新能源发电与并网技术

合集下载

新能源发电并网对电网电能质量的影响及控制措施

新能源发电并网对电网电能质量的影响及控制措施

新能源发电并网对电网电能质量的影响及控制措施摘要:当前,能源形势越来越严峻,在此时代背景下,加大新能源的开发力度势在必行。

电能作为一种加快设备运转速度的基本能源,其在众多领域得到了全面推广应用。

新能源的开发主要是将不同能量向电能转化。

新能源开发面临着技术瓶颈,并网发电对现有成熟电网具有一定的影响。

鉴于此,本文立足于新能源发电优点,围绕新能源发电并网对电能质量的影响及控制措施展开如下探讨。

关键词:新能源发电;发电并网;电能质量1.新能源发电优点与并网分析通常情况下,新能源发电位置距离用户较近,布置较为合理,特别是在边远地区,电力能源的利用具有明显的优势,和传统的大型供电系统相比,电力能源的利用如下:(1)能源利用率高、节能效果好。

新能源发电在用户附近,输电距离相对较近,输电损失小,能源利用率高;(2)对环境污染小,环保价值高。

当前,新能源发电主要是以太阳能、风能、地热能以及潮汐能为主要能源,这些作为可再生清洁能源,不会污染环境,同时也省去了原料运输。

(3)投资成本低,风险低。

新能源发电的建设速度快,主要用到的是自然可再生资源,因此,要增加一定量的设备投入和人员投入,如果新能源和用户间的距离较近,则无需使用较大的配电设施,投资成本和运行成本都比较低,而且建设周期短[1]。

新能源发电并网环节存在着很多不确定因素,比如,在新能源发电并网前启动和运行环节,要明确用户的实际需求,并和原有电网配合。

新能源发电在环境因素的影响下,增加了并网压力。

2.新能源发电并网对电网电能质量的具体影响2.1 影响电网谐波新能源发电环节,电力电子装置的应用具有不同优势,主要是因为该装置的构造特殊,可能会面临直流谐波问题,进而会对电网电能质量产生影响。

比如,在光伏发电环节,由于光照强弱会对发电效率产生一定程度的影响,甚至还会因为电流谐波而引起各种电能问题。

基于新能源发电技术和自然环境之前的关系,功率的改变也有可能成为造成谐波污染的主要原因。

新能源发电及并网技术综述

新能源发电及并网技术综述

新能源发电及并网技术新能源发电及并网技术综述摘要:随着化石燃料等传统能源的日益枯竭,开发和利用新能源成为当前人类社会迫切需要解决的问题。

新能源的开发利用主要是将其转化为电能,并将电能传输给用户。

因此,新能源发电和并网技术是开发利用新能源的两个最为关键技术。

本文首先介绍新能源发电的概念、分类以及新能源发电系统的运行与控制技术;其次,介绍了新能源并网的运行与控制;然后重点深入介绍了波浪能发电技术以及波浪能发电场的运行与控制。

文章最后对新能源发电及并网技术的研究进行了展望。

关键词:新能源;发电;并网;波浪能0 引言能源是能够向人类提供某种形式能量的自然资源,包括所有的燃料、流水、阳光、地热、风等。

新能源是指除常规化石能源和大中型水力发电、核裂变发电之外的生物质能、太阳能、风能、小水电、地热能以及海洋能等能源。

人类世界利用能源的最初方式是获取能源的热能,该阶段主要利用的是传统的化石能源。

直到1881年,美国建成世界上第一个发电站,人类才开始大规模地以电能的形式利用能源。

自此,人类社会进入了快速发展阶段。

随着可再生能源发电的发展,电力系统要从目前的以集中电源为主转向集中电源和分散电源相结合的状态,如每个电力用户都可以安装光伏电站,电力系统会像目前的互联网络,每个用户都同时是发电站,既可以从电网内得到电力,也可以向电网输送电力。

根据可再生能源的特点,应加快构建适应可再生能源发电特点的电力系统,至少做好三个方面的技术准备工作。

一是适应可再生能源特点的电力系统调度运行技术;二是小型分布式发电系统并网技术;三是大容量高效率的电力储存技术。

本文综述了新能源发电及并网技术的研究进展。

第一部分介绍了新能源发电技术,包含新能源发电的概念、分类,同时介绍了新能源发电系统的《新能源发电及并网技术》(2014.3~6)任课教师:戴朝华特性及系统的运行与控制。

第二部分介绍了新能源并网的关键技术,包含新能源并网的接口以及并网后的运行与控制。

新能源发电并网技术

新能源发电并网技术

新能源发电并网技术摘要:大量以风、水、生物能、太阳能等为主的新能源发电成为了人们关注的重点,并通过不断的研究来强化对新能源发电并网系统的控制,探词新能源发电并网系统的控制是十分必要的。

本文就新能源发电并网技术进行简单的阐述。

关键词:新能源发电;并网;技术引言各种新能源的发电过程还存在一定的不稳定因素,这就需要在电能转化和输送过程中,加强对并网系统的控制。

只有稳定的运行才能让新能源发挥出更大的作用。

微网发电技术的推广应用,能够以更加环保的方式实现新能源发电并网的有效控制。

1新能源并网发电技术简介1.1散布式新能源发电技术散布式新能源发电技术主要突出了散布式和新能源两个特点,散布式说明了发电规模较小,并且和电力用户距离不远,可以单独给用户提供电能;新能源则是指传统以外的各种环保、清洁能源,包括刚开始推广或者还未推广的能源。

新能源之所以可以给用户提供高质量电能,主要和发电技术和储能技术的相结合,二者缺一不可。

目前世界上的新能源发电技术主要有太阳能发电、潮汐能、波浪能、地热能,风能地热能等,这些能源共同的优点就是可再生,环保,廉价。

1.2微电网的概念和基本结构微电网是一种新的供电网络结构(图1),该系统的结构可分为微电源、负荷控制装置和储能装置三部分。

微电网与其他系统相比,它是一个更加全面的自治系统,可以实现自主管理和自主控制。

微电网的提出实际上是为了和传统电网更好的区分,微电网是由许多分布的微电源和相关设施按照一定的拓扑结构构成的系统。

该系统还可以和配网相连接,但是必须要经过静态开关的连接作用。

2新能源并网发电系统技术2.1新能源发电系统结构新能源发电系统结构采用多种能源并联组成的分布式发电系统。

小型分布式发电系统中,存在着风能、太阳能、燃料电池、微型燃气轮机和储能系统多种能源的组合供电,其大部分都需要通过逆变电源并联的形式接入微型公共电网。

2.2基于电力电子技术的关键部件电力电子技术是开发各类可再生能源和发展分布式发电的关键技术之一。

电力行业新能源并网技术实施策略

电力行业新能源并网技术实施策略

电力行业新能源并网技术实施策略第一章新能源并网技术概述 (2)1.1 新能源并网的意义 (2)1.2 新能源并网技术的现状 (3)1.3 新能源并网技术发展趋势 (3)第二章新能源并网技术关键问题 (4)2.1 新能源发电特性分析 (4)2.2 新能源并网对电网的影响 (4)2.3 新能源并网技术的挑战 (4)第三章新能源并网技术标准与规范 (5)3.1 新能源并网技术标准概述 (5)3.2 新能源并网技术规范制定 (5)3.3 新能源并网技术标准与规范的执行 (5)第四章新能源并网设备选型与配置 (6)4.1 新能源并网设备类型及功能 (6)4.2 新能源并网设备选型原则 (6)4.3 新能源并网设备配置策略 (7)第五章新能源并网系统设计 (7)5.1 新能源并网系统设计原则 (7)5.2 新能源并网系统设计方法 (7)5.3 新能源并网系统设计案例分析 (8)第六章新能源并网控制系统 (8)6.1 新能源并网控制系统概述 (8)6.2 新能源并网控制系统设计 (9)6.2.1 系统组成 (9)6.2.2 设计原则 (9)6.3 新能源并网控制系统实现 (9)6.3.1 硬件实现 (9)6.3.2 软件实现 (10)第七章新能源并网运行与维护 (10)7.1 新能源并网运行管理 (10)7.1.1 管理体系构建 (10)7.1.2 并网运行计划制定 (10)7.1.3 并网运行调度与控制 (10)7.2 新能源并网运行监测与优化 (11)7.2.1 运行监测系统构建 (11)7.2.2 运行参数监测与预警 (11)7.2.3 运行优化策略 (11)7.3 新能源并网设备维护与故障处理 (11)7.3.1 维护体系构建 (11)7.3.2 预防性维护 (11)7.3.3 故障处理流程 (11)7.3.4 故障分析与改进 (11)第八章新能源并网技术政策与法规 (11)8.1 新能源并网技术政策概述 (11)8.1.1 政策背景 (11)8.1.2 政策目标 (12)8.1.3 政策内容 (12)8.2 新能源并网技术法规制定 (12)8.2.1 法规制定原则 (12)8.2.2 法规制定内容 (12)8.3 新能源并网技术政策与法规的实施 (12)8.3.1 政策与法规宣传和培训 (13)8.3.2 政策与法规执行监督 (13)8.3.3 政策与法规评估与调整 (13)8.3.4 政策与法规国际合作 (13)第九章新能源并网项目实施与管理 (13)9.1 新能源并网项目实施流程 (13)9.1.1 项目立项与前期准备 (13)9.1.2 设计与评审 (13)9.1.3 设备采购与安装 (13)9.1.4 并网调试与验收 (13)9.1.5 项目运行与维护 (14)9.2 新能源并网项目质量管理 (14)9.2.1 制定质量管理计划 (14)9.2.2 质量保证措施 (14)9.2.3 质量检验与验收 (14)9.3 新能源并网项目风险控制 (14)9.3.1 风险识别 (14)9.3.2 风险评估 (14)9.3.3 风险应对措施 (15)9.3.4 风险监控与调整 (15)第十章新能源并网技术发展趋势与展望 (15)10.1 新能源并网技术发展趋势 (15)10.2 新能源并网技术发展前景 (15)10.3 新能源并网技术发展策略 (16)第一章新能源并网技术概述1.1 新能源并网的意义新能源并网是指将新能源发电系统(如太阳能、风能、水能等)与现有电力系统相连接,实现能源的互补和优化利用。

新能源发电与并网技术课程建设与教学改革

新能源发电与并网技术课程建设与教学改革

新能源发电与并网技术课程建设与教学改革【摘要】本文旨在探讨新能源发电与并网技术课程建设与教学改革的重要性与挑战。

首先介绍了新能源发电技术及并网技术的发展现状,阐述了课程建设与教学改革的意义和必要性。

同时提出了当前课程建设与教学改革面临的挑战,包括技术更新换代、师资队伍不足等。

在指出新能源发电与并网技术课程建设的前景广阔,教学改革将对技术人才培养起到重要影响,并呼吁未来在教学内容和方法上不断探索创新,以适应不断发展的行业需求。

本文旨在引发对新能源发电与并网技术课程建设与教学改革的思考与讨论,为该领域的教育和科研工作提供参考与借鉴。

【关键词】新能源发电、并网技术、课程建设、教学改革、发展现状、重要性、必要性、挑战、前景、影响、未来发展方向。

1. 引言1.1 背景介绍新能源发电与并网技术作为当今社会发展的趋势之一,正日益受到人们的关注。

随着全球气候变暖和能源消耗问题的日益严重,传统化石能源已经逐渐暴露出了种种问题。

新能源发电技术作为替代传统能源的有效手段,正在逐渐成为各国能源战略的重要组成部分。

而并网技术作为新能源发电的重要支撑系统,更是确保了新能源能够稳定高效地并入现有能源体系中。

在这样的背景下,新能源发电与并网技术课程的建设与教学改革显得尤为关键。

随着新技术的不断涌现和发展,传统的课程体系已经无法满足学生的学习需求,需要不断进行更新和改进。

本文旨在探讨新能源发电与并网技术课程建设与教学改革的重要性和必要性,为推动新能源发电与并网技术教育事业的发展提供理论支持和实践倡导。

至此完结。

1.2 研究意义新能源发电与并网技术课程建设与教学改革的研究意义主要体现在以下几个方面。

随着新能源发电技术的不断发展和应用,新能源发电已成为能源领域的重要发展方向,对解决能源短缺和减少环境污染具有重要意义。

加强新能源发电与并网技术课程建设与教学改革,有助于培养相关专业人才,推动新能源产业的发展和应用。

1.3 研究目的研究目的是为了探讨新能源发电与并网技术课程建设与教学改革所面临的挑战和机遇,促进课程的更新与优化,提高教学质量。

电力系统中的新能源并网技术研究

电力系统中的新能源并网技术研究

电力系统中的新能源并网技术研究引言新能源成为当今世界能源发展的新趋势,它既环保又可再生,是世界各国转型发展的重要方向。

然而,新能源的接入对电网的影响和改造带来了不小的挑战。

本文将着重探讨电力系统中的新能源并网技术研究,分别从电力系统、新能源接入、并网技术三个方面进行阐述。

第一章电力系统中新能源的发展1.1 传统电力系统的问题传统电力系统主要依靠火力发电和核能发电,这两种方式采取的都是大型的机组,需要大量的燃料和水资源,而火力发电带来的污染和核能发电带来的安全隐患日益突出,这也使得世界各国倾向于发展新能源。

1.2 新能源的发展趋势新能源主要包括太阳能、风能、水能、生物能等。

它们具有可再生性、清洁性和分散性等特点,是未来能源发展的重要方向。

1.3 电力系统中的新能源问题新能源的接入给电力系统的运行带来了很大的影响,比如,新能源出现波动对电网稳定性的影响,而新能源接入的不规范和不平衡反而会对电网发生负面的影响。

第二章新能源接入电网技术新能源接入电网技术主要包括逆变器技术、改善系统稳定性,稳压和调频技术、故障保护技术、光伏逆变器检测系统等技术。

2.1 逆变器技术逆变器用于将直流转化为交流,保证新能源的输出交流电流与电网交流电压同步,保证电能质量。

这也是新能源接入电网不可或缺的技术。

逆变器有多种结构和拓扑形式可以选择,这取决于具体的应用环境。

2.2 改善系统稳定性技术对于新能源的波动性,业内专家提出了改善电网的系统稳定性技术的解决方案,比如,可以使用卡尔曼滤波器结合模型预测技术,来进行新能源发电功率的预测和控制,还可以使用储能技术,对新能源进行储存控制,利用电池或超级电容器对新能源进行储能,保证电网的平稳运行。

2.3 稳压和调频技术稳压和调频技术是保证电力系统稳定运行的关键技术,它们可以通过智能控制技术,对电力系统中的负荷进行控制,实现电力系统的稳定运行。

2.4 故障保护技术新能源在接入电网时,可能会出现故障,这时候需要使用故障保护技术来进行保护,故障保护技术主要包括过流保护、过压保护、欠压保护等技术。

新能源并网发电系统的关键技术和发展趋势

新能源并网发电系统的关键技术和发展趋势

新能源并网发电系统的关键技术和发展趋势新能源并网发电系统是指利用太阳能、风能、水能等新能源资源进行发电,并将其与传统能源一起并入电网进行供电。

随着新能源的发展和应用,新能源并网发电系统逐渐成为电力领域的热点和重点发展方向。

本文将从关键技术和发展趋势两方面对新能源并网发电系统进行探讨。

关键技术1. 新能源发电技术新能源并网发电系统的关键技术之一就是各种新能源发电技术,包括太阳能光伏发电、风能发电、水能发电等。

这些新能源发电技术的发展和应用,为新能源并网发电系统提供了可靠的电力来源。

光伏发电技术采用太阳能光伏电池转换太阳能直接发电,其关键在于提高光伏电池的光电转换效率和降低发电成本。

风能发电技术则是利用风轮机转动发电机产生电能,其关键在于提高风轮机的效率和稳定性。

水能发电技术则是利用水力转动涡轮机产生电能,其关键在于选择合适的水资源和优化水电站的设计。

2. 并网技术新能源并网发电系统需要将各种新能源发电系统与电网进行连接,并实现稳定、可靠的电力供应。

并网技术是新能源并网发电系统的重要技术环节,包括发电机的并网接口设计、电力系统的接口设计、网络保护和调节等领域。

要确保新能源并网发电系统与电网之间的安全稳定运行,需要在技术上做好充分的研究和设计。

3. 储能技术新能源发电系统的波动性和不稳定性是其发展中面临的难题之一,储能技术的应用可以有效解决这一问题。

储能技术能够将不稳定的新能源电力转化为稳定的电力输出,提高新能源并网发电系统的稳定性和可靠性。

目前,常见的储能技术包括电池储能、压缩空气储能、超级电容储能等,这些技术的应用将为新能源并网发电系统的发展提供有力支持。

发展趋势1. 多能互补并网系统随着新能源技术的不断发展和应用,多能互补并网系统将成为新能源并网发电系统的发展趋势之一。

多能互补并网系统是指将多种新能源资源进行有效整合和利用,并实现互相补充和协同发电。

通过多能互补并网系统,不仅能够提高能源的利用率和发电效率,还能有效应对新能源的波动性和不稳定性,实现新能源并网发电系统的可持续发展。

2024年新能源发电项目施工合同标的、技术参数及并网要求

2024年新能源发电项目施工合同标的、技术参数及并网要求

20XX 专业合同封面COUNTRACT COVER甲方:XXX乙方:XXX2024年新能源发电项目施工合同标的、技术参数及并网要求本合同目录一览第一条合同主体及定义1.1 发包方1.2 承包方1.3 项目地点1.4 项目时间第二条施工内容2.1 施工项目列表2.1.1 项目一2.1.2 项目二2.1.3 项目三2.2 施工标准及要求2.3 质量保证第三条技术参数3.1 新能源发电设备参数3.2 输电及配电系统参数3.3 安全防护措施第四条并网要求4.1 并网时间及流程4.2 并网验收标准4.3 并网后的运维责任第五条合同价格及支付方式5.1 合同总价5.2 支付时间表5.3 支付条件第六条工期延误6.1 工期延误的定义6.2 工期延误的责任及赔偿第七条合同变更7.1 合同变更的条件7.2 合同变更的程序第八条违约责任8.1 违约行为的定义8.2 违约责任的具体规定第九条争议解决9.1 争议解决的方式9.2 争议解决的地点及适用法律第十条合同的生效、终止与解除10.1 合同生效的条件10.2 合同终止的条件10.3 合同解除的条件第十一条保密条款11.1 保密信息的定义11.2 保密责任的承担第十二条不可抗力12.1 不可抗力的定义12.2 不可抗力的后果处理第十三条合同的附件13.1 附件一:项目详细设计方案13.2 附件二:设备清单13.3 附件三:并网技术要求第十四条其他条款14.1 环境保护与安全生产14.2 合同的翻译及解释权14.3 合同的修订历史记录第一部分:合同如下:第一条合同主体及定义1.1 发包方1.2 承包方1.3 项目地点项目地点位于省市区新能源发电项目施工区域,具体位置详见附件一。

1.4 项目时间项目计划开工日期为2024年X月X日,计划竣工日期为2024年X月X日。

具体施工时间安排由双方协商确定,并以《施工进度计划》的形式作为本合同的附件。

第二条施工内容2.1 施工项目列表2.1.1 项目一:新能源发电设备安装2.1.2 项目二:输电及配电系统建设2.1.3 项目三:安全防护设施建设2.2 施工标准及要求乙方应严格按照《项目详细设计方案》和行业标准进行施工,确保工程质量符合设计要求和国家标准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档