直流电机工作原理资料讲解
直流有刷电机的工作原理

直流有刷电机的工作原理直流有刷电机是一种将电能转化为机械能的设备,在很多场合如风力发电机、电动汽车、电动工具等都有广泛的应用。
它的主要工作原理是靠磁场与电流之间的相互作用。
1.电机结构直流有刷电机由转子和定子两部分组成。
转子是旋转部分,由支撑转子轴的轴承、转子芯、换向器、磁轭、磁极等组成。
定子是静止部分,由定子铁芯、定子绕组、前后端盖等组成。
直流有刷电机采用永磁体产生磁场,具体而言,是通过接通定子绕组中的电流产生磁场,使其与永磁体形成磁通,从而实现旋转。
2.工作原理2.1 磁场与电流直流有刷电机中,磁极间存在一个轴向的磁通,称为空气磁通。
在运转时,定子绕组内会注入电流,这些电流会形成一个与空气磁通相互垂直的磁场。
由于电流的方向不同,产生的磁场方向也不同。
当电流流过绕组时,会形成磁场,磁场又会作用于磁极,从而改变磁通分布。
当磁通分布不均匀时,就会使得转子转动,因为电机中都是以磁极为方向的。
2.2 换向器的作用当转子继续转动时,该磁力会使转子绕组进入下一个磁场区域,但定子绕组中的电流方向仍然保持不变,从而导致磁力的极性变化。
为了让磁极的转动能够持续下去,需要交换绕组的电流方向。
这个任务就由变向器承担,变向器旋转一周将绕组中的电流方向反向,实现了磁极的转动。
2.3 感应电动势的产生由于绕组中的电流方向改变,因此会改变磁通的分布。
这种改变磁通的行为对电磁感应的产生十分重要。
当绕组中电流方向改变时,绕组中会产生一个感应电动势。
感应电动势的方向和磁通的方向成反比例关系,但它的大小与磁通的变化速度成正比例关系。
当磁通变化速度越快时,感应电动势的大小越大。
这种感应电动势会使电流在绕组内产生反向的流动,从而磁极继续旋转。
3.结论直流有刷电机主要通过磁场和电流的相互作用,产生电动势并将电能转换为机械能的过程中来实现其工作原理。
它也承担着许多应用的要求,例如高转速、高输出功率、高效率等要求,因此电机的设计不仅要考虑运动轨迹和电气性能,而且还要考虑其应用的实际情况,以达到更好的使用效果。
直流电机的工作原理与应用

直流电机的工作原理与应用一、工作原理直流电机是一种将直流电能转化为机械能的装置。
它由电源、定子和转子三部分组成。
定子是由通电的线圈构成,通常称为“电枢”,而转子是由导电材料制成,通常称为“永磁体”。
直流电机的工作原理可以归纳如下:1.电枢和磁场的相互作用:当电枢通电时,产生的电流在电枢中形成一个磁场。
而磁场与永磁体的磁场相互作用,产生力矩。
2.电流的反向变化:当电流的方向发生改变时,该电流在磁场中受到力的方向也会改变。
这导致转子继续旋转。
3.机械输出:转子的旋转将电能转化为机械能,驱动电机的工作。
二、应用领域直流电机具有结构简单、控制方便、启动转矩大、转速可调等特点,被广泛应用于各个领域。
以下是直流电机常见的应用领域:1.工业制造:直流电机广泛应用于工业制造领域,用于驱动各种机械设备,如机床、风机、水泵等。
直流电机的调速性能好,使其在工业制造中能够满足不同功率和转速需求。
2.交通运输:直流电机被用于电动车、电动自行车、电动船和电动机车等交通工具中。
直流电机在交通运输方面的应用,减少了对化石能源的依赖,有助于减少环境污染。
3.家用电器:直流电机应用于家用电器,如洗衣机、风扇和空调等。
直流电机的可靠性和高效性使其成为家用电器的理想选择,提供了持久的性能和节能效果。
4.航空航天:直流电机在航空航天领域有广泛应用。
例如,在无人机和航天器中,直流电机通常被用于驱动螺旋桨或推进器,提供必要的推力。
5.医疗设备:直流电机在医疗设备中发挥着重要的作用。
例如,直流电机用于医用泵浦、手术器械和呼吸机等设备中,提供精确的控制和可靠的性能。
三、直流电机的优势相比其他类型的电机,直流电机有以下几个明显的优势:•可调速性好:直流电机的转速可以通过调节电压或极距来实现,提供了良好的调速性能。
•启动转矩大:直流电机的启动转矩较大,适合用于一些需要高启动转矩的设备。
•工作范围广:直流电机适用于多种负载和转速范围,具有较好的适应性。
直流电机的工作原理与应用

直流电机的工作原理与应用直流电机是一种将直流电能转化为机械能的装置,广泛应用于各个领域,如工业生产、交通运输、家用电器等。
本文将介绍直流电机的工作原理及其在各个领域的应用。
一、直流电机的工作原理直流电机由电枢和磁极组成,电枢位于磁极之间。
电枢由导电材料绕制而成,形成一个或多个线圈。
磁极则由磁铁或电磁铁组成,产生磁场。
当通过电枢通电时,电枢中会产生电流,形成电流环。
由于电流环中的电流会受到磁场力的作用,所以电枢就会受到力的作用而旋转。
电枢旋转时,也会带动外部负载的运动。
直流电机的工作原理可以通过动力学和电磁学来解释。
从动力学的角度来看,电枢旋转的原因是电流受到了扭矩的作用,扭矩由电流和磁场力共同决定。
从电磁学的角度来看,磁场力由磁场和电流共同决定,而电流又由电源提供。
二、直流电机的应用1. 工业生产领域直流电机广泛应用于各个工业生产领域,如机床、钢铁、化工等。
它们被用于驱动各类设备和机械,如风机、水泵、输送带等。
直流电机的精准控制能力使得工业生产更高效、稳定。
2. 交通运输领域交通运输领域也是直流电机应用的重要领域之一。
电动车辆、电动火车等都采用直流电机作为驱动装置。
直流电机不仅具有较高的效率和可靠性,还具备调速范围广、控制精度高的特点。
3. 家用电器领域在家用电器中,直流电机也起到了关键作用。
例如,电动工具、洗衣机、空调等都采用了直流电机。
直流电机的高效能和低噪音使得家用电器在使用过程中更加舒适和节能。
4. 环境工程领域直流电机在环境工程领域也得到了广泛应用。
例如,风力发电机组中的风机、水泵系统中的水泵等均采用了直流电机。
直流电机的高效能和可控性可以更好地满足环境工程的需求。
5. 信息技术领域直流电机在信息技术领域也有一定的应用。
例如,打印机、扫描仪等设备中的驱动部分采用了直流电机。
直流电机的精准控制能力可以实现高质量的打印和高速的扫描。
综上所述,直流电机是一种将直流电能转化为机械能的装置,其工作原理基于电流和磁场之间的相互作用。
直流电机的工作原理

直流电机的工作原理直流电机是一种常见的电动机类型,广泛应用于各种电动设备和工业控制系统中。
它的工作原理基于法拉第电磁感应和楞次定律,通过电流在磁场中相互作用产生力矩,从而实现电能转化为机械能。
本文将详细介绍直流电机的工作原理及其相关知识。
一、直流电机的基本结构直流电机由定子、转子、永磁体、集电装置、换向器和机壳等组成。
定子上绕有一组线圈,称为电枢。
转子则由一片或多片导电材料构成。
当传导电流通过电枢时,产生的磁场与永磁体的磁场相互作用,使转子发生转动。
二、电枢的工作原理电枢是直流电机的核心组件,它通过电流激发磁场,从而产生力矩并推动转子运动。
具体来说,电流流经电枢时,会形成环绕电枢的磁场。
根据楞次定律,当导体(即电枢)在磁场中运动时,会产生一个与运动方向垂直的感应电动势。
这个感应电动势会导致电枢中的电流方向发生改变,实现了电能到机械能的转化。
三、永磁体的作用在直流电机中,永磁体是产生恒定磁场的关键部件。
它通常由强磁性材料制成,如钕铁硼或铁氧体。
永磁体的磁场与电枢产生的磁场相互作用,使电枢在磁场中运动。
同时,永磁体也可以提供稳定的磁场,使电机具备较高的功率密度和效率。
四、集电装置与换向器集电装置是直流电机中起到传递电流的作用。
由于转子会不断旋转,所以为了保持电流的稳定,需要使用集电装置来接触和传导电流。
而换向器则用于实现电流方向的改变,确保电枢能够持续地产生力矩并推动转子转动。
五、直流电机的应用由于直流电机具有结构简单、工作可靠、调速范围广等优点,广泛应用于各行各业。
在家用电器中,直流电机常用于风扇、洗衣机、真空吸尘器等设备中。
在工业生产中,直流电机则应用于各种机床、电动车辆、机器人等领域。
六、直流电机的优势与不足直流电机具有一些明显的优势,如启动扭矩大、调速性能好、响应快等。
同时,直流电机还可以通过外加电阻或控制器来实现调速和反转。
然而,直流电机也存在一些不足之处,例如换向器容易磨损、浪费能量较高等。
直流电机工作原理

直流电机工作原理直流电机是一种将直流电能转化为机械能的装置。
它是由一个固定部分(定子)和一个旋转部分(转子)组成的。
当电流通过定子线圈时,会在定子中产生一个磁场。
而当磁场与转子上的磁场相互作用时,就会产生一个电力矩,推动转子旋转。
直流电机的工作原理可以分为以下几个方面来说明:1.磁场产生:当直流电流通过定子线圈时,会在定子内部产生一个磁场。
这是因为电流通过线圈时,会在线圈周围产生一个磁场。
而由于定子线圈是直接与电源相连的,因此它会持续地产生磁场。
2.磁场与转子相互作用:转子上有一个磁场。
当转子与定子中的磁场相互作用时,就会产生一个电力矩。
这是因为两个磁场之间会相互吸引或排斥,从而产生一个力矩作用在转子上。
3.反向作用力:当转子开始转动时,它会产生一个逆向的电动势,也就是所谓的自感电势。
这个电动势会抵消部分输入电流,从而减少了电流在定子线圈上的流动,进而减小了定子产生的磁场。
4.固定磁场方向:为了确保转子始终朝向磁场运动,直流电机在定子中使用了一个永久磁体。
这个永久磁体在定子中产生一个固定的磁场,确保转子在该磁场方向上运动。
5.制动和调速:直流电机可以通过改变输入电流来调节转速。
当增加电流时,定子内部的磁场将会变强,从而增大了电力矩。
反之,当降低电流时,定子内部的磁场将会变弱,进而减小了电力矩。
通过这种方式,可以实现对直流电机的调速。
直流电机的工作原理可以通过施加电流和控制磁场来实现。
通过改变电流的大小和方向,可以控制转子的转动方向和速度。
这使得直流电机在许多应用中非常有用,例如在电动汽车和工业机械等领域。
直流电动机工作原理的简述

直流电动机工作原理的简述
直流电动机是利用直流电流通过电枢产生磁场,与永磁场相互作用而产生旋转力矩。
其工作原理可以分为电磁感应原理和电磁力原理两个方面。
1. 电磁感应原理:当直流电流通过电枢绕组时,在电枢绕组中产生磁场,这个磁场与永磁体的磁场相互作用。
根据左手定则,两个磁场的相互作用会产生一个力矩,使电枢转动。
当电枢转动时,可以通过电刷和换向器的作用,让直流电流的方向始终保持一致,从而保持转动。
2. 电磁力原理:当电枢绕组中的电流通过电枢绕组的导线时,在导线内部产生一个磁场。
在永磁场的作用下,这个磁场和永磁场相互作用,产生一个输出力,使电枢转动。
根据洛伦兹力定律,导线中的电流与磁场相互作用产生力的方向垂直于两者之间的夹角。
综上所述,直流电动机的工作原理是通过电流和磁场之间的相互作用产生力矩,从而使电枢转动。
同时通过合适的电刷和换向器的作用,保持直流电流的方向始终一致,使电机能够持续运转。
直流电机的工作原理及特性

直流电机的工作原理及特性直流电机是一种电动机,以其结构简单、控制精度高、效率高、输出功率大等优点而受到广泛应用。
本文将从工作原理、特性两个方面对直流电机进行详细介绍。
一、工作原理直流电机的工作原理是靠用直流电产生的磁场作用在转子上,使转子旋转。
直流电机实际上是一个能把电动机和发电机互相转换的机器,因为直流电是双向运动的,所以他可以既做发电机又可以做电动机。
(一)机械结构直流电机机械结构分为定子和转子两部分。
定子包括机座、磁极、绕组等。
转子是电动机旋转的部分,包括转子铁心、绕组和电刷等。
当电机接入电源并加上磁通,就会在转子上产生一个磁场。
由于转子上产生的磁队是与磁通方向相反的,因此磁力会推动旋转电机,从而使转子开始转动。
(二)电磁学原理直流电机的转速与线圈导体上通过电流的方向、大小,磁极和线圈位置等因素有关。
当直流电通过定子绕组时,就会产生磁极磁通,因此在转子上的绕组中就会感应出电磁力和转矩。
电机转子的移动速度主要取决于该转矩。
转矩越大,电机就能承受更多的外力,提供更高的机械输出;反之,转矩越小,电机就需要承受更小的外力。
二、特性(一)功率和效率直流电机的输出功率和效率都很高。
在电机运行时,电梯将能量输出到外部驱动机器,其能量转化效率约为88%~96%,具有一定的经济性和高性价比的特点。
(二)输出特性直流电机存在强大的输出特性,这意味着它可以在不同的工作负载下产生不同的扭矩和速度。
直流电机的特性也非常稳定,当负载发生变化时,电机的输出也能及时发生相应地变化,从而实现更高的精度。
(三)寿命和维护直流电机的寿命较长,使用寿命通常可达到15000小时。
它还具备一定的可靠性和稳定性,使用稳态电源能有效促进电机使用寿命。
通常情况下,直流电机不需要经常维护,只需要清洗和润滑,更换磨损和损坏的部件即可。
(四)控制精度直流电机的速度控制精度非常高,控制范围广,在高低转速下都能实现同样高的控制精度。
这也让它在工业控制领域中得到了广泛应用,如分步马达、电动升降平台、电动梯等等。
直流电机 工作原理

直流电机工作原理直流电机是一种能够将电能转化为机械能的电动机。
它的工作原理是利用直流电流在电枢和磁极之间产生的磁场相互作用,使得电机转动。
下面将详细介绍直流电机的结构和工作原理。
一、直流电机的结构直流电机主要由以下几个部分组成:1. 电枢:电枢是直流电机的旋转部分,通常由导体绕成的线圈组成。
当电流通过电枢时,电枢会在磁场中旋转。
2. 磁极:磁极是直流电机的静止部分,通常由永磁体或者电磁铁组成。
磁极的作用是产生磁场,使得电枢在其中旋转。
3. 制动器:制动器可以控制电机的转速和停止。
当制动器接通时,它会对电枢产生阻力,减慢电机的转速或者停止电机运转。
4. 机壳:机壳是直流电机的外壳,通常由金属材料制成。
它的作用是保护电机内部的零件,同时也可以散热。
二、直流电机的工作原理直流电机的工作原理可以分为两个部分:电枢和磁极之间的相互作用和直流电源对电枢产生的作用力。
1. 电枢和磁极之间的相互作用当直流电源接通时,电流会通过电枢,使得电枢在磁场中旋转。
在旋转的过程中,电枢会不断地与磁极相互作用,产生一个力矩。
这个力矩会使得电枢继续旋转,直到力矩与制动器对电枢的阻力平衡。
2. 直流电源对电枢产生的作用力当直流电源接通时,它会对电枢产生一个作用力。
这个作用力可以通过洛仑兹力定律来计算。
洛仑兹力定律表明,当导体在磁场中运动时,会受到一个垂直于导体和磁场方向的力。
这个力就是洛仑兹力。
洛仑兹力的大小和方向取决于导体和磁场之间的夹角以及导体所携带的电荷量。
当导体与磁场平行时,洛仑兹力为零;当导体与磁场垂直时,洛仑兹力最大。
在直流电机中,当电枢旋转时,它会不断地与磁场相互作用,产生一个垂直于导体和磁场方向的力。
这个力会使得电枢继续旋转,直到力矩与制动器对电枢的阻力平衡。
三、总结直流电机是一种将电能转化为机械能的电动机。
它的工作原理是利用直流电流在电枢和磁极之间产生的磁场相互作用,使得电机转动。
直流电机主要由电枢、磁极、制动器和机壳等部分组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章直流电机的原理本章主要介绍直流电机的结构和基本工作原理、直流电机绕组的构成、直流电机的电枢反应、直流电机绕组的电动势和电磁转矩、直流发电机和直流电动机的功率转矩等内容。
本章共有10节课,内容和时间分配如下:1.掌握直流电机的结构及工作原理。
(2节)2.掌握直流电机绕组有关的结构。
(2节)3.掌握直流电机绕组的电枢反应。
(1节)4.掌握直流电机的电枢电动势和电磁转矩。
(1节)5.掌握直流发电机的基本方程式和运行特性、并励发电机的条件。
( 2.5节)6.掌握直流电动机的基本方程式和运行特性。
( 1.5节)第一节直流电机的基本工作原理一直流电机的用途直流电动机的优点:1 调速范围广,易于平滑调节2 过载、启动、制动转矩大3 易于控制,可靠性高4 调速时的能量损耗较小缺点: 换向困难,容量受到限制,不能做的很大。
应用: 轧钢机、电车、电气铁道牵引、造纸、纺织拖动。
直流发电机用作电解、电镀、电冶炼、充电、交流发电机励磁等的直流电源。
二、直流电机的工作原理原理:任何电机的工作原理都是建立在电磁感应和电磁力这个基础上。
为了讨论直流电机的工作原理,我们把复杂的直流电机结构简化为工作原理图。
(一)直流发电机的工作原理1.工作原理:导体在磁场中运动时,导体中会感应出电势e 。
e=Blv。
B:磁密l:导体长度;v:导体与磁场的相对速度。
正方向:用右手定则判断。
电势e正方向表示电位升高的方向,与U相反。
如果同一元件上e和U正方向相同时,e= -U。
理解:电磁感应原理的变形(变化的磁通产生感应电动势)2 发电机工作过程分析:两磁极直流发电机的工作原理图。
(1)构成:磁场:图中N和S是一对静止的磁极,用以产生磁场,其磁感应强度沿圆周为正弦分布。
励磁绕组——容量较小的发电机是用永久磁铁做磁极的。
容量较大的发电机的磁场是由直流电流通过绕在磁极铁心上的绕组产生的。
用来形成N极和S极的绕组称为励磁绕组,励磁绕组中的电流称为励磁电流If。
电枢绕组:在N极和S极之间,有一个能绕轴旋转的圆柱形铁心,其上紧绕着一个线圈称为电枢绕组(图中只画出一匝线圈),电枢绕组中的电流称为电枢电流Ia。
换向器:电枢绕组两端分别接在两个相互绝缘而和绕组同轴旋转的半圆形铜片——换向片上,组成一个换向器。
换向器上压着固定不动的炭质电刷。
电枢:铁心、电枢绕组和换向器所组成的旋转部分称为电枢。
(2)工作过程:P1:电动势产生当电枢被原动机以恒速驱动,按逆时针方向转动时,用右手定则可以判定,线圈ab和cd边切割磁力线产生的感应电动势的方向,则在负载与线圈构成的回路中产生电流Ia,其方向与电动势方向相同。
电流由电刷A流出,由电刷B流回。
*电动势与电流关系:同向P2:换向当电枢转到上图b所示位置时,ab边转到了S极下,cd边转到了N极下。
这时线圈中感应电动势的方向发生了改变,但由于换向器随同一起旋转,使得电刷A总是接触N极下的导线,而电刷B总是接触S极下的导线,故电流仍由A流出B流回,方向不变。
*虽然有换向器的作用,将线圈内的交变电动势在两电刷间变换为方向不变的电动势,但它的大小仍然是脉动的。
欲获得在方向和量值上均为恒定的电动势,则应把电枢铁心上的槽数和线圈匝数增多,同时换向器上的换向片数也要相应地增加。
(3)电磁转矩与能量转换分析:电磁转矩:电枢电流Ia与磁场相互作用而产生的电磁力形成了电磁转矩T。
用左手定则可以判定,电磁转矩T的方向与电枢旋转方向相反。
因此,在电枢等速旋转时,原动机的驱动转矩T1必须与发电机的电磁转矩T和空载损耗转矩T0相平衡( T0是发电机轴上的转矩),即T1=T+ T0*电磁转矩方向与转速方向关系:反向能量转换:原动机(机械能)->电磁转矩->发电机负载(电能)当发电机的负载(即电枢电流)增加时,电磁转矩和输出功率也随之增加,这时原动机的驱动转矩所供给的机械功率亦必须相应增加,以保持转矩之间和功率之间的平衡。
可见,发电机向负载输出电功率的同时,原动机却向发电机输出机械功率,发电机起着将机械能转换为电能的作用。
(二)直流电动机的工作原理1.工作原理:电磁力定律载流导体在磁场中将会受到力的作用,若磁场与载流导体互相垂直,作用在导体上的电磁力大小为: f = B·l·i力的方向用左手定则确定理解:电流产生磁场原理的变形(电流产生磁场)一个通电线圈相当于一个具有NS极的磁体。
形成电磁力。
2电动机工作过程分析:直流电动机的工作原理图。
(1)构成:磁场:图中N和S是一对静止的磁极,用以产生磁场,其磁感应强度沿圆周为正弦分布。
励磁绕组——容量较小的发电机是用永久磁铁做磁极的。
容量较大的发电机的磁场是由直流电流通过绕在磁极铁心上的绕组产生的。
用来形成N极和S极的绕组称为励磁绕组,励磁绕组中的电流称为励磁电流If。
电枢绕组:在N极和S极之间,有一个能绕轴旋转的圆柱形铁心,其上紧绕着一个线圈称为电枢绕组(图中只画出一匝线圈),电枢绕组中的电流称为电枢电流Ia。
换向器:电枢绕组两端分别接在两个相互绝缘而和绕组同轴旋转的半圆形铜片——换向片上,组成一个换向器。
换向器上压着固定不动的炭质电刷。
电枢:铁心、电枢绕组和换向器所组成的旋转部分称为电枢。
(2)工作过程:P1:电磁转矩产生电枢绕组通过电刷接到直流电源上,绕组的旋转轴与机械负载相联。
电流从电刷A流入电枢绕组,从电刷B流出。
电枢电流Ia与磁场相互作用产生电磁力F,其方向可用左手定则判定。
这一对电磁力所形成的电磁转矩T,使电动机电枢逆时针方向旋转。
*电磁转矩与电枢旋转方向关系:同向P2:换向当电枢转到上图b所示位置时,ab边转到了S极下,cd边转到了N极下。
这时线圈电磁转矩的方向发生了改变,但由于换向器随同一起旋转,使得电刷A总是接触N极下的导线,而电刷B总是接触S极下的导线,故电流流动方向发生改变,电磁转矩方向不变。
(3)电动势与能量转换分析:电动势:电枢转动时,割切磁力线而产生感应电动势,这个电动势(用右手定则判定)的方向与电枢电流Ia和外加电压U的方向总是相反的,称为反电动势Ea。
它与发电机的电动势E的作用不同。
发电机的电动势是电源电动势,在外电路产生电流。
而Ea是反电动势,电源只有克服这个反电动势才能向电动机输入电流。
可见,电动机向负载输出机械功率的同时,却向电动机输入电功率,电动机起着将电能转换为机械能的作用。
*电动势方向与电流方向关系:反向能量转换:电源(电能)->电磁转矩->负载(机械能)比较:发电机和电动机两者的电磁转矩T、电动势的作用是不同的。
发电机的电磁转矩是阻转矩,它与原动机的驱动转矩T1的方向是相反的。
电动机的电磁转矩是驱动转矩,它使电枢转动。
电动机的电磁转矩T必须与机械负载转矩T2及空载损耗转矩T0相平衡,即T=T2十T0。
发电机的电动势是电源电动势。
电动机的电动势是反电动势,电源只有克服这个反电动势才能向电动机输入电流。
直流电机作发电机运行和作电动机运行时,虽然都产生电动势和电磁转矩,但两者作用截然相反。
第二节直流电机的结构目的:了解它们各主要部件的名称、作用、相互组装及动作关系。
以利正确选用和使用。
电机的结构要求:1 电磁要求: 产生磁场,感应出电动势,通过电流,产生电磁转矩2机械要求:传递转矩,保持坚固稳定,冷却的要求,检修,运行可靠。
从电机的基本工作原理知道,电机的磁极和电枢之间必须有相对运动,因此,任何电机都有固定不动的定子和旋转的转子两部分组成,在这两部分之间的间隙叫空气隙。
一、定子定子的作用是产生磁场和作为电机机械支撑。
它由主磁极、换向磁极、电刷、机座、端盖和轴承等组成。
(一)主磁极——产生主磁通φ。
主磁极铁心包括极心和极掌两部分。
极心上套有励磁绕组,各主磁极上的绕组一般都是串联的。
直流电机的磁极如图所示。
极掌的作用是使空气隙中磁感应强度分布最为合适。
改变励磁电流If的方向,就可改变主磁极极性,也就改变了磁场方向。
(二)换向磁极——产生附加磁场,改善电机的换向,减小电刷与换向器之间的火花,不致使换向器烧坏。
在两个相邻的主磁极之间中性面内有一个小磁极,这就是换向磁极。
它的构造与主磁极相似,它的励磁绕组与主磁极的励磁绕组相串联。
主磁极中性面内的磁感应强度本应为零值,但是,由于电枢电流通过电枢绕组时所产生的电枢磁场,使主磁极中性面的磁感应强度不能为零值。
于是使转到中性面内进行电流换向的绕组产生感应电动势,使得电刷与换向器之间产生较大的火花。
用换向磁极的附加磁场来抵消电枢磁场,使主磁极中性面内的磁感应强度接近于零,这样就改善了电枢绕组的电流换向条件,减小了电刷与换向器之间的火花。
(三)电刷装置电刷装置主要由用碳一石墨制成导电块的电刷、加压弹簧和刷盒等组成。
固定在机座上(小容量电机装在端盖上)不动的电刷,借助于加压弹簧的压力和旋转的换向器保持滑动接触,使电枢绕组与外电路接通。
电刷数一般等于主磁极数,各同极性的电刷经软线汇在一起,再引到接线盒内的接线板上,作为电枢绕组的引出端。
(四)机座——用来固定主磁极、换向磁极和端盖,是电机磁路的一部分。
机座用铸钢或铸铁制成。
机座上的接线盒有励磁绕组和电枢绕组的接线端,用来对外接线。
(五)端盖端盖由铸铁制成,用螺钉固定在底座的两端,盖内有轴承用以支撑旋转的电枢。
二、转子转子又称电枢,是电机的旋转部分。
它由电枢铁心、绕组、换向器等组成。
如右图所示。
(一)电枢铁心电枢铁心由硅钢片冲制迭压而成,在外圆上有分布均匀的槽用来嵌放绕组。
铁心也作为电机磁路的一部分。
(二)绕组绕组是产生感应电动势或电磁转矩,实现能量转换的主要部件。
它是由许多绕组元件构成,按一定规则嵌放在铁心槽内和换向片相连,使各组线圈的电动势相加。
绕组端部用镀锌钢丝箍住,防止绕组因离心力而发生径向位移。
(三)换向器换向器由许多铜制换向片组成,外形呈圆柱形,片与片之间用云母绝缘。
三、铭牌和额定值为了使电机安全而有效地运行,制造厂对电机的工作条件都加以技术规定。
按照规定的工作条件进行运行的状态叫做额定工作状态。
电机在额定工作时的各种技术数据叫做额定值,一般加下标e表示。
这些额定值都列在电机的铭牌上,使用电机前,应熟悉铭牌。
使用中的实际值,一般不应超过铭牌所规定的额定值。
(一)型号:它表示电机的类别。
例如:Z2--12Z:直流;2:设计序号;1:铁心长度;2:机座号(二)额定电流Ie这是指发电机长期运行时电枢输出给负载的允许电流。
对于电动机则是指电源输入到电动机的允许电流。
(三)额定电压Ue这是指发电机输出的允许端电压。
对于电动机则指输入到电动机端钮上的允许电压。
(四)额定转速ne这是指电机在额定工作状态时,应达到的转速。
(五)额定功率(额定容量) Pe对于发电机来说,这是指在额定电压下,输出额定电流时,向负载提供的电功率Pe,Pe=UeIe对于电动机来说,则是指在额定电压,额定电流和额定转速下,电动机轴上输出的机械功率Pe=UeIeηe(六)额定效率ηe额定功率与输入功率之比,称为电机的额定效率,即ηe=(额定功率/输入功率)×100 %四、电枢绕组1 有关术语1)极轴线——主磁极的中轴线。