椭圆测试题、双曲线2

合集下载

椭圆的定义及几何性质试题 精选精练

椭圆的定义及几何性质试题 精选精练

椭圆的定义及几何性质题型一:椭圆的定义及其应用1、判断轨迹:例:已知12,F F 是定点,动点M 满足12||||8MF MF +=,且12||8F F =则点M 的轨迹为( )A .椭圆 B.直线 C.圆 D.线段变式:1 已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于,A B 两点.若1222=+B F A F ,则AB = .2、利用定义例:已知椭圆x 26+y 22=1与双曲线x 23-y 2=1的公共焦点F 1,F 2,点P 是两曲线的一个公共点,则cos ∠F 1PF 2的值为( ).A.14 B.13 C.19 D.35变式:1、(·青岛模拟)已知F 1、F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.2、 已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ).A .2 3 B .6C .4 3 D .123、已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点,在△AF 1B 中,若有两边之和是10,则第三边的长度为( )A .6 B .5 C .4 D .3 4、已知F 1,F 2是椭圆2212516x y +=的两焦点,过点F 2的直线交椭圆于1122(,)(,)A x y B x y 两点,△AF 1B 的内切圆的周长为π,则12||y y -为( ) 5.3A 10.3B 20.3C 5.3D 3、转化定义例:设椭圆x 22+y 2m =1和双曲线y 23-x 2=1的公共焦点分别为F 1、F 2,P 为这两条曲线的一个交点,则|PF 1|·|PF 2|的值等于________.变式练习:1.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为( )A .5B .7C .13D .15题型二:椭圆的标准方程和性质例:[例1] (1)(2017·广东高考)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A.x 23+y 24=1 B.x 24+y 23=1 C.x 24+y 22=1 D.x 24+y 23=1(2)(2016·岳阳模拟)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交椭圆C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为________.变式练习1.已知椭圆的长轴是短轴的3倍,且过A (3,0),并且以坐标轴为对称轴,求椭圆的标准方程_____2.(2018·山东)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为 ( ) A.x 28+y 22=1 B.x 212+y 26=1 C.x 216+y 24=1 D.x 220+y 25=1 题型三:椭圆的重要性质------离心率示例:如图A 、B 、C 分别为x 2a 2+y 2b2=1 (a >b >0)的顶点与焦点, 若∠ABC =90°,则该椭圆的离心率为( )A.-1+52 B .1-22 C.2-1 D.22变式 1.把条件“A 、B 、C 分别为x 2a 2+y 2b2=1 (a >b >0)的顶点与焦点, 若∠ABC =90°“改为“F 1、F 2分别为椭圆22221(0)x y a b a b+=>>,的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另 一点B .若∠F 1AB =90°”求椭圆的离心率;2.把条件“A 、B 、C 分别为x 2a 2+y 2b2=1 (a >b >0)的顶点与焦点,若∠ABC =90°”改为“椭圆通过A ,B 两点,它的一个焦点为点C ,且AB =AC =1,090BAC ∠=,椭圆的另一个焦点在AB 上”,求椭圆的离心率为________. 3.把条件“A 、B 、C 分别为x 2a 2+y 2b2=1 (a >b >0)的顶点与焦点,若∠ABC =90°“改为“F 1、F 2分别为圆锥曲线的左、右焦点,曲线上存在点P 使|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线Γ的离心率等于( )A.12或32B.23或2C.12或2D.23或324. 椭圆2222(0)x y a b a b+>>的左、右顶点分别是A ,B 左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B|成等比数列,则此椭圆的离心率为 。

专题17 椭圆与双曲线共焦点问题 微点4 椭圆与双曲线共焦点综合训练

专题17  椭圆与双曲线共焦点问题  微点4  椭圆与双曲线共焦点综合训练
(2022·浙江嘉兴·高二期末)
24.已知椭圆 ,双曲线 与椭圆 共焦点,且与椭圆 在四个象限的交点分别为 ,则四边形 面积的最大值是___________.
(2022·吉林·希望高中高二期末)
25.椭圆 与双曲线 有公共焦点 ,设椭圆 与双曲线 在第一象限内交于点 ,椭圆 与双曲线 的离心率分别为 为坐标原点, ,则 的取值范围是___________.
(2022·陕西·交大附中模拟预测)
22.如图, , 是椭圆 与双曲线 的公共焦点, , 分别是 , 在第二、四象限的公共点,若 ,且 ,则 与 的离心率之积为_____.
(2022·吉林长春·模拟预测)
23.在平面直角坐标系xOy中,已知椭圆C1与双曲线C2共焦点,双曲线C2实轴的两顶点将椭圆C1的长轴三等分,两曲线的交点与两焦点共圆,则双曲线C2的离心率为__________.
18.已知椭圆 和双曲线 有相同的焦点 ,P为椭圆与双曲线的一个公共点,椭圆与双曲线的离心率分别为 ,且 ,则 的取值范围为_________.
(2022·安徽省临泉第一中学高二月考)
19.已知椭圆 与双曲线 有相同的焦点 ,椭圆 的离心率为 ,双曲线 的离心率为 ,点 为椭圆 与双曲线 的第一象限的交点,且 ,则 的取值范围是___________.
26.已知 , 分别是具有公共焦点 , 的椭圆和双曲线的离心率,点 是两曲线的一个公共点, 是 的中点,且 ,则 ______.
A. B. C. D.
(2022·浙江·舟山中学高三月考)
6.设 、 分别为具有公共焦点 与 的椭圆和双曲线的离心率, 为两曲线的一个公共点,且满足 ,则 的值为()
A. B. C. D.
二、多选题
(2022江苏·高二单元测试)

第08讲 直线与椭圆、双曲线、抛物线 (精讲)-2(含答案解析)

第08讲 直线与椭圆、双曲线、抛物线  (精讲)-2(含答案解析)

第08讲直线与椭圆、双曲线、抛物线(精讲)-2第08讲直线与椭圆、双曲线、抛物线(精讲)角度2:由中点弦确定曲线方程典型例题例题1.(2022·四川南充·高二期末(文))1.过椭圆C :()222210x y a b a b+=>>右焦点F 的直线l :20x y --=交C 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12-,则椭圆C 的方程为()A .22184x y +=B .22195x y +=C .22173x y +=D .221106x y +=例题2.(2022·全国·高二课时练习)2.已知双曲线的中心在原点且一个焦点为F ,直线1y x =-与其相交于M ,N 两点,若MN 中点的横坐标为23-,则此双曲线的方程是A .22134x y -=B .22143x y -=C .22152x y -=D .22125x y -=例题3.(2022·江苏南京·模拟预测)3.已知椭圆C :22221x y a b +=(0a b >>)过点1,2⎛ ⎝⎭,直线l :y x m =+与椭圆C 交于,A B 两点,且线段AB 的中点为M ,O 为坐标原点,直线OM 的斜率为0.5-,求椭圆C 的标准方程;例题4.(2022·安徽省亳州市第一中学高二开学考试)4.斜率为1的直线交抛物线()2:20C y px p =>于A ,B 两点,且弦AB 中点的纵坐标为2.求抛物线C 的标准方程;同类题型归类练(2022·四川南充·二模(文))5.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -与椭圆C相交于不同的两点,A B ,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为()A .2213x y +=B .22142x y +=C .22153x y +=D .22163x y +=(2022·全国·高三专题练习(理))6.已知椭圆C :22221(>0)>x y a b a b +=的左、右焦点分别为1F ,2F ,离心率为2,过点1F 的直线l 交椭圆C 于,A B 两点,AB 的中点坐标为21(,)33-.求椭圆C 的标准方程;(2022·重庆巴蜀中学高三阶段练习)7.已知椭圆C ∶22221(0)x y a b a b+=>>经过点3)2P ,O 为坐标原点,若直线l 与椭圆C 交于A ,B 两点,线段AB 的中点为M ,直线l 与直线OM 的斜率乘积为14-.求椭圆C的标准方程;(2022·全国·高三专题练习)8.已知抛物线2:2(0)C y px p =>的焦点为F ,过F 且斜率为1的直线与抛物线C 交于A ,B 两点,且AB 的中点的纵坐标为2.求C 的方程.题型三:弦长问题典型例题例题1.(2022·海南·琼海市嘉积第二中学高二期中)9.已知椭圆22:143x y C +=的左、右焦点分别为1F 、2F ,过2F 且斜率为1的直线l 交椭圆C 于A 、B 两点,则AB 等于()A .247B .127C .7D .7例题2.(2022·全国·高三专题练习)10.经过双曲线2213y x -=的左焦点F 1作倾斜角为6π的直线AB ,分别交双曲线的左、右支为点A 、B .求弦长|AB |=_____例题3.(2022·贵州遵义·高二期末(理))11.椭圆C :()222210x y a b a b +=>>左右焦点为1F ,2F 2M ⎛ ⎝⎭在椭圆C 上.(1)求椭圆C 的标准方程;(2)经过点()2,3A ,倾斜角为π4直线l 与椭圆交于B ,C 两点,求BC .例题4.(2022·云南·丽江市教育科学研究所高二期末)12.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,且过点(2,1)P -.(1)求C 的方程;(2)若,A B 是C 上两点,直线AB 与圆222x y +=相切,求AB 的取值范围.例题5.(2022·内蒙古赤峰·高二期末)13.已知动圆C 过定点()0,1F ,且与直线1:1l y =-相切,圆心C 的轨迹为E .(1)求动点C 的轨迹方程;(2)已知直线2l 交轨迹E 于两点P ,Q ,且PQ 中点的纵坐标为2,则PQ 的最大值为多少?同类题型归类练(2022·重庆市青木关中学校高二阶段练习)14.已知双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线方程是y =,过其左焦点(F 作斜率为2的直线l 交双曲线C 于A ,B 两点,则截得的弦长||AB =()A .7B .8C .9D .10(2022·四川·遂宁中学高二期中(文))15.已知椭圆的中心在原点,焦点在x12P ⎛⎫ ⎪⎝⎭,(1)求椭圆的标准方程;(2)倾斜角为45°的直线l 过椭圆的右焦点F 交椭圆于A 、B 两点,求AB (2022·河北·衡水市第二中学高二期中)16.(1)已知A ,B 两点的坐标分别是()6,0-,()6,0,直线AM ,BM 相交于点M ,且它们的斜率之积是29.求点M 的轨迹方程,并判断轨迹的形状:(2)已知过双曲线22136x y -=上的右焦点2F ,倾斜角为30 的直线交双曲线于A ,B 两点,求AB .(2022·安徽·六安一中高二开学考试)17.已知点()2,0A -,()2,0B ,动点(),M x y 满足直线AM 与BM 的斜率之积为12,记M的轨迹为曲线C .(1)求C 的方程;(2)若直线l :3y x =-和曲线C 相交于E ,F 两点,求EF .(2022·黑龙江·鸡西市第四中学三模(理))18.已知抛物线C :()220x py p =>,圆O :221x y +=.(1)若抛物线C 的焦点F 在圆O 上,且A 为C 和圆O 的一个交点,求AF ;(2)若直线l 与抛物线C 和圆O 分别相切于点M ,N ,求MN 的最小值及相应p 的值.(2022·安徽省舒城中学三模(文))19.已知抛物线C :22y px =(p >0),抛物线C 的焦点为F ,点P 在抛物线上,且PF 的最小值为1.(1)求p ;(2)设O 为坐标原点,A ,B 为抛物线C 上不同的两点,直线OA ,OB 的斜率分别为1k ,2k ,且满足123k k OA OB <⋅=-,求|AB |的取值范围.参考答案:1.A【分析】由l 与x 轴交点横坐标可得半焦距c ,设出点A ,B 坐标,利用点差法求出22,a b 的关系即可计算作答.【详解】依题意,焦点(2,0)F ,即椭圆C 的半焦距2c =,设1122(,),(,)A x y B x y ,00(,)P x y ,则有2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,两式相减得:2212121212()()a ()()0b x x x x y y y y +-++-=,而1201202,2x x x y y y +=+=,且0012y x =-,即有2212122()()0b x x a y y --+-=,又直线l 的斜率12121y y x x -=-,因此有222a b =,而2224a b c -==,解得228,4a b ==,经验证符合题意,所以椭圆C 的方程为22184x y +=.故选:A 2.D【分析】根据点差法得2225a b=,再根据焦点坐标得227a b +=,解方程组得22a =,25b =,即得结果.【详解】设双曲线的方程为22221(0,0)x y a b a b-=>>,由题意可得227a b +=,设()11,M x y ,()22,N x y ,则MN 的中点为25,33⎛⎫-- ⎪⎝⎭,由2211221x y a b -=且2222221x y a b-=,得()()12122x x x x a +-=()()12122y y y y b +-,2223a ⨯-=()2523b ⨯-(),即2225a b=,联立227a b +=,解得22a =,25b =,故所求双曲线的方程为22125x y -=.故选D .【点睛】本题主要考查利用点差法求双曲线标准方程,考查基本求解能力,属于中档题.3.22142x y +=【分析】由离心率得,a b 的一个关系式,设()()1122,,,A x y B x y ,代入椭圆方程,相减后利用斜率关系得关于,a b 的另一等式,联立可求得22,a b 得椭圆标准方程.【详解】设()11,A x y ,()22,B x y ,则1212,22x x y y M ++⎛⎫ ⎪⎝⎭,即121212OM y y k x x +==-+.因为A ,B 在椭圆C 上,所以2211221x y a b +=,2222221x y a b+=,两式相减得()()()()12121212220x x x x y y y y a b +-+-+=,即()()()()121222121210y y y y a b x x x x +-+=+-,又12121AB y y k x x -==-,所以221102a b-=,即222a b =.又因为椭圆C过点⎛ ⎝⎭,所以221123a b +=,解得24a =,22b =,所以椭圆C 的标准方程为22142x y +=;4.24y x=【分析】设()()1122,,,A x y B x y ,代入抛物线方程相减,利用弦中点坐标,直线斜率求得p ,得抛物线方程.【详解】设()()1122,,,A x y B x y ,12122,42y y y y +=+=,21122222y px y px ⎧=⎨=⎩,两式相减并化简得1212122y y p x x y y -=-+,21,24pp ==,所以抛物线方程为24y x =.5.B【分析】先求得焦点,也即求得c ,然后利用点差法求得22ba,从而求得,a b ,也即求得椭圆C 的方程.【详解】直线0x y -=过点()F,所以c =设()()1122,,,A x y B x y ,由2222112222221,1x y x y a b a b +=+=两式相减并化简得2121221212y y y y b a x x x x +--=⋅+-,即22222222111,,222b b a b bc a a ⎛⎫-=-⋅===+ ⎪⎝⎭,所以2b c a ===,所以椭圆C 的方程为22142x y +=.故选:B 6.2212x y +=【分析】设()()1122,,,A x y B x y ,代入椭圆方程,相减后利用中点坐标、离心率求得直线AB 的斜率得直线方程,从而求得焦点坐标,求出,,c a b 得椭圆标准方程.【详解】设1(A x ,1)y ,2(B x ,2)y ,可得2211221x y a b +=,2222221x y a b+=,两式相减得22221212221x x y y a b--+=,2221222212y y b x x a -=--,2121221212()()()()y y y y b x x x x a -+=--+,将1243x x +=-,1223y y +=代入上式,得2221(12AB b k e a ⋅-=-=-,又2=e ,∴=1AB k ,∴直线l 的方程为1233y x -=+,即1y x =+,即()11,0F -,∴1c =,1a b ==,∴椭圆C 的标准方程2212x y +=;7.221123x y +=【分析】已知点的坐标代入得,a b 的一个关系式,设()()1122,,,A x y B x y ,代入椭圆方程,相减后利用斜率关系得,a b 的另一等式,联立可求得22,a b 得椭圆标准方程.【详解】解:因为椭圆经过点3)2P ,所以223914a b +=(1),设()()1122,,,A x y B x y ,因为直线l 与椭圆C 交于A ,B 两点,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得2121221212y y x x b x x a y y -+=-⋅-+,因为线段AB 的中点为M ,且直线l 与直线OM 的斜率乘积为-14,所以2214b a -=-(2),由(1)(2)解得223,12b a ==,所以椭圆方程为:221123x y +=;8.24y x =.【分析】中点弦问题利用点差法进行处理.【详解】解:设点()()1122,,A x y B x y ,,则12+22y y =,所以12+4y y =,又因为直线AB 的斜率为1,所以21211y y x x -=-,将A 、B 两点代入抛物线方程中得:21122222y px y px ⎧=⎨=⎩,将上述两式相减得,()2212122y y p x x -=-,即()()()121212+2y y y y p x x -=-,所以12121221+y y p y y x x -==-,即214p=,所以2p =,因此,抛物线的方程为24y x =.9.A【分析】利用弦长公式求解即可.【详解】设直线AB 方程为1y x =-,联立椭圆方程22143x y+=整理可得:27880x x --=,设()()1122,,,A x y B x y ,则1287x x +=,1287x x ⋅=-,根据弦长公式有:AB =247.故B ,C ,D 错误.故选:A.10.3【分析】直线AB的方程可设为2)y x =+,联立方程,利用弦长公式可得结果.【详解】∵双曲线的左焦点为F 1(﹣2,0),设A (x 1,y 1),B (x 2,y 2),直线AB的方程可设为2)y x =+,代入方程2213y x -=得,8x 2﹣4x ﹣13=0,∴1212113,28x x x x +==-,∴12||||3AB x x =-==.故答案为:3.11.(1)2214x y +=(2)5BC =【分析】(1)利用椭圆的离心率,过点1,2M ⎛ ⎝⎭,及222a b c =+,列方程解出,a b 即可得椭圆方程;(2)由已知可得直线l 的方程,与椭圆方程联立,利用根与系数的关系及弦长公式求解.【详解】(1)解:由题意得222c e a a b c ⎧==⎪⎨⎪=+⎩,解得224a b =,又因为点1,2M ⎛⎫⎪ ⎪⎝⎭在椭圆C 上,带入222214x y b b+=得21b =,所以椭圆的标准方程为2214x y +=.(2)解:易得直线l 的解析式为1y x =+,设()11,B x y ,()22,C x y 联立椭圆的方程22441x y y x ⎧+=⎨=+⎩得2580x x +=1285x x +=,120x x =12BC x=-=所以5BC =.12.(1)22163x y+=(2)【分析】(1)根据已知条件求得,,a b c ,由此可求得椭圆的方程.(2)对直线AB 斜率分成不存在、直线AB 的斜率为0、直线AB 的斜率不为0三种情况进行分类讨论,结合弦长公式、基本不等式求得AB 的取值范围.【详解】(1)由题意得,222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得a b c ===,所以C 的方程为22163x y +=.(2)圆222x y +=的圆心为(0,0),半径圆r =①当直线AB的斜率不存在时,方程为x =x =于是有22163x x y ⎧⎪⎨+=⎪⎩或22163x x y ⎧=⎪⎨+=⎪⎩解得y =所以AB =②当直线AB 的斜率为0时,方程为y =或y =,于是有22163y x y ⎧⎪⎨+=⎪⎩或22163y x y ⎧=⎪⎨+=⎪⎩解得x =所以AB =③当直线AB 的斜率不为0时,设斜率为k ,方程为y kx t =+,0kx y t -+=因为直线AB 与圆222x y +==222(1)t k =+建立方程组22163y kx t x y =+⎧⎪⎨+=⎪⎩,消y 并化简得222(21)4260k x ktx t +++-=,2222222Δ164(21)(26)488243280k t k t k t k =-+-=-+=+>.设11(,)A x y ,22(,)B x y ,则122421kt x x k +=-+,21222621t x x k -⋅=+,所以AB ===>而2214448kk++≥+=,当且仅当2214kk=,即22k=时,等号成立.所以3AB=,所以3AB<≤.综上所述,AB的取值范围是.13.(1)24x y=(2)6【分析】(1)利用抛物线的定义直接可得轨迹方程;(2)设直线方程,联立方程组,结合根与系数关系可得PQ,再根据二次函数的性质可得最值.(1)由题设点C到点F的距离等于它到1l的距离,∴点C的轨迹是以F为焦点,1l为准线的抛物线,∴所求轨迹的方程为24x y=;(2)由题意易知直线2l的斜率存在,设PQ中点为(),2t,直线2l的方程为()2y k x t-=-,联立直线与抛物线()242x yy k x t⎧=⎪⎨-=-⎪⎩,得24480x kx kt-+-=,()()()2244481620k kt k kt ∆=---=-+>,且124x x k +=,1248x x kt =-,又PQ 中点为(),2t ,即1242x x k t +==,2t k =,故()24280t t ∆=-+>恒成立,122x x t +=,21228x x t =-,所以PQ ,当22t =时,PQ 取最大值为6.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.14.D【分析】根据渐近线方程和焦点坐标可解得22,a b ,再将直线方程代入双曲线方程消元,由韦达定理和弦长公式可得.【详解】 双曲线C :22221(0,0)x y a b a b -=>>的一条渐近线方程是y =,b a∴,即.b =左焦点()F,c ∴=222233c a b a ∴=+==,21a ∴=,22b =,∴双曲线C 的方程为22 1.2y x -=易知直线l 的方程为(2=y x ,设11(,)A x y ,22(,)Bx y ,由(22212y x y x ⎧=+⎪⎨⎪-=⎩,消去y 可得270++=x,12x x ∴+=-127.10.x x AB =∴==故选:D15.(1)2214x y +=;(2)85.【分析】(1)根据椭圆的离心率公式,结合代入法、椭圆中的,,a b c 关系进行求解即可;(2)根据椭圆弦长公式进行求解即可.【详解】(1)因为椭圆的中心在原点,焦点在x 轴上,所以设椭圆的标准方程为:22221(0)x y a b a b+=>>,因为椭圆的离心率为2且过点12P ⎛⎫ ⎪⎝⎭,所以2222222231144123a b a c b a c a b c ⎧+=⎪⎧⎪=⎪⎪=⇒=⎨⎨⎪⎪=⎩=+⎪⎪⎩,所以椭圆的标准方程为:2214x y +=;(2)由(1)可知:F ,所以直线l的方程为:0tan 45(y x y x ︒-=⇒=2224(40580x x x +--=⇒-+=,设1122(,),(,)A x y B x y ,所以121285x x x x +==,因此85AB =.16.(1)轨迹方程为()2216368x y x -=≠±,轨迹为焦点在x 轴上的双曲线,不含左右顶点;(2)5AB =.【分析】(1)设(),M x y ,根据题意列出等式,化简即可得轨迹方程,判断轨迹形状,即得答案;(2)求出直线方程,并和双曲线方程联立,得到根与系数的关系式,根据弦长公式求出弦长即得答案.【详解】(1)设(),M x y ,因为()6,0A -,()6,0B ,所以()2,6669AM BM y y k k x x x ⋅=⋅=≠±+-,整理得()2216368x y x -=≠±,故点M 的轨迹方程为()2216368x y x -=≠±,轨迹为焦点在x 轴上的双曲线,不含左右顶点.(2)由22136x y -=得,23a =,26b =,所以2229c a b =+=,即3c =,所以右焦点()23,0F ,因为直线AB 的倾斜角是30 ,且直线经过右焦点()23,0F ,所以直线AB的方程为)3y x =-,由)223136y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩可得:256270x x +-=,所以1265x x +=-,12275x x =-,所以245AB ====17.(1)22142x y -=(2x ≠±)(2)【分析】(1)设(),M x y ,用坐标表示AM ,BM 的斜率,由已知可得曲线方程,注意斜率有意义;(2)直线方程与曲线方程联立,消元后应用韦达定理,由弦长公式计算弦长.(1)设(),M x y ,则AM ,BM 的斜率分别为12y k x =+,22y k x =-,由已知得1222y y x x ⋅=+-,化简得22142x y -=(2x ≠±),即曲线C 的方程为22142x y -=(2x ≠±);(2)联立221423x y y x ⎧-=⎪⎨⎪=-⎩消去y 整理得212220x x -+=,设()11,E x y ,()22,F x y ,则1212x x +=,1222x x =,12EF x -===18.1(2)最小值为p =【分析】(1)由()0,1F 得出抛物线方程,并与圆方程联立,求出A y ,最后由抛物线定义得出AF ;(2)由导数的几何意义得出切线l 的方程,由点O 到切线l 的距离等于1结合勾股定理得出2MN =20204411y y ++--,再由基本不等式得出MN 的最小值及相应p 的值.(1)由题意,得()0,1F ,从而C :24x y =.解方程组22241x y x y ⎧=⎨+=⎩,整理得,2410y y +-=,解得2A y所以11A AF y +==.(2)设()00,M x y ,由212y x p =得 x y p '=,故切线l 的方程为()000x y x x y p=-+,注意到2002x py =,故整理得000x x py py --=由1ON =且ON l ⊥,即点O 到切线l 的距离等于11=所以0py ==,整理,得02021y p y =-且201y ->0,所以2222200001121MN OM x y py y =-=+-=+-22200022004414142811y y y y y =+-=++-≥+--,当且仅当0y =.所以MN 的最小值为p ==19.(1)2(2)4AB ≥【分析】(1)由于2p PF ≥,即可求得12p =,从而得2p =;(2)设221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,由123k k OA OB <⋅=- 得124y y =-,设AB 直线方程为y kx b =+,代入抛物线方程结合韦达定理得出b k =-,从而y kx b =+过焦点()1,0,即可求解AB 的取值范围.【详解】(1)因为2p PF ≥,则12p =,所以2p =;(2)由(1)得24y x =,设221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则221212,,,44y y OA y OB y ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 则121244,k k y y ==,由123k k OA OB <⋅=- 得()212121216316y y y y y y <+=-,所以124y y =-,设AB 直线方程为y kx b=+联立方程组24y kx b y x =+⎧⎨=⎩得204k y y b -+=,所以1244b y y k ==-则b k =-故()1y kx b kx k k x =+=-=-过焦点()1,0所以24AB p ≥=.。

高考数学(理)二轮练习【专题6】(第2讲)椭圆、双曲线、抛物线(含答案)

高考数学(理)二轮练习【专题6】(第2讲)椭圆、双曲线、抛物线(含答案)

第2讲椭圆、双曲线、抛物线考情解读 1.以选择、填空的形式考查,主要考查圆锥曲线的标准方程、性质(特别是离心率),以及圆锥曲线之间的关系,突出考查基础知识、基本技能,属于基础题.2.以解答题的形式考查,主要考查圆锥曲线的定义、性质及标准方程的求解,直线与圆锥曲线的位置关系,常常在知识的交汇点处命题,有时以探究的形式出现,有时以证明题的形式出现.该部分题目多数为综合性问题,考查分析问题、解决问题的能力,综合运用知识的能力等,属于中、高档题,一般难度较大.圆锥曲线的定义、标准方程与几何性质|x|≤a,|y|≤b |x|≥a x≥0热点一 圆锥曲线的定义与标准方程例1 若椭圆C :x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆C 上,且|PF 2|=4则∠F 1PF 2等于( )A .30°B .60°C .120°D .150°(2)已知抛物线x 2=2py (p >0)的焦点与双曲线x 2-y 2=-12的一个焦点重合,且在抛物线上有一动点P 到x 轴的距离为m ,P 到直线l :2x -y -4=0的距离为n ,则m +n 的最小值为________. 思维启迪 (1)△PF 1F 2中利用余弦定理求∠F 1PF 2;(2)根据抛物线定义得m =|PF |-1.再利用数形结合求最值. 答案 (1)C (2)5-1解析 (1)由题意得a =3,c =7,所以|PF 1|=2. 在△F 2PF 1中,由余弦定理可得cos ∠F 2PF 1=42+22-(27)22×4×2=-12.又因为cos ∠F 2PF 1∈(0°,180°),所以∠F 2PF 1=120°. (2)易知x 2=2py (p >0)的焦点为F (0,1),故p =2, 因此抛物线方程为x 2=4y .根据抛物线的定义可知m =|PF |-1,设|PH |=n (H 为点P 到直线l 所作垂线的垂足), 因此m +n =|PF |-1+|PH |.易知当F ,P ,H 三点共线时m +n 最小, 因此其最小值为|FH |-1=|-1-4|5-1=5-1.思维升华 (1)对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求|PF 1|+|PF 2|>|F 1F 2|,双曲线的定义中要求||PF 1|-|PF 2||<|F 1F 2|,抛物线上的点到焦点的距离与到准线的距离相等的转化. (2)注意数形结合,画出合理草图.(1)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( ) A.x 28+y 22=1 B.x 212+y 26=1 C.x 216+y 24=1 D.x 220+y 25=1(2)如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( ) A .y 2=9x B .y 2=6x C .y 2=3x D .y 2=3x答案 (1)D (2)C解析 (1)∵椭圆的离心率为32,∴c a =a 2-b 2a =32,∴a =2b .∴椭圆方程为x 2+4y 2=4b 2.∵双曲线x 2-y 2=1的渐近线方程为x ±y =0,∴渐近线x ±y =0与椭圆x 2+4y 2=4b 2在第一象限的交点为⎝⎛⎭⎫255b ,255b ,∴由圆锥曲线的对称性得四边形在第一象限部分的面积为255b ×255b =4,∴b 2=5,∴a 2=4b 2=20. ∴椭圆C 的方程为x 220+y 25=1.(2)如图,分别过A ,B 作AA 1⊥l 于A 1,BB 1⊥l 于B 1,由抛物线的定义知,|AF |=|AA 1|,|BF |=|BB 1|, ∵|BC |=2|BF |,∴|BC |=2|BB 1|, ∴∠BCB 1=30°,∴∠A 1AF =60°. 连接A 1F ,则△A 1AF 为等边三角形, 过F 作FF 1⊥AA 1于F 1,则F 1为AA 1的中点,设l 交x 轴于N ,则|NF |=|A 1F 1|=12|AA 1|=12|AF |,即p =32,∴抛物线方程为y 2=3x ,故选C.热点二 圆锥曲线的几何性质例2 (1)已知离心率为e 的双曲线和离心率为22的椭圆有相同的焦点F 1,F 2,P 是两曲线的一个公共点,若∠F 1PF 2=π3,则e 等于( )A.52 B.52 C.62D .3 (2)设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1 (a >b >0)的左,右焦点,若在直线x =a 2c 上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆的离心率的取值范围是( ) A.⎝⎛⎦⎤0,22 B.⎝⎛⎦⎤0,33 C.⎣⎡⎭⎫22,1D.⎣⎡⎭⎫33,1思维启迪 (1)在△F 1F 2P 中利用余弦定理列方程,然后利用定义和已知条件消元;(2)可设点P 坐标为(a 2c ,y ),考察y 存在的条件.答案 (1)C (2)D解析 (1)设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,焦距为2c ,|PF 1|=m ,|PF 2|=n ,且不妨设m >n ,由m +n =2a 1,m -n =2a 2得m =a 1+a 2,n =a 1-a 2. 又∠F 1PF 2=π3,∴4c 2=m 2+n 2-mn =a 21+3a 22,∴a 21c 2+3a 22c 2=4,即1(22)2+3e 2=4,解得e =62,故选C. (2)设P ⎝⎛⎭⎫a 2c ,y ,线段F 1P 的中点Q 的坐标为⎝⎛⎭⎫b 22c ,y 2, 当2QF k 存在时,则1F P k =cy a 2+c 2,2QF k =cyb 2-2c 2, 由12F P QF k k ⋅=-1,得 y 2=(a 2+c 2)·(2c 2-b 2)c 2,y 2≥0,但注意到b 2-2c 2≠0,即2c 2-b 2>0, 即3c 2-a 2>0,即e 2>13,故33<e <1.当2QF k 不存在时,b 2-2c 2=0,y =0, 此时F 2为中点,即a 2c -c =2c ,得e =33,综上,得33≤e <1, 即所求的椭圆离心率的取值范围是⎣⎡⎭⎫33,1.思维升华 解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式.建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.已知O 为坐标原点,双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,以OF 为直径作圆交双曲线的渐近线于异于原点的两点A 、B ,若(AO →+AF →)·OF →=0,则双曲线的离心率e 为( )A .2B .3 C. 2 D. 3(2)(2014·课标全国Ⅰ)已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A. 3 B .3 C.3m D .3m 答案 (1)C (2)A解析 (1)设OF 的中点为C ,则 AO →+AF →=2AC →,由题意得, 2AC →·OF →=0,∴AC ⊥OF ,∴AO =AF , 又∠OAF =90°,∴∠AOF =45°, 即双曲线的渐近线的倾斜角为45°, ∴ba =tan 45°=1, 则双曲线的离心率e =1+(ba)2=2,故选C.(2)双曲线C 的标准方程为x 23m -y 23=1(m >0),其渐近线方程为y =±33m x =±m mx ,即my =±x ,不妨选取右焦点F (3m +3,0)到其中一条渐近线x -my =0的距离求解,得d =3m +31+m= 3.故选A.热点三 直线与圆锥曲线例3 过椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点A 作斜率为2的直线,与椭圆的另一个交点为B ,与y 轴的交点为C ,已知AB →=613BC →.(1)求椭圆的离心率;(2)设动直线y =kx +m 与椭圆有且只有一个公共点P ,且与直线x =4相交于点Q ,若x 轴上存在一定点M (1,0),使得PM ⊥QM ,求椭圆的方程.思维启迪 (1)根据AB →=613BC →和点B 在椭圆上列关于a 、b 的方程;(2)联立直线y =kx +m 与椭圆方程,利用Δ=0,PM →·QM →=0求解.解 (1)∵A (-a,0),设直线方程为y =2(x +a ),B (x 1,y 1), 令x =0,则y =2a ,∴C (0,2a ), ∴AB →=(x 1+a ,y 1),BC →=(-x 1,2a -y 1),∵AB →=613BC →,∴x 1+a =613(-x 1),y 1=613(2a -y 1),整理得x 1=-1319a ,y 1=1219a ,∵点B 在椭圆上,∴(1319)2+(1219)2·a 2b 2=1,∴b 2a 2=34,∴a 2-c 2a 2=34,即1-e 2=34,∴e =12.(2)∵b 2a 2=34,可设b 2=3t ,a 2=4t ,∴椭圆的方程为3x 2+4y 2-12t =0,由⎩⎪⎨⎪⎧3x 2+4y 2-12t =0y =kx +m ,得 (3+4k 2)x 2+8kmx +4m 2-12t =0,∵动直线y =kx +m 与椭圆有且只有一个公共点P , ∴Δ=0,即64k 2m 2-4(3+4k 2)(4m 2-12t )=0, 整理得m 2=3t +4k 2t ,设P (x 1,y 1)则有x 1=-8km 2(3+4k 2)=-4km 3+4k 2, y 1=kx 1+m =3m 3+4k 2,∴P (-4km 3+4k 2,3m3+4k 2), 又M (1,0),Q (4,4k +m ),∵x 轴上存在一定点M (1,0),使得PM ⊥QM ,∴(1+4km 3+4k 2,-3m3+4k 2)·(-3,-(4k +m ))=0恒成立, 整理得3+4k 2=m 2.∴3+4k 2=3t +4k 2t 恒成立,故t =1. ∴椭圆的方程为x 24+y 23=1.思维升华 待定系数法是求圆锥曲线方程的基本方法;解决直线与圆锥曲线问题的通法是联立方程,利用根与系数的关系,设而不求思想,弦长公式等简化计算;涉及中点弦问题时,也可用“点差法”求解.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为2,且过点(1,22),右焦点为F 2.设A ,B 是C 上的两个动点,线段AB 的中点M 的横坐标为-12,线段AB 的中垂线交椭圆C 于P ,Q 两点.(1)求椭圆C 的方程; (2)求F 2P →·F 2Q →的取值范围.解 (1)因为焦距为2,所以a 2-b 2=1.因为椭圆C 过点(1,22), 所以1a 2+12b 2=1.故a 2=2,b 2=1.所以椭圆C 的方程为x 22+y 2=1.(2)由题意,当直线AB 垂直于x 轴时,直线AB 的方程为x =-12,此时P (-2,0),Q (2,0), 得F 2P →·F 2Q →=-1.当直线AB 不垂直于x 轴时,设直线AB 的斜率为k (k ≠0),M (-12,m )(m ≠0),A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧x 212+y 21=1,x222+y 22=1,得(x 1+x 2)+2(y 1+y 2)·y 1-y 2x 1-x 2=0,则-1+4mk =0,故4mk =1.此时,直线PQ 的斜率为k 1=-4m , 直线PQ 的方程为y -m =-4m (x +12).即y =-4mx -m .联立⎩⎪⎨⎪⎧y =-4mx -m ,x 22+y 2=1消去y , 整理得(32m 2+1)x 2+16m 2x +2m 2-2=0. 设P (x 3,y 3),Q (x 4,y 4)所以x 3+x 4=-16m 232m 2+1,x 3x 4=2m 2-232m 2+1.于是F 2P →·F 2Q →=(x 3-1)(x 4-1)+y 3y 4=x 3x 4-(x 3+x 4)+1+(4mx 3+m )(4mx 4+m ) =(4m 2-1)(x 3+x 4)+(16m 2+1)x 3x 4+m 2+1 =(4m 2-1)(-16m 2)32m 2+1+(1+16m 2)(2m 2-2)32m 2+1+1+m 2 =19m 2-132m 2+1. 由于M (-12,m )在椭圆的内部,故0<m 2<78,令t =32m 2+1,1<t <29,则F 2P →·F 2Q →=1932-5132t.又1<t <29,所以-1<F 2P →·F 2Q →<125232.综上,F 2P →·F 2Q →的取值范围为[-1,125232).1.对涉及圆锥曲线上点到焦点距离或焦点弦的问题,恰当选用定义解题,会效果明显,定义中的定值是标准方程的基础.2.椭圆、双曲线的方程形式上可统一为Ax 2+By 2=1,其中A 、B 是不等的常数,A >B >0时,表示焦点在y 轴上的椭圆;B >A >0时,表示焦点在x 轴上的椭圆;AB <0时表示双曲线.3.求双曲线、椭圆的离心率的方法:(1)直接求出a ,c ,计算e =ca ;(2)根据已知条件确定a ,b ,c 的等量关系,然后把b 用a ,c 代换,求ca.4.通径:过双曲线、椭圆、抛物线的焦点垂直于对称轴的弦称为通径,双曲线、椭圆的通径长为2b 2a ,过椭圆焦点的弦中通径最短;抛物线通径长是2p ,过抛物线焦点的弦中通径最短.椭圆上点到焦点的最长距离为a +c ,最短距离为a -c . 5.抛物线焦点弦性质:已知AB 是抛物线y 2=2px (p >0)的焦点弦,F 为抛物线的焦点,A (x 1,y 1),B (x 2,y 2). (1)y 1y 2=-p 2,x 1x 2=p 24;(2)|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角);(3)S △AOB =p 22sin α;(4)1|F A |+1|FB |为定值2p; (5)以AB 为直径的圆与抛物线的准线相切.真题感悟1.(2014·湖北)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( ) A.433B.233C .3D .2答案 A解析 设|PF 1|=r 1,|PF 2|=r 2(r 1>r 2),|F 1F 2|=2c ,椭圆长半轴长为a 1,双曲线实半轴长为a 2,椭圆、双曲线的离心率分别为e 1,e 2, 由(2c )2=r 21+r 22-2r 1r 2cos π3, 得4c 2=r 21+r 22-r 1r 2.由⎩⎪⎨⎪⎧ r 1+r 2=2a 1,r 1-r 2=2a 2得⎩⎪⎨⎪⎧r 1=a 1+a 2,r 2=a 1-a 2,∴1e 1+1e 2=a 1+a 2c =r 1c. 令m =r 21c 2=4r 21r 21+r 22-r 1r 2=41+(r 2r 1)2-r 2r 1=4(r 2r 1-12)2+34,当r 2r 1=12时,m max =163, ∴(r 1c )max =433, 即1e 1+1e 2的最大值为433. 2.(2014·辽宁)已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A.12 B.23 C.34 D.43答案 D解析 抛物线y 2=2px 的准线为直线x =-p 2,而点A (-2,3)在准线上,所以-p2=-2,即p =4,从而C :y 2=8x ,焦点为F (2,0).设切线方程为y -3=k (x +2),代入y 2=8x 得k8y 2-y +2k +3=0(k ≠0)①,由于Δ=1-4×k 8(2k +3)=0,所以k =-2或k =12.因为切点在第一象限, 所以k =12.将k =12代入①中,得y =8,再代入y 2=8x 中得x =8,所以点B 的坐标为(8,8), 所以直线BF 的斜率为43.押题精练1.已知圆x 2+y 2=a 216上点E 处的一条切线l 过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点F ,且与双曲线的右支交于点P ,若OE →=12(OF →+OP →),则双曲线的离心率是_____________.答案264解析 如图所示,设双曲线的右焦点为H ,连接PH , 由题意可知|OE |=a4,由OE →=12(OF →+OP →),可知E 为FP 的中点.由双曲线的性质,可知O 为FH 的中点, 所以OE ∥PH ,且|OE |=12|PH |,故|PH |=2|OE |=a2.由双曲线的定义,可知|PF |-|PH |=2a (P 在双曲线的右支上), 所以|PF |=2a +|PH |=5a 2. 因为直线l 与圆相切,所以PF ⊥OE .又OE ∥PH ,所以PF ⊥PH .在△PFH 中,|FH |2=|PH |2+|PF |2, 即(2c )2=(a 2)2+(5a2)2,整理得c a =264,即e =264.2.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 、B ,点P 在椭圆上且异于A 、B 两点,O为坐标原点.(1)若直线AP 与BP 的斜率之积为-12,求椭圆的离心率;(2)若|AP |=|OA |,证明:直线OP 的斜率k 满足|k |> 3. (1)解 设点P 的坐标为(x 0,y 0),y 0≠0.由题意,有x 20a 2+y 20b2=1.①由A (-a,0),B (a,0),得k AP =y 0x 0+a ,k BP =y 0x 0-a.由k AP · k BP =-12,可得x 20=a 2-2y 20, 代入①并整理得(a 2-2b 2)y 20=0.由于y 0≠0,故a 2=2b 2.于是e 2=a 2-b 2a 2=12,所以椭圆的离心率e =22. (2)证明 方法一 依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0).由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 20b2=1. 消去y 0并整理,得x 20=a 2b 2k 2a 2+b 2,② 由|AP |=|OA |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2.整理得(1+k 2)x 20+2ax 0=0.而x 0≠0,于是x 0=-2a 1+k 2, 代入②,整理得(1+k 2)2=4k 2⎝⎛⎭⎫a b 2+4.又a >b >0,故(1+k 2)2>4k 2+4,即k 2+1>4,因此k 2>3,所以|k |> 3.方法二 依题意,直线OP 的方程为y =kx ,可设点P 的坐标为(x 0,kx 0).由点P 在椭圆上,有x 20a 2+k 2x 20b2=1. 因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a2<1,即(1+k 2)x 20<a 2.③ 由|AP |=|OA |及A (-a,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0,于是x 0=-2a 1+k 2. 代入③,得(1+k 2)4a 2(1+k 2)2<a 2,解得k 2>3, 所以|k |> 3.(推荐时间:60分钟)一、选择题1.已知椭圆x 24+y 2b 2=1(0<b <2),左,右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )A .1 B. 2 C.32D. 3 答案 D解析 由椭圆的方程,可知长半轴长a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b 2a =3,可求得b 2=3,即b = 3.2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)以及双曲线y 2a 2-x 2b 2=1的渐近线将第一象限三等分,则双曲线x 2a 2-y 2b 2=1的离心率为( ) A .2或233B.6或233 C .2或 3 D.3或 6 答案 A解析 由题意,可知双曲线x 2a 2-y 2b 2=1的渐近线的倾斜角为30°或60°,则b a =33或 3. 则e =c a =c 2a 2= 1+(b a )2=233或2. 故选A. 3.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A.x 236-y 2108=1 B.x 29-y 227=1 C.x 2108-y 236=1 D.x 227-y 29=1 答案 B解析 由双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,可设双曲线的方程为x 2-y 23=λ(λ>0).因为双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点在抛物线y 2=24x 的准线上,所以F (-6,0)是双曲线的左焦点,即λ+3λ=36,λ=9,所以双曲线的方程为x 29-y 227=1.故选B. 4.已知椭圆y 2a 2+x 2b2=1 (a >b >0),A (4,0)为长轴的一个端点,弦BC 过椭圆的中心O ,且AC →·BC →=0,|OB →-OC →|=2|BC →-BA →|,则其焦距为( ) A.463B.433C.863D.233 答案 C解析 由题意,可知|OC →|=|OB →|=12|BC →|,且a =4, 又|OB →-OC →|=2|BC →-BA →|,所以,|BC →|=2|AC →|.故|OC →|=|AC →|.又AC →·BC →=0,所以AC →⊥BC →.故△OAC 为等腰直角三角形,|OC →|=|AC →|=2 2.不妨设点C 在第一象限,则点C 的坐标为(2,2),代入椭圆的方程,得2242+22b 2=1,解得b 2=163. 所以c 2=a 2-b 2=42-163=323,c =463. 故其焦距为2c =863. 5.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334 B.938 C.6332 D.94答案 D解析 由已知得焦点坐标为F (34,0), 因此直线AB 的方程为y =33(x -34), 即4x -43y -3=0.方法一 联立抛物线方程,化简得4y 2-123y -9=0,故|y A -y B |=(y A +y B )2-4y A y B =6.因此S △OAB =12|OF ||y A -y B |=12×34×6=94. 方法二 联立方程得x 2-212x +916=0, 故x A +x B =212. 根据抛物线的定义有|AB |=x A +x B +p =212+32=12,同时原点到直线AB 的距离为h =|-3|42+(-43)2=38, 因此S △OAB =12|AB |·h =94. 6.椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,P 为椭圆M 上任一点,且 PF →1·PF →2的最大值的取值范围是[c 2,3c 2],其中c =a 2-b 2,则椭圆M 的离心率e 的取值范围是( )A .[14,12] B .[12,22] C .(22,1) D .[12,1) 答案 B解析 设P (x ,y ),F 1(-c,0),F 2(c,0),则PF 1→=(-c -x ,-y ),PF 2→=(c -x ,-y ),PF 1→·PF 2→=x 2+y 2-c 2.又x 2+y 2可看作P (x ,y )到原点的距离的平方,所以(x 2+y 2)max =a 2,所以(PF 1→·PF 2→)max =b 2,所以c 2≤b 2=a 2-c 2≤3c 2,即14≤e 2≤12, 所以12≤e ≤22.故选B. 二、填空题7.(2014·北京)设双曲线C 经过点(2,2),且与y 24-x 2=1具有相同渐近线,则C 的方程为________;渐近线方程为________.答案 x 23-y 212=1 y =±2x 解析 设双曲线C 的方程为y 24-x 2=λ, 将点(2,2)代入上式,得λ=-3,∴C 的方程为x 23-y 212=1, 其渐近线方程为y =±2x .8.已知点P (0,2),抛物线C :y 2=2px (p >0)的焦点为F ,线段PF 与抛物线C 的交点为M ,过M 作抛物线准线的垂线,垂足为Q ,若∠PQF =90°,则p =________.答案 2解析 由抛物线的定义可得|MQ |=|MF |,F (p 2,0),又PQ ⊥QF ,故M 为线段PF 的中点,所以M (p 4,1),把M (p 4,1),代入抛物线y 2=2px (p >0)得,1=2p ×p 4, 解得p =2,故答案为 2.9.抛物线C 的顶点在原点,焦点F 与双曲线x 23-y 26=1的右焦点重合,过点P (2,0)且斜率为1的直线l 与抛物线C 交于A ,B 两点,则弦AB 的中点到抛物线准线的距离为________. 答案 11解析 因为双曲线x 23-y 26=1的右焦点坐标是(3,0). 所以p 2=3,所以p =6. 即抛物线的标准方程为y 2=12x .设过点P (2,0)且斜率为1的直线l 的方程为y =x -2,联立y 2=12x 消去y 可得x 2-16x +4=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=16,所以弦AB 的中点到抛物线准线的距离为x 1+x 2+p 2=16+62=11.故填11. 10.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点,点P 在双曲线上且不与顶点重合,过F 2作∠F 1PF 2的角平分线的垂线,垂足为A .若|OA |= b ,则该双曲线的离心率为_______. 答案 2解析 延长F 2A 交PF 1于B 点,则|PB |=|PF 2|,依题意可得|BF 1|=|PF 1|-|PF 2|=2a .又因为点A 是BF 2的中点.所以得到|OA |=12|BF 1|,所以b =a . 所以c =2a .所以离心率为 2.三、解答题11.已知曲线C 上的动点P (x ,y )满足到定点A (-1,0)的距离与到定点B (1,0)的距离之比为 2.(1)求曲线C 的方程;(2)过点M (1,2)的直线l 与曲线C 交于两点M 、N ,若|MN |=4,求直线l 的方程.解 (1)由题意得|P A |=2|PB | 故(x +1)2+y 2=2(x -1)2+y 2化简得:x 2+y 2-6x +1=0(或(x -3)2+y 2=8)即为所求.(2)当直线l 的斜率不存在时,直线l 的方程为x =1.将x =1代入方程x 2+y 2-6x +1=0得y =±2,所以|MN |=4,满足题意.当直线l 的斜率存在时,设直线l 的方程为y =kx -k +2,由圆心到直线的距离d =2=|3k -k +2|1+k 2, 解得k =0,此时直线l 的方程为y =2.综上所述,满足题意的直线l 的方程为x =1或y =2.12.设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过F 1且斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|P A |=|PB |,求E 的方程.解 (1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a ,因为2|AB |=|AF 2|+|BF 2|,所以|AB |=43a . l 的方程为y =x +c ,其中c =a 2-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b 2=1, 化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0,则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b2. 因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|=2[(x 1+x 2)2-4x 1x 2].故43a =4ab 2a 2+b2,得a 2=2b 2, 所以E 的离心率e =c a =a 2-b 2a =22. (2)设AB 的中点为N (x 0,y 0),由(1)知x 0=x 1+x 22=-a 2c a 2+b2=-23c ,y 0=x 0+c =c 3. 由|P A |=|PB |,得k PN =-1,即y 0+1x 0=-1, 得c =3,从而a =32,b =3.故椭圆E 的方程为x 218+y 29=1.13.(2013·北京)已知A ,B ,C 是椭圆W :x 24+y 2=1上的三个点,O 是坐标原点. (1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.解 (1)由椭圆W :x 24+y 2=1,知B (2,0) ∴线段OB 的垂直平分线x =1.在菱形OABC 中,AC ⊥OB ,将x =1代入x 24+y 2=1,得y =±32. ∴|AC |=|y A -y C |= 3.∴菱形的面积S =12|OB |·|AC |=12×2×3= 3. (2)假设四边形OABC 为菱形.∵点B 不是W 的顶点,且直线AC 不过原点,∴可设AC 的方程为y =kx +m (k ≠0,m ≠0).由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m 消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m 1+4k 2. ∴线段AC 中点M ⎝⎛⎭⎫-4km 1+4k 2,m 1+4k 2, ∵M 为AC 和OB 交点,∴k OB =-14k. 又k ·⎝⎛⎭⎫-14k =-14≠-1, ∴AC 与OB 不垂直.∴OABC 不是菱形,这与假设矛盾.综上,四边形OABC 不是菱形.。

双曲线经典练习题总结(带答案)

双曲线经典练习题总结(带答案)

双曲线经典练习题总结(带答案)一、选择题1.以椭圆x 216+y 29=1的顶点为顶点,离心率为2的双曲线方程为( C )A .x 216-y 248=1B .y 29-x 227=1C .x 216-y 248=1或y 29-x 227=1D .以上都不对[解析] 当顶点为(±4,0)时,a =4,c =8,b =43,双曲线方程为x 216-y 248=1;当顶点为(0,±3)时,a =3,c =6,b =33,双曲线方程为y 29-x 227=1.2.双曲线2x 2-y 2=8的实轴长是( C ) A .2 B .22 C .4 D .42[解析] 双曲线2x 2-y 2=8化为标准形式为x 24-y 28=1,∴a =2,∴实轴长为2a =4.3.(全国Ⅱ文,5)若a >1,则双曲线x 2a 2-y 2=1的离心率的取值范围是( C )A .(2,+∞)B .(2,2 )C .(1,2)D .(1,2)[解析] 由题意得双曲线的离心率e =a 2+1a. ∴c 2=a 2+1a 2=1+1a2.∵a >1,∴0<1a 2<1,∴1<1+1a2<2,∴1<e < 2.故选C .4.(2018·全国Ⅲ文,10)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,则点(4,0)到C的渐近线的距离为( D ) A .2 B .2 C .322D .22[解析] 由题意,得e =ca=2,c 2=a 2+b 2,得a 2=b 2.又因为a >0,b >0,所以a =b ,渐近线方程为x ±y =0,点(4,0)到渐近线的距离为42=22, 故选D .5.(2019·全国Ⅲ卷理,10)双曲线C :x 24-y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若|PO |=|PF |,则△PFO 的面积为( A ) A .324B .322C .22D .32[解析] 双曲线x 24-y 22=1的右焦点坐标为(6,0),一条渐近线的方程为y =22x ,不妨设点P 在第一象限,由于|PO |=|PF |,则点P 的横坐标为62,纵坐标为22×62=32,即△PFO 的底边长为6,高为32,所以它的面积为12×6×32=324.故选A . 6.若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则C 的离心率为( A ) A .2 B .3 C .2D .233[解析] 设双曲线的一条渐近线方程为y =ba x ,圆的圆心为(2,0),半径为2,由弦长为2得出圆心到渐近线的距离为22-12= 3.根据点到直线的距离公式得2b a 2+b 2=3,解得b 2=3a 2. 所以C 的离心率e =ca =c 2a 2=1+b 2a2=2.故选A . 二、填空题7.(2019·江苏卷,7)在平面直角坐标系xOy 中,若双曲线x 2-y 2b 2=1(b >0)经过点(3,4),则该双曲线的渐近线方程是 [解析] 因为双曲线x 2-y 2b 2=1(b >0)经过点(3,4),所以9-16b 2=1(b >0),解得b =2,即双曲线方程为x 2-y 22=1,其渐近线方程为y =±2x .8.双曲线x 24+y 2k =1的离心率e ∈(1,2),则k 的取值范围是__-12<k <0__.[解析] 双曲线方程可变形为x 24-y 2-k =1,则a 2=4,b 2=-k ,c 2=4-k ,e =ca =4-k2.又因为e ∈(1,2),即1<4-k2<2,解得-12<k <0. 三、解答题9.(1)求与椭圆x 29+y 24=1有公共焦点,且离心率e =52的双曲线的方程;(2)求实轴长为12,离心率为54的双曲线的标准方程.[解析] (1)设双曲线的方程为x 29-λ-y 2λ-4=1(4<λ<9),则a 2=9-λ,b 2=λ-4,∴c 2=a 2+b 2=5,∵e =52,∴e 2=c 2a 2=59-λ=54,解得λ=5, ∴所求双曲线的方程为x 24-y 2=1.(2)由于无法确定双曲线的焦点在x 轴上还是在y 轴上,所以可设双曲线标准方程为x 2a 2-y 2b 2=1(a >0,b >0)或y 2a 2-x 2b 2=1(a >0,b >0).由题设知2a =12,c a =54且c 2=a 2+b 2,∴a =6,c =152,b 2=814.∴双曲线的标准方程为x 236-y 2814=1或y 236-x 2814=1.B 级 素养提升一、选择题1.如果椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,那么双曲线x 2a 2-y 2b 2=1的离心率为( A )A .52B .54C .2D .2[解析] 由已知椭圆的离心率为32,得a 2-b 2a 2=34,∴a 2=4b 2.∴a 2+b 2a 2=5b 24b 2=54.∴双曲线的离心率e =52. 2.双曲线x 2-y 2m =1的离心率大于2的充分必要条件是( C )A .m >12B .m ≥1C .m >1D .m >2[解析] 本题考查双曲线离心率的概念,充分必要条件的理解. 双曲线离心率e =1+m >2,所以m >1,选C .3.(多选题)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1、F 2是C 的两个焦点.若MF 1→·MF 2→<0,则y 0的取值可能是( BC ) A .-1 B .0 C .12D .1[解析] 由双曲线方程可知F 1(-3,0)、F 2(3,0), ∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+(-y 0)(-y 0)<0, 即x 20+y 20-3<0,∴2+2y 20+y 20-3<0,y 20<13, ∴-33<y 0<33,故选BC . 4.(多选题)将离心率为e 1的双曲线C 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线C 2,则( BD ) A .对任意的a ,b ,e 1>e 2 B .当a <b 时,e 1>e 2 C .对任意的a ,b ,e 1<e 2 D .当a >b 时,e 1<e 2[解析] 由条件知e 21=c 2a 2=1+b 2a2,e 22=1+⎝ ⎛⎭⎪⎫b +m a +m 2,当a >b 时,b +m a +m >ba ,∴e 21<e 22.∴e 1<e 2.当a <b 时,b +m a +m <ba ,∴e 21>e 22.∴e 1>e 2.所以,当a >b 时,e 1<e 2;当a <b 时,e 1>e 2. 二、填空题5.(2019·课标全国Ⅰ理,16)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A →=AB →,F 1B →·F 2B →=0,则C 的离心率为__2__.[解析] 双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x ,∵F 1B →·F 2B →=0,∴F 1B ⊥F 2B ,∴点B 在⊙O :x 2+y 2=c 2上,如图所示,不妨设点B 在第一象限,由⎩⎪⎨⎪⎧y =b ax x 2+y 2=c2a 2+b 2=c 2x >0,得点B (a ,b ),∵F 1A →=AB →,∴点A 为线段F 1B 的中点,∴A ⎝⎛⎭⎪⎫a -c 2,b 2,将其代入y =-b a x 得b 2=⎝⎛⎭⎫-b a ×a -c 2.解得c =2a ,故e =ca=2.6.已知双曲线x 29-y 2a =1的右焦点为(13,0),则该双曲线的渐近线方程为__y =±23x __.[解析] 由已知得9+a =13,即a =4,故所求双曲线的渐近线为y =±23x .三、解答题7.焦点在x 轴上的双曲线过点P (42,-3),且点Q (0,5)与两焦点的连线互相垂直,求此双曲线的标准方程.[解析] 因为双曲线焦点在x 轴上,所以设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),F 1(-c,0)、F 2(c,0).因为双曲线过点P (42,-3), 所以32a 2-9b2=1.①又因为点Q (0,5)与两焦点的连线互相垂直, 所以QF 1→·QF 2→=0,即-c 2+25=0. 所以c 2=25.② 又c 2=a 2+b 2,③所以由①②③可解得a 2=16或a 2=50(舍去). 所以b 2=9,所以所求的双曲线的标准方程是x 216-y 29=1. 8.(2020·云南元谋一中期中)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F (c,0).(1)若双曲线的一条渐近线方程为y =x 且c =2,求双曲线的方程;(2)以原点O 为圆心,c 为半径作圆,该圆与双曲线在第一象限的交点为A ,过A 作圆的切线,其斜率为-3,求双曲线的离心率.[解析] (1)由题意,ba =1,c =2,a 2+b 2=c 2,∴a 2=b 2=2,∴双曲线方程为x 22-y 22=1.(2)由题意,设A (m ,n ),则k OA =33,从而n =33m ,m 2+n 2=c 2,∴A (32c ,c 2), 将A (32c ,c 2)代入双曲线x 2a 2-y 2b 2=1得:3c 24a 2-c 24b 2=1,∴c 2(3b 2-a 2)=4a 2b 2,且c 2=a 2+b 2,∴(a 2+b 2)(3b 2-a 2)=4a 2b 2, ∴3b 4-2a 2b 2-a 4=0,∴3(b a )4-2(ba )2-1=0,∴b 2a 2=1从而e 2=1+b 2a 2=2,∴e = 2.。

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析1.已知椭圆的中心在原点、焦点在轴上,抛物线的顶点在原点、焦点在轴上.小明从曲线、上各取若干个点(每条曲线上至少取两个点),并记录其坐标(.由于记录失误,使得其中恰有一个点既不在椭圆上,也不在抛物线上,小明的记录如下:据此,可推断抛物线的方程为_____________.【答案】【解析】:由题意可知:点是椭圆的短轴的一个端点,或点是椭圆的长轴的一个端点.以下分两种情况讨论:①假设点是椭圆的短轴的一个端点,则可以写成经验证可得:若点在上,代入求得,即,剩下的4个点中也在此椭圆上.假设抛物线的方程为,把点代入求得p=2,∴,则只剩下一个点既不在椭圆上,也不在抛物线上满足条件.假设抛物线的方程为y2=-2px,经验证不符合题意.②假设点是椭圆的长轴的一个端点,则可以写成,经验证不满足条件,应舍去.综上可知:可推断椭圆的方程为.【考点】椭圆、抛物线的标准方程及其性质和分类讨论的思想方法是解题的关键.2.已知椭圆的一个顶点为,焦点在轴上,若右焦点到直线的距离为.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在斜率为,且过定点的直线,使与椭圆交于两个不同的点,且?若存在,求出直线的方程;若不存在,请说明理由.【答案】(1)(2)不存在【解析】(1)设椭圆的方程,用待定系数法求出的值;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.试题解析:(I)依题意可设椭圆方程为,则右焦点,由题设:,解得:,故所求椭圆的方程为.(II)设存在直线符合题意,直线方程为,代入椭圆方程得:,设,为弦的中点,则由韦达定理得:,,因为不符合,所以不存在直线符合题意.【考点】(1)椭圆的方程;(2)直线与椭圆的综合问题.3.椭圆的焦距是()A.3B.6C.8D.10【答案】B【解析】由椭圆的方程知,∵a2=25,b2=16,∴c=∴的焦距2c=6.故选B.【考点】椭圆的性质.4.已知椭圆经过点,离心率为,过点的直线与椭圆交于不同的两点.(1)求椭圆的方程;(2)求的取值范围.【答案】(1);(2).【解析】(1)利用题干中的两个条件,和椭圆本身的性质,得然后求解,代入即可;(2)由题干“过点的直线与椭圆交于不同的两点”.设直线的方程为,由得,设,的坐标分别为,,然后利用根与系数的关系,代换出,注意:k的范围.试题解析:(1)由题意得解得,.椭圆的方程为.(2)由题意显然直线的斜率存在,设直线的方程为,由得. 直线与椭圆交于不同的两点,,,解得.设,的坐标分别为,,则,,,.的范围为.【考点】椭圆定义,转化与化归思想,舍而不求思想的运用.5.已知椭圆的对称中心为原点,焦点在轴上,左右焦点分别为和,且||=2,离心率. (1)求椭圆的方程;(2)过的直线与椭圆相交于A,B两点,若的面积为,求直线的方程.【答案】(1);(2)或.【解析】(1)设椭圆的方程,用待定系数法求出的值;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.试题解析:(1)椭圆C的方程是 4分(2)当直线轴时,可得的面积为3,不合题意。

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析1.已知椭圆上存在两点、关于直线对称,求的取值范围.【答案】.【解析】解题思路:利用直线与直线垂直,设出直线的方程,联立直线与椭圆方程,消去,整理成关于的一元二次方程,利用中点公式和判别式求出的范围.规律总结:涉及直线与椭圆的位置关系问题,往往采用“设而不求”的方法进行求解..试题解析:设直线方程为,联立得从而则中点是,则解得由有实数解得即于是则的取值范围是.【考点】1.直线与椭圆的位置关系;2.对称问题.2.已知椭圆C:+=1(a>b>0)的离心率是,且点P(1,)在椭圆上.(1)求椭圆的方程;(2)若过点D(0,2)的直线l与椭圆C交于不同的两点E,F,试求△OEF面积的取值范围(O为坐标原点).【答案】(1);(2)【解析】⑴由得,椭圆方程为,又点在椭圆上,所以解得因此椭圆方程为;(2)由题意知直线的斜率存在,设的方程为 ,代入得:,由,解得设,,则,令,则,,所以 .试题解析:⑴,∵∴∴∵点在椭圆上,∴ ∴ ∴(2)由题意知直线的斜率存在,设的方程为 ,代入得:由,解得 设,,则令,所以所以【考点】1.椭圆的方程;2.用代数法研究直线与椭圆相交;3.基本不等式3. 设椭圆C :(a>b>0)的离心率为,过原点O 斜率为1的直线与椭圆C 相交于M ,N 两点,椭圆右焦点F 到直线l 的距离为. (1)求椭圆C 的方程;(2)设P 是椭圆上异于M ,N 外的一点,当直线PM ,PN 的斜率存在且不为零时,记直线PM 的斜率为k 1,直线PN 的斜率为k 2,试探究k 1·k 2是否为定值?若是,求出定值;若不是,说明理由. 【答案】(1);(2) k 1·k 2是为定值-.【解析】(1)由椭圆C : (a>b>0)的离心率为可得,又由椭圆右焦点F(c,0)到直线l 的距离为,由点到直线的距离公式得=,从而求得c 的值,代入求得a 的值;再注意到从而求得b 的值,因此就可写出所求椭圆C 的方程; (2)由过原点O 斜率为1的直线方程为:y=x ,联立椭圆C 与直线L 的方程就可求出M ,N 两点的坐标,再由过两点的直线的斜率公式就可用点P 的坐标表示出k PM ·k PN ,再注意点P 的坐标满足椭圆C 的方程,从而就可求出k 1·k 2=k PM ·k PN 是否与点P 的坐标有关,若与点P 的坐标无关则k 1·k 2的值为定值;否则不为定值.试题解析:(1)设椭圆的焦距为2c(c>0),焦点F(c,0),直线l :x -y =0, F 到l 的距离为=,解得c =2,又∵e ==,∴a =2,∴b =2. ∴椭圆C 的方程为.(2)由解得x =y =,或x =y =-,不妨设M,N,P(x ,y),∴k PM ·k PN =由,即,代入化简得k 1·k 2=k PM ·k PN =-为定值.【考点】1.椭圆的标准方程;2.直线与椭圆的位置关系.4. 已知动点在椭圆上,若点坐标为,,且,则的最小值是( ) A .B .C .D .【答案】B【解析】点为椭圆的右焦点,由于,.当最小时,最小,的最小值为,此时.【考点】椭圆的性质.5. 椭圆的对称中心在坐标原点,一个顶点为,右焦点F 与点 的距离为2。

双曲线知识总结、练习和测试

双曲线知识点总结1.双曲线的定义如果平面内一个动点到两定点距离之差的绝对值等于正的常数(小于两定点间的距离),那么动点的轨迹是双曲线若一个动点到两定点距离之差等于一个常数,常数的绝对值小于两定点间的距离,那么动点的轨迹是双曲线的一支F 1,F 2为两定点,P 为一动点,(1)若||PF 1|-|PF 2||=2a①0<2a<|F 1F 2|则动点P 的轨迹是②2a=|F 1F 2|则动点P 的轨迹是③2a=0则动点P 的轨迹是○42a>|F 1F 2|则动点P 的轨迹是 2.双曲线的标准方程3.双曲线的性质(1)焦点在x 轴上的双曲线标准方程x,y 的范围顶点 焦点 对称轴 对称中心 实半轴的长 虚半轴的长 焦距离心率e= 范围 e 越大双曲线的开口越 e 越小双曲线的开口越 准线 渐近线 焦半径公式|PF 1|=|PF 2|= (F 1,F 2分别为双曲线的左右两焦点,P 为椭圆上的一点)(1) 焦点在y 轴上的双曲线标准方程x,y 的范围顶点 焦点 对称轴 实半轴的长 虚半轴的长 焦距 离心率e= 范围 e 越大双曲线的开口越 e 越小双曲线的开口越 准线 渐近线 焦半径公式|PF 1|=|PF 2|= (F 1,F 2分别为双曲线的下上两焦点,P 为椭圆上的一点)1. 等轴双曲线:22(0)x y λλ-=≠特点①实轴与虚轴长相等②渐近线互相垂直y x =±③离心率为2. 共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫原双曲线的共轭双曲线 特点①有共同的渐近线②四焦点共圆双曲线22221x y a b+=的共轭双曲线是双曲线基础练习1. 双曲线2231x y -=的两条渐近线方程是___________________。

2. 双曲线2221(0)44x y k k +=>-的焦点坐标为__________________。

3. 如果双曲线的一个焦点为(0,3)F -,一条渐近线方程为x y 2=,则此这双曲线的方程是_____________________________。

高二数学椭圆试题

高二数学椭圆试题1.若点和点分别为椭圆的中心和右焦点,点为椭圆上的任意一点,则的最小值为A.B.C.D.1【答案】B【解析】设点,所以,由此可得,,所以【考点】向量数量积以及二次函数最值.2.已知椭圆的左,右两个顶点分别为、.曲线是以、两点为顶点,离心率为的双曲线.设点在第一象限且在曲线上,直线与椭圆相交于另一点.(1)求曲线的方程;(2)设、两点的横坐标分别为,,证明:.【答案】(1);(2)详见解析.【解析】(1)由椭圆的左右顶点分别为可得,,又由双曲线是为顶点,故可设双曲线的方程为,再由条件中双曲线离心率为,可建立关于的方程,从而得到双曲线的方程为;(2)根据题意可设直线的方程为,将直线方程与椭圆方程联立求,,消去后可得:,解得或,因此,同理,将直线方程与双曲线方程联立,消去后可得,从而得证. .试题解析:(1)依题意可得,,∴设双曲线的方程为,又∵双曲线的离心率为,∴,即,∴双曲线的方程为;(2)设点,(,,),设直线的方程为,联立方程组,整理得:或,∴,同理可得,联立方程组,∴. .【考点】1.双曲线的标准方程;2.直线与圆锥曲线相交综合题.3.已知线段,的中点为,动点满足(为正常数).(1)建立适当的直角坐标系,求动点所在的曲线方程;(2)若,动点满足,且,试求面积的最大值和最小值.【答案】(1);(2)的最小值为,最大值为1.【解析】(1)先以为圆心,所在直线为轴建立平面直角坐标系,以与的大小关系进行分类讨论,从而即可得到动点所在的曲线;(2)当时,其曲线方程为椭圆,设,,的斜率为,则的方程为,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式),求得△AOB面积,最后求出面积的最大值即可,从而解决问题.(1)以为圆心,所在直线为轴建立平面直角坐标系.若,即,动点所在的曲线不存在;若,即,动点所在的曲线方程为;若,即,动点所在的曲线方程为.……4分(2)当时,其曲线方程为椭圆.由条件知两点均在椭圆上,且设,,的斜率为,则的方程为,的方程为解方程组,得,同理可求得,面积=令则令所以,即当时,可求得,故,故的最小值为,最大值为1.【考点】直线与圆锥曲线的综合问题.4.与椭圆有公共焦点,且离心率的双曲线方程是()A.B.C.D.【答案】C【解析】椭圆焦点为,又,则,所以,焦点在x轴上,故选C.【考点】椭圆与双曲线的标准方程与几何性质.5.已知椭圆:的离心率为,过椭圆右焦点的直线与椭圆交于点(点在第一象限).(1)求椭圆的方程;(2)已知为椭圆的左顶点,平行于的直线与椭圆相交于两点.判断直线是否关于直线对称,并说明理由.【答案】(1);(2)对称.【解析】(1)由圆方程可知圆心为,即,又因为离心率为,可得,根据椭圆中关系式,可求,椭圆方程即可写出;(2)由椭圆方程可知,将代入椭圆方程可得,可得,设直线,设,,然后和椭圆方程联立,消掉(或)得到关于的一元二次方程,再根据韦达定理得出根与系数的关系,可得两直线的斜率.若直线是关于直线对称时两直线倾斜角互补,所以斜率互为相反数,把求得的两直线斜率相加若为0,则说明两直线对称,否则不对称.试题解析:(1)由题意得, 由可得, 所以所以椭圆的方程为. 4分(2)由题意可得点所以由题意可设直线,设由得由题意可得,即且6分因为 8分, 10分所以直线关于直线对称 12分.【考点】1.椭圆的基础知识;2.直线与椭圆的位置关系;3.二次方程根与系数的关系.6.如图,椭圆经过点,离心率,直线的方程为.(1)求椭圆的方程;(2)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为.问:是否存在常数,使得?若存在,求的值;若不存在,说明理由.【答案】(1);(2).【解析】(1)将点代入椭圆的方程得到,结合离心率且,即可求解出,进而写出椭圆的标准方程即可;(2)依题意知,直线的斜率存在,先设直线的方程为,并设,联立直线的方程与椭圆的方程,消去得到,根据二次方程根与系数的关系得到,由直线及的方程确定点的坐标(含),进而得到,进而整理出(注意关注并应用共线得到),从而可确定的取值.试题解析:(1)由在椭圆上得,①依题设知,则②②代入①解得故椭圆的方程为(2)由题意可设的斜率为,则直线的方程为③代入椭圆方程并整理得设,则有④在方程③中令得,的坐标为从而注意到共线,则有,即有所以⑤④代入⑤得又,所以.故存在常数符合题意.【考点】1.椭圆的标准方程及其几何性质;2.直线与椭圆的综合问题;3.二次方程根与系数的关系.7.如图,椭圆经过点,离心率,直线的方程为.(1)求椭圆的方程;(2)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为.问:是否存在常数,使得?若存在,求的值;若不存在,说明理由.【答案】(1);(2).【解析】(1)将点代入椭圆的方程得到,结合离心率且,即可求解出,进而写出椭圆的标准方程即可;(2)依题意知,直线的斜率存在,先设直线的方程为,并设,联立直线的方程与椭圆的方程,消去得到,根据二次方程根与系数的关系得到,由直线及的方程确定点的坐标(含),进而得到,进而整理出(注意关注并应用共线得到),从而可确定的取值.试题解析:(1)由在椭圆上得,①依题设知,则②②代入①解得故椭圆的方程为(2)由题意可设的斜率为,则直线的方程为③代入椭圆方程并整理得设,则有④在方程③中令得,的坐标为从而注意到共线,则有,即有所以⑤④代入⑤得又,所以.故存在常数符合题意.【考点】1.椭圆的标准方程及其几何性质;2.直线与椭圆的综合问题;3.二次方程根与系数的关系.8.在平面直角坐标系xOy中,已知椭圆的左焦点为F,直线x-y-1=0,x-y+1=0与椭圆分别相交于点A,B,C,D,则AF+BF+CF+DF=.【答案】8【解析】椭圆的左焦点为,右焦点为,所以直线x-y-1=0过右焦点,直线x-y+1=0过左焦点,由对称性得,因此【考点】椭圆定义9.如图,椭圆过点P(1, ),其左、右焦点分别为F1,F2,离心率e=, M, N是直线x=4上的两个动点,且·=0.(1)求椭圆的方程;(2)求MN的最小值;(3)以MN为直径的圆C是否过定点?【答案】(1)=1;(2);(3)(4-,0)和(4+,0) .【解析】(1)因为:,且过点P(1, ),列出关于a,b的方程,解得a,b.最后写出椭圆方程即可;(2)设点M(4,m),N(4,n)写出向量的坐标,利用向量的数量积得到mn=-15,又|MN|=|m-n|=|m|+|n|=|m|+≥,结合基本不等式即可求得MN的最小值;(3)利用圆心C的坐标和半径得出圆C的方程,再令y=0,得x2-8x+1=0从而得出圆C过定点.试题解析:(1)由已知可得∴椭圆的方程为=1 4分(2)设M(4,m),N(4,n),∵F1(-1,0),F2(1,0)=(5,m),=(3,n),由=0mn=-15<0 6分∴|MN|=|m-n|=|m|+|n|=|m|+≥2∴|MN|的最小值为2 10分(3)以MN为直径的圆C的方程为:(x-4)2+(y-)=()2 12分令y=0得(x-4)2=-=-mn=15x=4±所以圆C过定点(4-,0)和(4+,0) 14分【考点】1.圆与圆锥曲线的综合;2.椭圆的简单性质.10.点P在椭圆上运动,Q、R分别在两圆和上运动,则的最小值为【答案】【解析】因为两圆和的圆心为,正好为椭圆的左右焦点,所以【考点】椭圆定义11.已知椭圆上一点到右焦点的距离是1,则点到左焦点的距离是()A.B.C.D.【答案】D【解析】根据椭圆的定义,点P到两个焦点距离和等于2a=即可.【考点】椭圆的定义.12.已知椭圆:()和椭圆:()的离心率相同,且.给出如下三个结论:①椭圆和椭圆一定没有公共点;②;③其中所有正确结论的序号是________.【答案】①②【解析】设椭圆、的离心率分别为、,则依题意有即,所以,所以即,从而有,所以②正确;假设两椭圆有公共点,则方程组有解,两式相减可得,一方面由与可得,所以,从而,即不存在使得成立,所以假设不成立,故①正确;由与可得即,也就是,故③错误,综上可知,正确结论的序号是①②.【考点】椭圆的标准方程及其性质.13.已知抛物线的焦点与椭圆的一个焦点重合,它们在第一象限内的交点为,且与轴垂直,则椭圆的离心率为()A.B.C.D.【答案】B【解析】因为抛物线的焦点与椭圆的一个焦点重合.所以椭圆的c=1,又因为与轴垂直,所以交点T的坐标为(1,2)代入椭圆方程即可得,又因为c=1,所以(舍去).所以.通过计算四个选项可得应该选 B.本题由抛物线的焦点坐标,再列出一个关于的一个方程.即可求出e,但计算稍微复杂些,含根号式子的开方不熟练,可以通过把答案平方来求的结果.【考点】1.抛物线的知识.2.椭圆中三个基本量的方程.3.离心率的概念.4.双二次方程的解法.14.已知对k∈R,直线y-kx-1=0与椭圆恒有公共点,则实数m的取值范围是()A.B.C.D.【答案】C【解析】∵椭圆,∴且,直线恒过定点,欲使其与椭圆恒有公共点,只需让落在椭圆内或者椭圆上,即:,∴,选C.【考点】1、过定点的直线系;2、直线与椭圆的位置关系.15.设是椭圆的两个焦点,点M在椭圆上,若△是直角三角形,则△的面积等于()A.48/5B.36/5C.16D.48/5或16【答案】A【解析】由椭圆的方程可得 a=5,b=4,c=3,令|F1M|=m、|MF2|=n,由椭圆的定义可得 m+n=2a=10 ①,Rt△中,由勾股定理可得n2-m2=36 ②,由①②可得m=,n=,∴△的面积是=故选A。

高二数学双曲线试题答案及解析

高二数学双曲线试题答案及解析1.设是关于t的方程的两个不等实根,则过,两点的直线与双曲线的公共点的个数为A.3B.2C.1D.0【答案】D【解析】关于t的方程的不同的两根为0,,不妨取=0,=,直线AB 过原点,斜率为==,恰是双曲线的一条渐近线,故与该双曲线的公共点的个数为0,故选D.【考点】直线的方程,双曲线的渐近线,2.已知F1、F2分别为双曲线的左、右焦点,点P为双曲线右支上的一点,满足,且,则该双曲线离心率为.【答案】.【解析】,在中,设,则,.【考点】双曲线的离心率.3.在平面直角坐标系中,已知中心在坐标原点的双曲线经过点,且它的右焦点与抛物线的焦点相同,则该双曲线的标准方程为.【答案】.【解析】由于抛物线的焦点坐标为:,由已知得:双曲线C的右焦点F的坐标为,又因为双曲线C的中心在坐标原点,所以可设所求双曲线C的方程为:且,从而有:,故设所求双曲线C的方程为:.【考点】双曲线.4.双曲线的顶点到其渐近线的距离等于()A.B.C.1D.【答案】B.【解析】由题意可知双曲线的顶点坐标为,渐近线方程为,因此顶点到渐近线的距离为.【考点】双曲线的标准方程与渐近线方程.5.已知双曲线与抛物线有一个共同的焦点F, 点M是双曲线与抛物线的一个交点, 若, 则此双曲线的离心率等于( ).A.B.C.D.【答案】A【解析】:∵抛物线的焦点F(,0),∴由题意知双曲线的一个焦点为F(c,0),>a,(1)即p>2a.∴双曲线方程为,∵点M是双曲线与抛物线的一个交点, 若,∴p点横坐标x=,代入抛物线y2=8x得P,把P代入双曲线P,得,解得或因为p>2a.所以舍去,故(2)联立(1)(2)两式得c=2a,即e=2.故选A.【考点】抛物线的简单性质;双曲线的离心率的求法.6.已知双曲线的两条渐近线的夹角为,则双曲线的离心率的值是.【答案】【解析】根据渐近线方程有,可知其渐近线的斜率的绝对值小于1,所以两条渐近线的倾斜角分别是与,则根据,得,根据双曲线中有则离心率为.【考点】双曲线渐近线,离心率.7.双曲线的离心率为()A.B.C.D.【答案】C【解析】依题意可得,所以,所以该双曲线的离心率,故选C.【考点】双曲线的标准方程及其几何性质.8.在平面直角坐标系xOy中,已知焦点在x轴上的双曲线的渐近线方程为x±2y=0,则该双曲线的离心率为.【答案】【解析】因为焦点在x轴上的双曲线的渐近线方程为,所以【考点】双曲线渐近线方程9.若双曲线的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的渐近线方程是()A.B.C.D.【答案】C【解析】因为双曲线的一个焦点到一条渐近线的距离为所以因此因为双曲线的渐近线方程为所以该双曲线的渐近线方程是.【考点】双曲线的渐近线方程10.设、分别为双曲线的左、右焦点.若在双曲线右支上存在点,满足,且到直线的距离等于双曲线的实轴长,则该双曲线的渐近线方程为()A.B.C.D.【答案】C【解析】因为,所以三角形为等腰三角形,因此到直线的距离等于底边上的高线长,从而因此又所以该双曲线的渐近线方程为.【考点】双曲线的渐近线11.双曲线的离心率大于的充分必要条件是()A.B.C.D.【答案】C【解析】由题可知,,,因为,所以,故选C.【考点】双曲线的离心率.12.若双曲线的渐近线方程为,则它的离心率为.【答案】.【解析】由双曲线的渐近线方程为及性质可知,两边平方得,即.【考点】双曲线的几何性质.13.已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于 .【答案】2【解析】由题意知抛物线的焦点为,∴;双曲线的焦点到其渐近线的距离.【考点】双曲线的定义、抛物线的定义.14.已知、为双曲线C:的左、右焦点,点在曲线上,∠=,则到轴的距离为()A.B.C.D.【答案】B【解析】题中唯一的条件是,为了充分利用此条件,我们设,且不妨设,则根据双曲线定义有,对利用余弦定理有,即,因此可求得,下面最简单的方法是利用面积法求得到轴的距离,,可得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学同步辅导教材(第20讲)

第八章 圆锥曲线方程专题讲座 一、 二次曲线系 (一)共焦点圆锥曲线系 1tytcx222

当t>0时,表示共焦点(±c,0)的椭圆系; 当-c2当t<-c2时无轨迹。

[例1]已知椭圆的焦点坐标是(0,3),(0,-3),且经过点(1,-2),求椭圆的标准方程。 解:3c,3c2。

又焦点坐标为(0,3),(0,-3),曲线为椭圆,故设所求方程为)0t(1t3ytx22

∵椭圆过点(1,-2),∴1t32t12。 化简整理得 t2-2t-3=0。 ∴t=3或t=-1(舍去)

故所求椭圆方程为16y3x22。 说明 运用共焦点曲线系建立方程时,一是要注意焦点所在的坐标轴,二是应注意参数t的取值范围。

[例2] 求以椭圆13y13x22的焦点为焦点,以直线x21y为渐近线的双曲线方程

解 由椭圆方程13y13x22知a2=13,b2=3,则c2=10,焦点在x轴上。 设共焦点的双曲线系方程为 ),10t0(1tyt10x22

其渐近线方程为,0tyt10x 已知双曲线的渐近线方程为x21y, 41t10t,解得t=2。

故所求双曲线方程为.12y8x22 说明 这里由于出现参数t的二次根式,所以设t>0,但要改变共焦点的二次曲线系方程中相应的符号。

与椭圆1byax2222共焦点的二次曲线系方程也可以设为

1kbykax2222(0k≠b2,k为参数)。

(二)具有相同离心率的圆锥曲线系 [例3]已知椭圆的离心率是21,焦点在x轴上,且被直线2x21y截得的弦长为53,求椭圆的标准方程。

解:43211e1ab22,又其焦点在x轴上,

 设椭圆方程为.03y4x22

即 .012y4x322 将 2x21y代入,整理得 .034x2x2 由韦达定理可知:x1+x2=-2,x1x2=4-3 由弦长公式,有

212212212xx4xxk1xxk153

=344221122 =335 解得4。

故所求椭圆方程为43y4x22,即.112y16x22 说明 应用具有相同离心率的圆锥曲线系方程时,同样要注意其焦点所在的坐标轴及圆 锥曲线的类型。 (三)共渐近线的双曲线系

0byax2222

显然,它们的公共渐近线为.0byax2222 [例4]求与双曲线14y16x22共渐近线且与直线x-y-1=0相切的双曲线方程。 解:设此双曲线方程为,164y16x22 由方程组01yxy4x22 消去x得3y2-2y+(-1)=0。 由双曲线与直线相切知

.34,0)1(344得

将34代入方程组得 所求的双曲线方程为3x2-12y2=4。

二、 求轨迹的几种方法 求轨迹方程是解析几何中主要类型题之一,求轨迹的方法通常有:定义法、参数法、交轨法、转化法、待定系数法。下面我们逐一介绍。 (一)定义法 利用圆和圆锥曲线的定义及其标准方程,依据已知条件,直接定出轨迹方程的方法叫做定义法。 [例1]过原点O的一条直线交圆x2+(y-1)2=1于点Q,在直线OQ上取一点P,使点P到直线y=2的距离等于|PQ|,当直线PQ绕点O旋转时,求动点P的轨迹方程。 解:如图所示,设动点P的坐标为(x,y),作PD垂直于直线y=2,垂足为D。 (1)当点P不在y轴上时,

PQPD

PDARt≌PQARt

从而∠1=∠2。 又PD∥OA,∴∠1=∠3。从而∠2=∠3。 ∴|OP|=|OA|=2。 这时,点P的轨迹方程为 x2+y2=4(x≠0)。 (2)当点P在y轴上时, ∵点Q与D重合于点A,∴y轴上任一点P都满足|PD|=|PQ|。这时,点P的轨迹方程为x=0。 于是由(1),(2)可知,动点P的轨迹方程为x2+y2=4(x≠0)或x=0。 (二)参数法

[例2] 已知∠MON=120°,长为32的线段AB的两段A,B分别在OM,ON上滑动,求AB中点P的轨迹方程。 分析 中点P依赖于A,B两点,设A,B的横坐标为参数,利用|AB|=32消去参数,便可得到P的轨迹方程。 解:如图所示,以O为原点,∠MON的平分线为x轴的正方向,则射线ON,OM的

方程分别为)0x(x3y)0x(x3y和。

设0x,0xx3,xA),x3,x(B,y,xP212211,则





2121xx23y2xx

x

,32AB ,32xx3xx22121

即(x1-x2)2+3(x1+x2)2=12 把式①②代入式③中,得

,12x23y3222

即 .19yx22 解方程组





19yxx3y

22

故动点P的轨迹方程为 )23x(19yx22。

① ②

23x0x得注意 (三)交轨法 当动点P是两条动直线(或动曲线)的交点时,求动点P的轨迹方程,可选择适当的参数,表示这两条动直线(或动曲线)的方程,从而解方程组消去参数,便得动点P的轨迹方程。 [例3]如图8—24所示,在直角坐标系xOy中,已知矩形OABC的边长|OA|=a,|OC|=b,

点D在AO的延长线上,且|DO|=a,设M,N分别是OC,BC边上的动点,且0NCBNMCOM,求直线DM与AN的交点P的轨迹方程。 解 如图所示,点A,D的坐标分别为(a,0),(-a,0)。

设)at0(tBN,则点N的坐标为(a-t,b)。

NCBNMCOM,

.BCBNOCOM 从而 .abtOCBCBNOM 

abt,0M的坐标为点。

直线DM的方程为1btayax 直线AN的方程为taxby 设动点P的坐标为(x,y),则从式①②中消去参数t,得P的轨迹方程为

).0y,0x(1byax2222 (四)代入法 对于已知曲线C:F(x,y)=0上的各点M,按照某种法则,同一平面上的点P与它对应,

当点M在曲线C上移动时,点P的轨迹是曲线*C,则称*C为C的伴随曲线。求伴随曲线*C的方程一般用代入法。其步骤如下:设点P,M的坐标分别为(x,y),(x1,y1),则F(x1,y1)=0。

由点M与点P的关系,求得x1=f(x,y),y1=g(x,y),然后用代入法,即可得到点P的轨迹方程为F(f(x,y,),g(x,y))=0。

[例4] 从原点O作圆(x-2)2+y2=4的动弦OP,把OP延长到M,使PM21OP,求动点M的轨迹方程。 解 如图所示,设点M,P的坐标分别为(x,y),(x1,y1),则

4y2x2121

① ② .21PMOP,PM21OP 从而.211y21y,211x21x11 即3yy3xx11 把式②③代入式①中,得 ,43y23x22 于是,动点M的轨迹方程为 .36y6x22

(五)待定系数法 当曲线的议程的类型已知时,求这曲线方程的具体表达式,可用待定系数法。

[例5] 求以直线0y5x4和040y5x4为渐近线,焦点在直线04y上且

焦距是414的双曲线方程。 解 如图所示,解方程组

040y5x40y5x4

得 4y5x 即两直线的交点坐标为(5,-4)。 又双曲线的中心为O’(5,-4)。 由已知条件可设这双曲线的方程为

)0b,ba(1b4ya5x2222

为0b4ya5x 即:0)4y(a)5x(b 结合已知渐近线方程54ab 从而可设).0k(k4b,k5a

412c,414c2。

.2k,414k41bac2222 于是a=10,b=8。故所求的双曲线方程为 .1644y1005x22

三、求最值方法总结 解析几何中的最值涉及代数、三角、几何诸方面的知识,问题复杂,解法灵活。现把这类问题的解法总结如下: (一)利用综合几何法求最值 利用平面几何中的极值定理求解最值问题的方法叫做综合几何法。这种解法如果运用得当,往往显得非常简捷、明快。 [例1]如图所示,在平面直角坐标系xOy中,A,B是y轴正方向上给定的两点,试在x轴正方向上求一点C,使∠ACB取得最大值。 解:如图所示,过A,B两点作圆与x轴正方向相切于点C。设C’是x轴正方向上异于点C的任一点,连结BC,AC,BC’,AC’,则由平面几何知识,易得∠ACB>∠AC’B,从而点C即为所求。

设aOA,bOB,则由切割线定理,得

abOAOBOC2,

abOC。

即所求的点C的坐标为0,ab。 (二)利用二次函数的性质求最值

[例2]过点B(0,-b)作椭圆)0ba(1byax2222的弦,求这些弦长的最大值。 解:如图所示,设点M(x,y)是椭圆上任一点,则

1byax2222,

相关文档
最新文档