企业级交换机工作原理
4.以太网及交换机的工作原理

局域网标准( ):IEEE802标准集 局域网标准( 续):IEEE802标准集
•IEEE802.1------局域网体系结构、寻址、网络互连与网络管理 •IEEE802.2-------逻辑链路控制(LLC)子层的功能与服务 •IEEE802.3-------以太网 CSMA/CD访问控制方法和物理层技术规范 •IEEE802.4-------令牌总线网 Token-Bus •IEEE802.5-------令牌环网 Token-Ring •IEEE802.6-------城域网 •IEEE802.7-------宽带局域网 •IEEE802.8-------光纤技术 FDDI •IEEE802.9-------综合数据话音网络 •IEEE802.10------网络安全与保密 •IEEE802.11------无线局域网 •IEEE802.12------需求优先 •IEEE802.13 ------(未使用) •IEEE802.14 ------电缆调制解调器 •IEEE802.15 ------无线个人网 •IEEE802.16 ------宽带无线接入 •IEEE802.17 ------可靠个人接入技术
交换机的工作原理 mac地址表的形成过程 mac地址表的形成过程 数据帧的转发/ 数据帧的转发/过滤
地址学习
MAC地址表 地址表 初始的MAC地 初始的MAC地 址表为空 E0: E1: E2: E3:
主机A: 主机 : 00-D0-F8-00-11-11
E0
E1
主机B: 主机 : 00-D0-F8-00-22-22
交换机工作原理简介

交换机工作原理简介(1)交换(switching)是按照通信两端传输信息的需要,用人工或设备自动完成的方法,把要传输的信息送到符合要求的相应路由上的技术统称。
广义的交换机(switch)就是一种在通信系统中完成信息交换功能的设备。
在计算机网络系统中,交换概念的提出是对于共享工作模式的改进。
我们以前介绍过的HUB集线器就是一种共享设备,HUB本身不能识别目的地址,当同一局域网内的A主机给B主机传输数据时,数据包在以HUB为架构的网络上是以广播方式传输的,由每一台终端通过验证数据包头的地址信息来确定是否接收。
也就是说,在这种工作方式下,同一时刻网络上只能传输一组数据帧的通讯,如果发生碰撞还得重试。
这种方式就是共享网络带宽。
交换机拥有一条很高带宽的背部总线和内部交换矩阵。
交换机的所有的端口都挂接在这条背部总线上,控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的MAC(网卡的硬件地址)的NIC(网卡)挂接在哪个端口上,通过内部交换矩阵迅速将数据包传送到目的端口,目的MAC若不存在才广播到所有的端口,接收端口回应后交换机会“学习”新的地址,并把它添加入内部MAC地址表中。
使用交换机也可以把网络“分段”,通过对照MAC地址表,交换机只允许必要的网络流量通过交换机。
通过交换机的过滤和转发,可以有效的隔离广播风暴,减少误包和错包的出现,避免共享冲突。
交换机在同一时刻可进行多个端口对之间的数据传输。
每一端口都可视为独立的网段,连接在其上的网络设备独自享有全部的带宽,无须同其他设备竞争使用。
当节点A向节点D发送数据时,节点B可同时向节点C发送数据,而且这两个传输都享有网络的全部带宽,都有着自己的虚拟连接。
假使这里使用的是10Mbps的以太网交换机,那么该交换机这时的总流通量就等于2×10Mbps=20Mbps,而使用10Mbps的共享式HUB时,一个HUB的总流通量也不会超出10Mbps。
交换机、路由器的工作原理

二层交换机:二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中.具体如下:(1)当交换机从某个端口收到一个数据包,它先读取包头中的源MAC地址,这样它就知道源MAC地址的机器是连在哪个端口上;(2)再去读取包头中的目的MAC地址,并在地址表中查找相应的端口;(3)如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上.三层交换机: 三层交换技术就是将路由技术与交换技术合二为一的技术。
在对第一个数据流进行路由后,它将会产生一个MAC地址与IP地址的映射表,当同样的数据流再次通过时,将根据此表直接从二层通过而不是再次路由,从而消除了路由器进行路由选择而造成网络的延迟,提高了数据包转发的效率.路由器:传统地,路由器工作于OSI七层协议中的第三层,其主要任务是接收来自一个网络接口的数据包,根据其中所含的目的地址,决定转发到下一个目的地址。
因此,路由器首先得在转发路由表中查找它的目的地址,若找到了目的地址,就在数据包的帧格前添加下一个MAC地址,同时IP数据包头的TTL(Time To Live)域也开始减数,并重新计算校验和。
当数据包被送到输出端口时,它需要按顺序等待,以便被传送到输出链路上。
路由器在工作时能够按照某种路由通信协议查找设备中的路由表。
如果到某一特定节点有一条以上的路径,则基本预先确定的路由准则是选择最优(或最经济)的传输路径。
由于各种网络段和其相互连接情况可能会因环境变化而变化,因此路由情况的信息一般也按所使用的路由信息协议的规定而定时更新。
主要区别:二层交换机工作在数据链路层,三层交换机工作在网络层,路由器工作在网络层。
具体区别如下:二层交换机和三层交换机的区别:三层交换机使用了三层交换技术简单地说,三层交换技术就是:二层交换技术+三层转发技术。
它解决了局域网中网段划分之后,网段中子网必须依赖路由器进行管理的局面,解决了传统路由器低速、复杂所造成的网络瓶颈问题。
交换机和路由器工作原理

交换机和路由器工作原理交换机和路由器是计算机网络中常用的两种设备,它们在网络通信中起着重要作用。
本文将分别介绍交换机和路由器的工作原理。
一、交换机的工作原理交换机是一种用于局域网的设备,它通过MAC地址进行数据包的转发。
当一台计算机发送数据包时,交换机会根据数据包中的目标MAC地址,将数据包转发到目标MAC地址所对应的端口上。
交换机在转发数据包时,会记录下源MAC地址与对应的端口,以便下次转发时能够快速找到目标端口。
交换机的工作原理可以分为两个阶段:学习阶段和转发阶段。
1. 学习阶段:当交换机收到一个数据包时,它会提取出数据包中的源MAC地址,并将该地址与接收到数据包的端口绑定起来。
如果交换机之前没有接收过该源MAC地址,则会将该地址与接收到数据包的端口绑定起来。
通过这种方式,交换机逐渐学习到网络中各个设备的MAC地址与端口的对应关系。
2. 转发阶段:当交换机收到一个数据包时,它会查找数据包中的目标MAC地址所对应的端口,并将数据包转发到该端口上。
如果交换机之前没有接收到过目标MAC地址,则会将数据包广播到所有端口上。
当目标设备回复数据包时,交换机会将源MAC地址与对应端口的绑定关系更新。
这样,交换机在转发数据包时就能够根据学习到的MAC地址与端口的对应关系,快速找到目标端口,实现数据包的高效转发。
二、路由器的工作原理路由器是一种用于连接不同网络的设备,它通过IP地址进行数据包的转发。
当一台计算机发送数据包时,路由器会根据数据包中的目标IP地址,将数据包转发到目标IP地址所在的网络。
路由器的工作原理可以分为三个阶段:接收阶段、转发阶段和发送阶段。
1. 接收阶段:当路由器接收到一个数据包时,它会提取出数据包中的目标IP地址,并查找路由表来确定数据包的下一跳。
路由表是路由器内部存储的一张表格,记录了各个网络的IP地址和对应的下一跳。
通过查找路由表,路由器可以确定数据包的下一跳地址。
2. 转发阶段:在转发阶段,路由器根据路由表确定数据包的下一跳地址,并将数据包转发到相应的接口上。
交换机基本原理和转发过程

交换机基本原理和转发过程(李建昂 0023000149 专用设备/驱动科室)本文主要介绍了一下交换机的工作原理,通过本文能够熟悉交换机的原理并对二层交换的一些概念有较深的理解。
首先介绍一下几个设备。
我们经常会看到一些设备的名字,比如HUB、交换机等。
这些设备之间到底有什么区别和联系,下面就简单说一下。
1、Ethernet HUBEthernet HUB的中文名称叫做以太网集线器,其基本工作原理是广播技术(broadcast),也就是HUB从任何一个端口收到一个以太网数据帧后,它都将此以太网数据帧广播到其它所有端口,HUB不存储哪一个MAC地址对应于哪一个端口。
以太网数据帧中含有源MAC地址和目的MAC地址,对于与数据帧中目的MAC地址相同的计算机执行该报文中所要求的动作;对于目的MAC地址不存在或没有响应等情况,HUB既不知道也不处理,只负责转发。
HUB工作原理:(1) HUB从某一端口A收到的报文将发送到所有端口;(2) 报文为非广播报文时,仅与报文的目的MAC地址相同的端口响应用户A;(3) 报文为广播报文时,所有用户都响应用户A。
随着网络应用不断丰富,网络结构日渐复杂,导致传统的以太网连接设备HUB已经越来越不能满足网络规划和系统集成的需要,它的缺陷主要表现在以下两个方面:(1) 冲突严重——HUB对所连接的局域网只作信号的中继,所有物理设备构成了一个冲突域;(2) 广播泛滥2、二层交换技术二层交换机的出现能够在一定程度上解决HUB存在的缺陷——主要是冲突严重的问题,其与HUB的区别从大的方面来看可以分为以下三点:(1)从OSI体系结构来看,HUB属于OSI模型的第一层物理层设备,而交换机属于OSI的第二层数据链路层设备。
也就意味着HUB只是对数据的传输起到同步、放大和整形的作用,对数据传输中的短帧、碎片等无法进行有效的处理,不能保证数据传输的完整性和正确性;而交换机不但可以对数据的传输做到同步、放大和整形,而且可以过滤短帧、碎片等。
网络交换机的工作原理 交换机 原理 机制

一、交换机的工作原理1.交换机根据收到数据帧中的源MAC地址建立该地址同交换机端口的映射,并将其写入MAC地址表中。
2.交换机将数据帧中的目的MAC地址同已建立的MAC地址表进行比较,以决定由哪个端口进行转发。
3.如数据帧中的目的MAC地址不在MAC地址表中,则向所有端口转发。
这一过程称为泛洪(flood)。
4.广播帧和组播帧向所有的端口转发。
二、交换机的三个主要功能学习:以太网交换机了解每一端口相连设备的MAC地址,并将地址同相应的端口映射起来存放在交换机缓存中的MAC地址表中。
转发/过滤:当一个数据帧的目的地址在MAC地址表中有映射时,它被转发到连接目的节点的端口而不是所有端口(如该数据帧为广播/组播帧则转发至所有端口)。
消除回路:当交换机包括一个冗余回路时,以太网交换机通过生成树协议避免回路的产生,同时允许存在后备路径。
三、交换机的工作特性1.交换机的每一个端口所连接的网段都是一个独立的冲突域。
2.交换机所连接的设备仍然在同一个广播域内,也就是说,交换机不隔绝广播(惟一的例外是在配有VLAN的环境中)。
3.交换机依据帧头的信息进行转发,因此说交换机是工作在数据链路层的网络设备(此处所述交换机仅指传统的二层交换设备)。
四、交换机的分类依照交换机处理帧时不同的操作模式,主要可分为两类:存储转发:交换机在转发之前必须接收整个帧,并进行错误校检,如无错误再将这一帧发往目的地址。
帧通过交换机的转发时延随帧长度的不同而变化。
直通式:交换机只要检查到帧头中所包含的目的地址就立即转发该帧,而无需等待帧全部的被接收,也不进行错误校验。
由于以太网帧头的长度总是固定的,因此帧通过交换机的转发时延也保持不变。
五、二、三、四层交换机?多种理解的说法:1.二层交换(也称为桥接)是基于硬件的桥接。
基于每个末端站点的唯一MAC地址转发数据包。
二层交换的高性能可以产生增加各子网主机数量的网络设计。
其仍然有桥接所具有的特性和限制。
以太网交换机的工作原理

以太网交换机的工作原理
以太网交换机的工作原理主要分为三个步骤,即学习MAC地址、建立转发表和数据转发。
首先,交换机会通过学习MAC地址来建立转发表。
当一个数
据帧到达交换机时,交换机会查看数据帧首部中的源MAC地址,并将其与一个特定的端口关联。
如果该地址之前没有在转发表中出现过,交换机会将该地址与到达的端口关联起来,并在转发表中添加一条新的记录。
如果该地址已经存在于转发表中,交换机会更新该地址的关联端口。
接下来,交换机会根据转发表中的信息建立转发表。
转发表记录了到达交换机不同端口的MAC地址。
当交换机收到数据帧时,它会查看该数据帧首部中的目的MAC地址,并在转发表
中查找该地址的关联端口。
如果找到了目的MAC地址的关联
端口,交换机会直接将数据帧转发到该端口,而不会在其他端口上进行广播。
如果找不到目的MAC地址的关联端口,则交
换机会在所有端口上进行广播,以确保所有端口都能接收到数据帧。
最后,交换机会进行数据转发。
当交换机接收到一个数据帧时,它会根据转发表中的信息将该数据帧转发到目的MAC地址的
关联端口上。
交换机会利用硬件的转发表进行快速的转发,以确保数据帧能够以最快的速度到达目的地。
通过以上的学习MAC地址、建立转发表和数据转发的过程,
以太网交换机可以实现对数据帧的快速、准确的转发,提高了局域网的传输效率和带宽利用率。
交换机工作原理

交换机工作原理一、交换机的工作原理1.交换机根据收到数据帧中的源MAC地址建立该地址同交换机端口的映射,并将其写入MAC地址表中。
2.交换机将数据帧中的目的MAC地址同已建立的MAC地址表进行比较,以决定由哪个端口进行转发。
3.如数据帧中的目的MAC地址不在MAC地址表中,则向所有端口转发。
这一过程称为泛洪(flood)。
4.广播帧和组播帧向所有的端口转发。
二、交换机的三个主要功能学习:以太网交换机了解每一端口相连设备的MAC地址,并将地址同相应的端口映射起来存放在交换机缓存中的MAC地址表中。
转发/过滤:当一个数据帧的目的地址在MAC地址表中有映射时,它被转发到连接目的节点的端口而不是所有端口(如该数据帧为广播/组播帧则转发至所有端口)。
消除回路:当交换机包括一个冗余回路时,以太网交换机通过生成树协议避免回路的产生,同时允许存在后备路径。
三、交换机的工作特性1.交换机的每一个端口所连接的网段都是一个独立的冲突域。
2.交换机所连接的设备仍然在同一个广播域内,也就是说,交换机不隔绝广播(惟一的例外是在配有VLAN的环境中)。
3.交换机依据帧头的信息进行转发,因此说交换机是工作在数据链路层的网络设备(此处所述交换机仅指传统的二层交换设备)。
四、交换机的分类依照交换机处理帧时不同的操作模式,主要可分为两类:存储转发:交换机在转发之前必须接收整个帧,并进行错误校检,如无错误再将这一帧发往目的地址。
帧通过交换机的转发时延随帧长度的不同而变化。
直通式:交换机只要检查到帧头中所包含的目的地址就立即转发该帧,而无需等待帧全部的被接收,也不进行错误校验。
由于以太网帧头的长度总是固定的,因此帧通过交换机的转发时延也保持不变。
五、二、三、四层交换机?多种理解的说法:1.二层交换(也称为桥接)是基于硬件的桥接。
基于每个末端站点的唯一MAC地址转发数据包。
二层交换的高性能可以产生增加各子网主机数量的网络设计。
其仍然有桥接所具有的特性和限制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
企业级交换机工作原理
企业级交换机所采用的端口一般都为光纤接口,这主要是为了保证交换机高的传输速率,从而满足不同阶段用户的需求。
下面是的企业级交换机工作原理的相关内容,希望对你有帮助!
1、企业级交换机
企业级交换机属于一类高端交换机,一般采用模块化的结构,可作为企业网络骨干构建高速局域网,所以它通常用于企业网络的最顶层。
企业级交换机可以提供用户化定制、优先级队列服务和网络安全控制,并能很快适应数据增长和改变的需要,从而满足用户的需求。
对于有更多需求的网络,企业级交换机不仅能传送海量数据和控制信息,更具有硬件冗余和软件可伸缩性特点,保证网络的可靠运行。
这种交换机从它所处的位置可以清楚地看出它自身的要求非同一般,起码在带宽、传输速率以背板容量上要比一般交换机要高出许多,所以企业级交换机一般都是千兆以上以太网交换机。
企业级交换机所采用的端口一般都为光纤接口,这主要是为了保证交换机高的传输速率。
那么什么样的交换机可以称之为企业级交换机呢?说实在的还没有一个明确的标准,只是现在通常这么认为。
如果是作为企业的骨干交换机时,能支持500个信息点以上大型企业应用的交换机为企业级交换机,如图7所示的是友讯的一款模块化千兆以太网交换机,它属于企业级交换机范畴。
企业交换机还可以接入一个大底盘。
这个底盘产品通常支持许
多不同类型的组件,比如快速以太网和以大网中继器、FDDI集中器、令牌环MAU和路由器。
企业交换机在建设企业级别的网络时非常有用。
尤其是对需要支持一些网络技术和以前的系统,基于底盘设备
通常有非常强大的管理特征,因此非常适合于企业网络的环境。
不过,基于底盘设备的成本都非常高,很少中、小型企业能承担得起。
2、校园网交换机
校园网交换机,这种交换机应用相对较少,主要应用于较大型
网络,且一般作为网络的骨干交换机。
这种交换机具有快速数据交换能力和全双工能力,可提供容错等智能特性,还支持扩充选项及第三层交换中的虚拟局域网(VLAN)等多种功能。
这种企业级交换机通常用于分散的校园网而得名,其实它不一
定要应用校园网络中,只表示它主要应用于物理距离分散的较大型网络中。
因为校园网比较分散,传输距离比较长,所以在骨干网段上,这类交换机通常采用光纤或者同轴电缆作为传输介质,交换机当然也就需提供SC光纤口和BNC或者AUI同轴电缆接口。
部门级交换机是面向部门级网络使用的交换机,它较前面两种
所能随的网络规模要小许多。
这类交换机可以是固定配置,也可以是模块配置,一般除了常用的RJ-45双绞线接口外,还带有光纤接口。
部门级交换机一般具有较为突出的智能型特点,支持基于端口
的VLAN(虚拟局域网),可实现端口管理,可任意采用全双工或半双
工传输模式,可对流量进行控制,有网络管理的功能,可通过PC机
的串口或经过网络对交换机进行配置、监控和测试。
如果作为骨干交换机,则一般认为支持300个信息点以下中型企业的交换机为部门级交换机。
企业级交换机是传统集线器的理想替代产品,一般为固定配置,配有一定数目的10Base-T或100Base-TX以太网口。
交换机按每一个包中的MAC地址相对简单地决策信息转发,这种转发决策一般不考虑包中隐藏的更深的其他信息。
与集线器不同的是交换机转发延迟很小,操作接近单个局域网性能,远远超过了普通桥接互联网络之间的转发性能。
工作组交换机一般没有网络管理的功能,如果是作为骨干交换机则一般认为支持100个信息点以内的交换机为工作组级交换机。