排列与组合的综合问题PPT课件

合集下载

大学排列组合ppt课件

大学排列组合ppt课件

排列与组合的综合实例解析
总结词
通过综合实例,理解排列与组合在实际 问题中的应用。
VS
详细描述
通过一个复杂的问题,如安排一场活动或 者组织一次旅行,综合运用排列和组合的 知识来解决实际问题,并强调排列与组合 在解决实际问题中的重要性和关联性。
05
排列组合的解题技巧
解题思路分析
明确问题要求
01
首先需要清楚题目是关于排列还是组合的问题,排列需要考虑
04
排列组合的实例解析
排列实例解析
总结词
通过具体实例,深入理解排列的概念和计算方法。
详细描述
通过实际生活中的例子,如学生选课、物品的排列等,解释排列的概念,并介绍排列的计算公式,以及如何应用 这些公式解决实际问题。
组合实例解析
总结词
通过具体实例,深入理解组合的概念和计算方法。
详细描述
通过实际生活中的例子,如彩票中奖概率、选举代表等,解释组合的概念,并介绍组合的计算公式, 以及如何应用这些公式解决实际问题。
少?
答案解析
答案1
从5个人中选3个人参加会议共有 $C_{5}^{3} = 10$种不同的选法。
答案3
大于2000的三位数,首位数字可以为 2,3或4,共有$A_{3}^{1} times A_{4}^{2} = 36$种。
答案2
将4把椅子排好,共有$A_{5}^{3} = 60$种坐法。
答案4
不同的分法种数为$A_{5}^{4} = 120$种。
常见错误解析与避免方法
混淆排列与组合
遗漏情况
排列和组合是不同的概念,需要明确 题目要求,正确使用公式。
在解题过程中,需要注意不要遗漏某 些情况,例如在排列时需要考虑元素 的顺序,在组合时需要考虑元素的取 法。

排列组合ppt课件

排列组合ppt课件

排列的分类与计算方法
01
02
03
排列的定义
排列是指从给定个数的元 素中取出指定个数的元素 进行排序。
排列的分类
根据取出的元素是否重复 ,排列可分为重复排列和 不重复排列。
排列的计算方法
排列的计算公式为 nPr=n!/(n-r)!,其中n为 总元素个数,r为要取出的 元素个数。
组合的分类与计算方法
后再合并答案。
利用对称性
在某些问题中,可以利用对称性 来简化计算,例如在计算圆周率 时可以利用对称性来减少计算量

学会推理和猜测
在某些问题中,需要学会推理和 猜测,尝试不同的方法和思路,
以寻找正确的答案。
解题注意事项与易错点
注意细节
在解题过程中要注意细节,例如元素的重复、遗漏等问题,避免 出现错误。
组合的定义
组合是指从给定个数的元 素中取出指定个数的元素 进行组合,不考虑排序。
组合的分类
根据取出的元素是否重复 ,组合可分为重复组合和 不重复组合。
组合的计算方法
组合的计算公式为 nCr=n!/(r!(n-r)!),其中n 为总元素个数,r为要取出 的元素个数。
排列组合的复杂应用
排列与组合的应用
另一个应用是解决组合问题,例如,在从n个不同元素中 选出m个元素的所有组合的问题中,可以使用排列组合的 方法来解决。
排列组合在物理中的应用
排列组合在物理中也有着广泛的应用,其中最常见的是在量子力学和统计物理中 。例如,在量子力学中,波函数的对称性和反对称性可以通过排列组合来描述。
在统计物理中,分子和原子的分布和运动可以通过排列组合来描述。例如,在理 想气体中,分子的分布和运动可以通过组合数学的方法来描述。

排列、组合及其应用

排列、组合及其应用
❖ 答案:C
共 57 页
9
❖ 3.设A是平面上形如(k,k3)(k=-1,0,1,2,3)的 点构成的集合,三点P,M,N是集合A中的元 素,则以P,M,N为顶点可构成三角形的个数 为( )
❖ A.8
B.7
❖ C.10
D.9
❖ 解析:五个点(-1,-1),(0,0),(1,1),(2,8), (3,27)中有三点(-1,-1),(0,0),(1,1)共线, 那么可构成三角形的个数为C53-C33=9(个).
❖ 也由(可2)用知“甲间、接乙法相”邻,有6A个55·人A全22=排2列40有种A站66种法站,法所, 以不相邻的站法有A66-A55·A22=720-240= 480(种).
❖ (4)解法一:先将甲、乙以外的4个人作全排列, 有 A44 种 , 然 后 将 甲 、 乙 按 条 件 插 入 站 队 , 有 3A22种,故共有A44·(3A22)=144(种)站法.
❖ [点评] 注意运用排列数公式的阶乘形式进行变
形论证,此题(2)还可构造排列应用模型论证.
共 57 页
16
探究 1:(1)等式Cn-1C5+n-3C3n-33=345中的 n 值为______; (2)若C1n3-C1n4<C2n5,则 n 的解集为______.
解析:(1)原方程可变形为 CCnn- -1353+1=159,Cn-15=154·Cn-33, 即n-1n-2n5-!3n-4n-5 =154·n-3n3-!4n-5. 化简整理得 n2-3n-54=0. 解得 n=9 或 n=-6(不合题意共,5舍7 页去),所以 n=9 即为所求. 17
❖ 解法三:若对甲没有限制条件共有A66种站法,



人教a版数学【选修2-3】1.2.2《排列与组合习题课》ppt课件

人教a版数学【选修2-3】1.2.2《排列与组合习题课》ppt课件
成才之路 · 数学
人教A版 · 选修2-3
路漫漫其修远兮 吾将上下而求索
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
第一章
计数原理
第一章
计数原理
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
第一章
1.2 排列与组合
1.2.2 组合 第3课时 排列与组合习题课
排列组合应用题
某校为庆祝 2014 年国庆节,安排了一场文艺演 出,其中有 3 个舞蹈节目和 4 个小品节目,按下面要求安排节 目单,有多少种方法: (1)3 个舞蹈节目互不相邻; (2)3 个舞蹈节目和 4 个小品节目彼此相间.
第一章
1.2
1.2.2
第3课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
[分析] 由题目可获取以下主要信息: ①题目中涉及3个舞蹈、4个小品共7个节目; ②是同类节目互不相邻的问题. 解答本题的第 (1) 问可以先安排 4 个小品,然后让 3 个舞蹈
“插空”;第(2)问彼此相间时安排方式只能是小品占 1,3,5,7,
1.2
1.2.2
第3课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
[解析] (1)先在 6 个乒乓球中任取一个, 作为一堆, 有 C1 6种 取法,再从余下的五个乒乓球中任取两个,作为一堆,有 C2 5种 取法,再从余下三个中取三个作为一堆,有 C3 3种取法,故共有
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
1.巩固排列、组合的概念,排列数公式,组合数公式以及 组合数的性质. 2 .准确地应用两个基本原理,正确区分是排列问题还是 组合问题.

人教A版高中数学选择性必修第三册【整合课件】6.2.3、6.2.4_第2课时_组合的综合应用

人教A版高中数学选择性必修第三册【整合课件】6.2.3、6.2.4_第2课时_组合的综合应用

[变式] 在本例条件下,至多有1名队长被选上的方法有多少种?
解 分两类情况: 第一类:没有队长被选上,从除去两名队长之外的 11 名学生中选取 5 人有 C511= 462 种选法. 第二类:一名队长被选上,分女队长被选上和男队长被选上,不同的选法有: C411+C141=660 种选法. 所以至多有 1 名队长被选上的方法有 462+660=1 122 种.
[变式] 本例已知条件不变,按要求解决如下两题: (1)分为三份,一份一本,一份两本,一份三本; (2)分给甲、乙、丙三人,一人一本,一人两本,一人三本. 解 (1)这是“不均匀分组”问题,一共有 C16C25C33=60 种方法. (2)在(1)的基础上再进行全排列,所以一共有 C16C25C33A33=360 种方法.
解 (1)从中任选 5 人是组合问题,共有 C512=792 种不同的选法. (2)甲、乙、丙三人必须参加,则只需要从另外 9 人中选 2 人,是组合问题,共 有 C29=36 种不同的选法. (3)甲、乙、丙三人不能参加,则只需从另外的 9 人中选 5 人,共有 C59=126 种 不同的选法. (4)甲、乙、丙三人只能有 1 人参加,可分两步:先从甲、乙、丙中选 1 人,有 C13=3 种选法;再从另外 9 人中选 4 人,有 C49种选法.共有 C13C49=378 种不同的选法.
[方法总结] 解答简单的组合问题的思考方法 (1)弄清要做的这件事是什么事. (2)选出的元素是否与顺序有关,也就是看看是不是组合问题. (3)结合两个计数原理,利用组合数公式求出结果.
[训练1] 现有10名教师,其中男教师6名,女教师4名. (1)现要从中选2名去参加会议,有多少种不同的选法? (2)选出2名男教师或2名女教师去外地学习的选法有多少种?

排列组合典型例题ppt课件

排列组合典型例题ppt课件
再将其余的 5 个元素进行全排列共有 A55种方法,最后将 甲、乙两同学“松绑”,所以这样的排法一共有 A14A55A22=960 种方法.
可编辑课件PPT
7
(7)甲、乙两同学不能相邻的排法共有: 方法一:(排除法)A77-A66·A22=3 600 种. 方法二:(插空法)先将其余五个同学排好有 A55种方法, 此时他们留下六个位置(就称为“空”吧),再将甲、乙同学分 别插入这六个位置(空)有 A26种方法,所以一共有 A55A26=3 600 种方法.
种不同的方法,故共有 120×2=240 种方法.
【答案】 B
21
可编辑课件PPT
4.从乒乓球运动员男 5 名、女 6 名中组织一场混合双打比赛,不同的组合
方法有( )种.
A.C25C26
B.C52A26
C.C52A22C26A22
D.A52A26
【解析】 分两步进行:第一步:选出两名男选手,有 C25种方法;第 2 步,
【答案】 C
20
可编辑课件PPT
3.(2015·青岛高二检测)将标号为 1,2,…,10 的 10 个球放入标号为 1,2,…,
10 的 10 个盒子里,每个盒内放一个球,恰好 3 个球的标号与其在盒子的标号不
一致的放入方法种数为( )
A.120
B.240
C.360
D.720
【解析】 先选出 3 个球有 C310=120 种方法,不妨设为 1,2,3 号球,则 1,2,3 号盒中能放的球为 2,3,1 或 3,1,2 两种.这 3 个号码放入标号不一致的盒子中有 2
(2)分两类:第 1 类,6 个小球分 3,1,1,1 放入盒中;第 2 类,6 个小球分 2,2,1,1 放入盒中,共有 C36·C14·A33+C26·C42·A24=1 500(种)不同放法.

排列组合ppt课件高中

排列组合ppt课件高中
10$
进阶练习题
题目:在数字"202X"中,各位数字相加和为10,称该 数为"如意四位数",用数字0,1,2,3,4,5组成的
无重复数字且大于202X的"如意四位数"有____个.
输标02入题
01
答案:12
03
答案:10
04
题目:在数字``202X''中,各位数字相加和为10,称该数 为``如意四位数'',用数字0,1,2,3,4,5组成的无重 复数字且大于202X的``如意四位数''有____个.
确定元素
确定题目中涉及的元素,并理 解元素之间的关系。
确定限制条件
理解题目中的限制条件,如是 否可以重复、是否需要排序等

建立数学模型
根据问题类型、元素和限制条 件,建立相应的数学模型。
常见题型解析
排列问题
如“5个人排成一排,有多少种不同的排法?”这类问题需要斟酌到顺序,使用排列公式 $A_n^m = n(n-1)(n-2)...(n-m+1)$进行计算。
排列的定义
从n个不同元素中取出m个元素( 0<m≤n),依照一定的顺序排成 一列,叫做从n个元素中取出m个
元素的一个排列。
排列的计算公式
P(n, m) = n! / (n-m)!,其中"!"表 示阶乘。
排列的特性
排列与取出元素的顺序有关,元素 相同但顺序不同是不同的排列。
组合的定义
01
02
03
组合的定义
从n个不同元素中取出m个元素(不放回) 进行排列,得到的排列数记为$A_{n}^{m}$ 。
组合数定义

2024届高考一轮复习数学课件(新教材人教A版强基版):排列与组合

2024届高考一轮复习数学课件(新教材人教A版强基版):排列与组合

跟踪训练1 (1)(2023·武汉模拟)源于探索外太空的渴望,航天事业在 21世纪获得了长足的发展.太空中的环境为某些科学实验提供了有利条件, 宇航员常常在太空旅行中进行科学实验.在某次太空旅行中,宇航员们负 责的科学实验要经过5道程序,其中A,B两道程序既不能放在最前,也 不能放在最后,则该实验不同程序的顺序安排共有
(1)0!= 1 ;Ann=__n_!__. 性质 (2)Cmn =Cnn-m;Cmn+1=_C_mn_+__C__mn _-_1
常用结论
1.排列数、组合数常用公式 (1)Amn =(n-m+1)Amn -1. (2)Amn =nAmn--11. (3)(n+1)!-n!=n·n!. (4)kCkn=nCkn--11. (5)Cmn +Cmn-1+…+Cmm+1+Cmm=Cmn++11.
教材改编题
3.将4名学生分别安排到甲、乙、丙三地参加社会实践活动,每个地方至 少安排一名学生参加,则不同的安排方案共有__3_6__种.
第一步,先从 4 名学生中任取两人组成一组,与剩下 2 人分成三组, 有 C24=6(种)不同的方法;第二步,将分成的三组安排到甲、乙、丙三 地,则有 A33=6(种)不同的方法.故共有 6×6=36(种)不同的安排方案.
常用结论
2.解决排列、组合问题的十种技巧 (1)特殊元素优先安排. (2)合理分类与准确分步. (3)排列、组合混合问题要先选后排. (4)相邻问题捆绑处理. (5)不相邻问题插空处理. (6)定序问题倍缩法处理.
常用结论
(7)分排问题直排处理. (8)“小集团”排列问题先整体后局部. (9)构造模型. (10)正难则反,等价转化.
方法一 从特殊位置入手(直接法) 分三步完成,第一步先填个位,有 A13种填法,第二步再填十万位,有 A14种填法,第三步填其他位,有 A44种填法,故无重复数字的六位奇数 共有 A13A14A44=288(个).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案:96
4.马路上有编号为 1,2,3,…,9 的 9 只路灯,为节约 用电,现要求把其中的 3 只灯关掉,但不能同时关掉相邻的 2 只或 3 只,也不能关掉两端的路灯,则满足条件的关灯方 法共有________种.
解析:关掉第一只灯的方法有 7 种,关掉第二只、第三 只灯时要分类讨论,情况较为复杂,换一个角度,从反面入 手考虑,由于每一种关灯的方法唯一对应着一种满足题设条 件的亮灯与暗灯的排列,于是问题转化为在 6 只亮灯中插入 3 只暗灯,暗灯不在两端且任何 2 只暗灯不相邻,也就是在 6 只亮灯所形成的 5 个空隙中选 3 个插入 3 只暗灯,其方法 有 C35=10(种),故满足条件的关灯的方法共有 10 种.
4 种不同的花供选种,要求在每块里种 1 种花,且相邻的 2
块种不同的花,则不同的种法总数为( )
A.96
B.84
C.60
D.48
[解析] 如题图,当花坛中的花各不相同时,共有 A44种 不同的种法;若在花坛中种植 3 种花,此时一种方法是 A
排列与组合的综合问题
自主学习
课标导学
利用排列组合的基本概念解决排列组合的综合问题.
教材导读
1.排列、组合的应用题,是高考常见题型,重点考查有附 加条件的应用问题.主要有以下三个方面:
(1)以元素为主,___特__殊__元__素_____优先考虑; (2)以位置为主,____特__殊__位___置_______优先考虑;
答案:C
3.某地奥运火炬接力传递路线共分 6 段,传递活动分 别由 6 名火炬手完成.如果第一棒火炬手只能从甲、乙、丙 三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则 不同的传递方案共有________种(用数字作答).
解析:因为第一棒与最后一棒甲、乙均能传递,而丙不 能传递最后一棒,分两类讨论:(1)丙传第一棒,此时传递 方案有 C12·A44=48(种);(2)甲、乙传第一棒,传递方案有 A22 A44=48(种).因此共有 48+48=96 种传递方案.
2.12 名同学合影,站成了两排,前排 4 人,后排 8 人,
现摄影师要从后排 8 人中抽 2 人调整到前排,若其他人的相
对顺序不变,则不同调整方法的种数是( )
A.C28A23 C.C28A26
B.C28A66 D.C28A25
解析:从后排 8 人中选 2 人安排到前排 6 个位置中的任 意两个位置即可,所以不同调整方法的种数是 C28A26,故应 选 C.
(2)处理排列组合应用题常用的方法有 ①相邻元素归并法(又称捆绑法); ②相离元素插空法; ③定位元素优先安排法; ④有序分配依次分组法; ⑤多元素不相容情况分类法; ⑥交叉问题集合法; ⑦混合问题先分组后排序法; ⑧“至少”,“至多”问题间接排除法.
思维激活
涂色问题
例 1 如图,用 6 种不同的颜色给图中的 4 个格子涂色, 每个格子涂一种颜色,要求最多使用 3 种颜色且相邻的两个格 子颜色不同,则不同的涂色方法共有________种.(用数字作 答)
(2)被 5 除余 2 的个位数只能是 2 或 7,所求四位数有
2C13·C24·A33=216(个).
ห้องสมุดไป่ตู้
合作学习
思维聚焦
解决排列、组合应用题的方法 (1)排列、组合的应用题是高考常见题型,重点考查有附 加条件的应用问题,解决的方法主要从以下三个方面: ①以元素为主,特殊元素优先考虑; ②以位置为主,特殊位置优先考虑; ③暂不考虑附加条件,计算出排列或组合数,再减去不符 合要求的部分,前两种是直接法,后者是间接法.
3. 解 决 排 列 与 组 合 应 用 问 题 常 用 的 方 法 有 : ___直__接_______法、_____间__接______法、两个原理法、特殊元
素法、特殊位置法、____捆__绑_________法、___插__空_________ 法等.
解决排列、组合综合问题要遵循哪两个原则?
提示:(1)按事情发生的过程进行分步: (2)按元素的性质进行分类.解决时通常从三个途径考 虑; ①以元素为主考虑,即先满足特殊元素的要求,再考虑 其他元素; ②以位置为主考虑,即先满足特殊位置的要求,再考虑 其他位置; ③先不考虑附加条件,计算出排列或组合数,再减去不 合要求的排列或组合数.
基础自测
[解析] 如果用 2 种颜色,则有 C26种颜色可以选择,涂 上有 C12种方法.
如果用 3 种颜色有 C36种颜色可以选择,涂上有 3×2×(1 +2)=18(种)方法.
∴不同涂色种数为 C26·C12+C36·18=390(种).
[答案] 390
练 1 如图,一环形花坛分成 A,B,C,D 四块,现有
答案:10
5.已知全集 U={1,2,3,4,5,6,7,8},集合 A={1,2,3,4,5,6}, B={1,2,3,4,7,8},从 A∩B 和(∁UA)∪(∁UB)中各取 2 个数 字.问:
(1)能组成多少个比 6100 大的四位数? (2)能组成多少个被 5 除余 2 的四位数?
解:(1)A∩B={1,2,3,4},(∁UA)∪(∁UB)={5,6,7,8},(∁UA) ∪(∁UB)中取 6,7,8 中的一个作千位数,有 C13种;余下的三个 数中任取一个有 C13种;在 A∩B 中任取两个有 C24种,把后 面的 3 个数作为百位、十位、个位有 A33种,所以所求四位 数有 C13·C13·C24·A33=324(个).
1.(2010·高考北京卷)8 名学生和 2 位老师站成一排合影,2
位老师不相邻的排法种数为( )
A.A88A29 C.A88A27
B.A88C29 D.A88C27
解析:可先排 8 名学生,有 A88种,由于 2 位老师不相 邻可采用插空方法,有 A29种,共有 A88A29种.故选 A.
答案:A
(3)暂不考虑附加条件,计算出排列或组合数,再减去
_不__符__合__条__件__的__种__数___.前两者是直接法,后者是间接法.
2.求解排列与组合问题的一般步骤是: (1)把具体问题化归为排列或组合问题; (2)通过分析确定运用两个计数原理; (3)分析题目条件,避免重复或遗漏; (4)列出式子,准确计算.
相关文档
最新文档