及伪彩色处理技术和纹理分析在医学领域的应用和发展。
图像分割就是把图像中具有特殊涵义的不同区域分开来,这些区域使互不相交的每一个区域都满足特定区域的一致性。
它是图像处理与图像分析中的一个经典问题。
目前针对各种具体问题已经提出了许多不同的图像分割算法, 对图像分割的效果也有很好的分析结论。
但是由于图像分割问题所面向领域的特殊性,至尽尚未得到圆满的、具有普适性的解决方法。
图像分割技术发展至今,已在灰度阈值分割法、边缘检测分割法、区域跟踪分割法的基础上结合特定的理论工具有了更进一步的发展。
比如基于三维可视化系统结合Fast Marching 算法和Watershed变换的医学图像分割方法, 能得到快速、准确的分割结果。
图像分割同时又是进行三维重建的基础,分割的效果直接影响到三维重建后模型的精确性,分割可以帮助医生将感兴趣的物体(病变组织等)提取出来,帮助医生能够对病变组织进行定性及定量的分析,从而提高医生诊断的准确性和科学性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
医学图像处理综述墨南-初夏2010-07-24 23:51:56医学图像处理的对象是各种不同成像机理的医学影像。
广泛使用的医学成像模式主要分为X射线成像(X—CT) ,核磁共振成像(MRI),核医学成像(NMI)和超声波成像(UI) 这四类。
(1)x射线成像:传统x射线成像基于人体不同器官和组织密度不同。
对x射线的吸收衰减不同形成x射线影像。
(例如人体中骨组织密度最大,在图像上呈白影,肺是软组织并且含有气体,密度最低,在照片上的图像通常是黑影。
)常用于对人体骨骼和内脏器官的疾病或损伤进行诊断和定位。
现代的x射线断层成像(x—cT) 发明于20世纪70年代,是传统影像技术中最为成熟的成像模式之一,其速度已经快到可以对心脏实现动态成像。
其缺点是医生要在病人接收剂量和片厚之间进行折衷选择,空间分辨率和对比度的还需进一步提高。
(2)核磁共振成像(MIR) 发展于20世纪70年代,到80年代才进入市场,这种成像设备具有在任意方向上的多切片成像、多参数和多核素成像、可实现整个空问的真三维数据采集、结构和功能成像,无放射性等优点。
目前MRI的功能成像(fMRI) 是MIR设备应用的前沿领域,广泛应用于大脑功能性疾病的诊断,并为肿瘤等占位性病变提供功能信息。
MRI 受到世人的广泛重视,其技术尚在迅速发展过程中。
(3)核医学成像(NMI ) ,目前以单光子计算机断层成像(SPECT) 和正电子断层成像(PET) 为主,其基本原理是向人体注射放射性核素示踪剂,使带有放射性核素的示踪原子进入人体内要成像的脏器或组织通过测量其在人体内的分布来成像。
NMI不仅可以提供静态图像,而且可提供动态图像。
(4)超声波成像(Ultrasonic Imaging ) ,属于非电离辐射的成像模态,以二维平面成像的功能为主,加上血液流动的彩色杜普勒超声成像功能在内,在市场上已经广泛使用。
超声成像的缺点是图像对比度差、信噪比不好、图像的重复性依赖于操作人员。
但是,它的动态实时成像能力是别的成像模式不可代替的在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体.这往往需要借助医生的经验来判定。
至于准确地确定病变体的空间位置、大小、几何形状及与周围生物组织的空间关系,仅通过观察二维切片图象是很难实现的。
因此,利用计算机图像处理技术对二维切片图象进行分析和处理。
实现对人体器官,软组织和病变体的分割提取,三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析。
从而大大提高医疗诊断的准确性和可靠性。
在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用。
医学图像处理技术包括很多方面。
本文主要从图像分割,图像配准,图像融合以及纹理分析技术方面进行介绍。
1. 医学图像分割:由于人体的组织器官不均匀、器官蠕动等造成医学图像一般具有噪声、病变组织边缘模糊等特点,医学图像分割技术的目的就是将图像中感兴趣的区域清楚的提取出来,从而为定量、定性分析提供基础,同时它也是三维可视化的基础。
分割的效果直接影响到三维重建后模型的精确性。
医学图像分割就是一个根据区域间的相似或不同把图像分割成若干区域的过程。
目前,主要以各种细胞,组织与器官的图像作为处理的对象。
传统的图像分割技术有基于区域的分割方法,基于边界的分割方法和基于阈值的图像分割算法。
基于区域的算法依赖于图像的空间域局部特征,如灰度,纹理及其它象素统计特性的均匀性等。
基于边界的算法主要是利用梯度信息确定目标的边界。
结合特定的理论工具。
基于阈值的算法,要选取多个图像灰度取值范围内的阈值,再将图像中各个像素与阈值比较,依据比较的结果将图像划分为互不交叉重叠的区域。
近年来,随着其它新兴学科的发展,产生了一些全新的图像分割技术。
如基于统计学的方法、基于模糊理论的方法、基于神经网络的方法、基于小波分析的方法、基于模型的snake模型f 动态轮廓模型) 、组合优化模型,以及基于三维可视化系统的Fast Marching算法和Watershed变换的医学图象分割方法等。
虽然不断有新的分割方法被提出。
但结果不是很理想。
目前研究的热点是一种基于知识的分割方法.即通过某种手段将一些先验的知识导入分割过程中,从而约束计算机的分割过程,使得分割结果控制在我们所能认识的范围内而不至于太离谱。
比如在肝内部肿块与正常肝灰度值差别很大时。
不至于将肿块与正常肝看成2个独立的组织。
医学图像分割方法的研究具有如下显著特点:现有任何一种单独的图像分割算法都难以对一般图像取得比较满意的结果。
要更加注重多种分割算法的有效结合:由于人体解剖结构的复杂性和功能的系统性。
虽然已有研究通过医学图像的自动分割区分出所需的器官、组织或找到病变区的方法脚,但目前现成的软件包一般无法完成全自动的分割.尚需要解剖学方面的人工干预f 4 1 。
在目前无法完全由计算机来完成图像分割任务的情况下,人机交互式分割方法逐渐成为研究重点:新的分割方法的研究主要以自动、精确、快速、自适应和鲁棒性等几个方向作为研究目标。
经典分割技术与现代分割技术的综合利用(集成技术)是今后医学图像分割技术的发展方向。
2.图像配准。
如何使多次成像或多种成像设备的信息得到综合利用,弥补信息不完整、部分信息不准确或不确定引起的缺陷,使临床的诊断治疗、放疗定位、计划设计、外科手术和疗效评估更准确,已成为医学图像处理急需解决的重要课题。
医学图像配准是通过寻找某种空间变换,使两幅图像的对应点达到空间位置和解剖结构上的完全一致。
要求配准的结构能使两幅图像上所有的解剖点,或至少是所有具有诊断意义以及手术区域的点都达到匹配。
目前医学图像配准方法有基于外部特征的图像配准(有框架) 和基于图像内部特征的图像配准(无框架) 两种方法。
后者由于其无创性和可回溯性,已成为配准算法的研究中心。
基于互信息的弹性形变模型也逐渐成为研究热点。
互信息是统计两个随机变量相关性的测度,以互信息作为两幅图像相似性测度进行配准基于如下原理:当两幅基于共同的解剖结构的图像达到最佳配准时,它们对应的图像特征的互信息应为最大。
图像配准是图像融合的前提,是公认难度较大的图像处理技术,也是决定医学图像融合技术发展的关键技术。
近年来国外在图像配准方面研究很多,如几何矩的配准、利用图像的相关系数、样条插值等多项式变换对图像进行配准。
国内研究人员也提出了一些相应的算法:对于两幅图像共同来估计其正反变换的一种新的图像配准方法,称为一致图像配准方法;采用金字塔式分割,进行多栅格和多分辨率的图像配准,称为金字塔式多层次图像配准方法;为了提高CT、MR I、PEC多模态医学图像的三维配准、融合的精度,还可以采用基于互信息的方法。
不同的医学图像提供了相关脏器的不同信息,图像融合的潜力在于综合处理应用这些成像设备所得信息以获得新的有助于临床诊断的信息。
利用可视化软件,对多种模态的图像进行图像融合,可以准确地确定病变体的空间位置、大小、几何形状以及它与周围生物组织之间的空问关系,从而及时高效地诊断疾病,也可以用在手术计划的制定、病理变化的跟踪、治疗效果的评价等方面。
在放疗中,利用MR图像勾勒画出肿瘤的轮廓线,也就是描述肿瘤的大小;利用CT图像计算出放射剂量的大小以及剂量的分布,以便修正治疗方案。
在制定手术方案时,对病变与周围组织关系的了解是手术成功与否的关键,所以CT与MR图像的融合为外科手术提供有利的佐证,甚至为进一步研究肿瘤的生长发育过程及早期诊断提供新的契机。
在CT成像中,由于骨组织对x线有较大的吸收系数,很敏感而在MR成像中,骨组织含有较低的质子密度,所以MR对骨组织和钙化点信号较弱,融合后的图像对病变的定性、定位有很大的帮助。
由于不同医学成像设备的成像机理不同,其图像质量、空间与时间特性有很大差别。
因此,实现医学图像的融合、图像数据转换、图像数据相关、图像数据库和数据理解都是亟待解决的关键技术。
2. 图像融合。
图像融合的主要目的是通过对多幅图像问的冗余数据的处理来提高图像的可读性.对多幅图像间的互补信息的处理来提高图像的清晰度。
因为不同的医学影像设备获取的影像反映了不同侧重点的信息:功能图像(SPECT、PET等)分辨率较差,但它提供的脏器功能代谢和血液流动信息是解剖图像所不能替代的;解剖图像(CT、MRI、B超等) 以较高的分辨率提供了脏器的解剖形态信息,其中CT有利于更致密的组织的探测,而MRI能够提供软组织的更多信息。
多模态医学图像的融合把有价值的生理功能信息与精确的解剖结构结合在一起.可以为临床提供更加全面和准确的资料。
融合图像的创建分为图像数据的融合与融合图像的显示两部分来完成。
目前,图像数据融合主要有以像素为基础的方法和以图像特征为基础的方法。
前者是对图像进行逐点处理。
把两幅图像对应像素点的灰度值进行加权求和、灰度取大或者灰度取小等操作。
算法比较简单,不过实现效果和效率都相对较差.融合后图像会出现一定程度的模糊。
以图像像素为基础的融合法模型后者要对图像进行特征提取、目标分割等处理,用到的算法原理复杂,但是实现效果却比较理想。
图像融合的步骤一般为:①将源图像分别变换至一定变换域上;②在变换域上设计一定特征选择规则;③根据选取的规则在变换域上刨建融合图像;④逆变换重建融合图像。
⑤融合图像的显示。
融合图像的显示常用的方法有伪彩色显示法、断层显示法和三维显示法等。
伪彩色显示一般以某个图像为基准用灰度色阶显示,将另一幅图像叠加在基准图像上,用彩色色阶显示。
断层显示法常用于某些特定图像。
可以将融合后的三维数据以横断面、冠状面和矢状面断层图像同步地显示。
便于观察者进行诊断。
三维显示法是将融合后数据以三维图像的形式显示,使观察者可更直观地观察病灶的空问解剖位置。
这在外科手术设计和放疗计划制定中有重要意义。
目前,医学图像融合技术中还存在较多困难与不足。
首先,基本的理论框架和有效的广义融合模型尚未形成。
以致现有的技术方法还只是针对具体病症、具体问题发挥作用,通用性相对较弱。
研究的图像以CT、MRI、核医学图像为主,超声等成本较低的图像研究较少,且研究主要集中于大脑、肿瘤成像等;其次由于成像系统的成像原理的差异,其图像采集方式、格式以及图像的大小、质量、空间与时间特性等差异大,因此研究稳定且精度较高的全自动医学图像配准与融合方法是图像融合技术的难点之一;最后,缺乏能够客观评价不同融合方法融合效果优劣的标准,通常用目测的方法比较融合效果。
有时还需要利用到医生的经验。
3纹理分析。
一般认为图像的纹理特征描述物体表面灰度或颜色的变化,这种变化与物体自身属性有关,是某种纹理基元的重复。
Sldansky早在1978年给出了一个较为适合于医学图像的纹理定义:“如果图像的一系列固有的统计特性或其它的特性是稳定的、缓慢变化的或者是近似周期的,那么则认为图像的区域具有不变的纹理”。