xb7602锂电池保护芯片参数

合集下载

高精度锂电池监测芯片DS2762的原理及应用论文

高精度锂电池监测芯片DS2762的原理及应用论文

高精度锂电池监测芯片DS2762的原理及应用论文高精度锂电池监测芯片DS2762的原理及应用论文摘要:DS2762是MAXIM公司推出的智能高精度锂电池监测芯片。

该芯片集数据采集、信息储存及安全保护于一身,且功能强大,结构简单。

文章介绍了DS2762的特性,给出了DS2762与单片机的硬件连接电路及应用软件流程。

关键词:DS2762;锂电池监测;单片机1、主要特点为了满足当前移动性和轻便性的要求,设计便携式产品时通常采用电池供电。

而使用电池供电时,电池的当前状态往往是用户所关心的问题之一,当前的智能电话、数码相机等都需要实时显示电池的当前状态。

通过MAXIM公司的DS2762即可实时监测电池的电压、电流、充放电状况及剩余电量等参数,并可以把这些数据储存起来,提供给单片机作相应处理。

DS2762芯片是MAXIM公司推出的新一代智能锂电池监测芯片,该芯片集数据采集、信息储存、安全保护于一身,而且功能强大、硬件接线简单。

其主要特性如下:●仅用一根双向数据线即可实现与单片机的通讯。

●内含温度传感器,可免去在电池块内装设热敏电阻。

●片内模数转换器可进行电池电压监测,以用于判定电池充电和放电的结束。

●通过片内电流累加器可实时记录电流流入、流出的总量。

●具有两种电流感应模式一是片内25mΩ电阻感应方式,二是可由片外用户选择的电阻感应方式。

●具有两种电源模式:即工作方式和睡眠方式。

在正常工作模式,DS2762可实时监测电流、电压、温度和剩余电量等参数,而在睡眠模式,DS2762将停止对这些参数的监测。

2、引脚功能DS2762的引脚排列如图/1所示,各引脚的功能如下:CC:充电保护控制脚;PLS:用户端电压正极;DC:放电保护控制脚;SNS:感应电阻连接端;DQ:数据输入、输出端口;IS/1,IS2:感应输入端;PS:电源模式选择端;VSS:接地;PIO:可编程I/O端:可根据需要控制用户定义的外围电路;VDD:电池正极输入Vin:感应电压输入。

深圳市富满电子集团股份有限公司 DW07D 二合一锂电池保护 IC 说明书

深圳市富满电子集团股份有限公司 DW07D 二合一锂电池保护 IC 说明书

DW07D 二合一锂电池保护IC一、 概述DW07D 产品是单节锂离子/锂聚合物高压可充电电池组保护的高集成度解决方案。

DW07D 包括了先进的功率MOSFET ,高精度的电压检测电路和延时电路。

DW07D 具有非常小的SOT23-6的封装,这使得该器件非常适合应用于空间限制得非常小的可充电电池组应用。

DW07D 具有过充,过放,过流,短路等所有的电池所需保护功能,并且工作时功耗非常低。

该芯片不仅仅是为手机而设计,也适用于一切需要锂离子或锂聚合物可充电电池长时间供电的各种信息产品的应用场合。

二、 特点¾ 内部集成等效50m Ω左右的先进的功率MOSFET ;¾ 3段过流保护:过放电流1、过放电流2(可选)、负载短路电流; ¾ 充电器检测功能; ¾ 允许0V 充电功能¾ 延时时间内部设定; ¾ 高精度电压检测;¾ 低静态耗电流:正常工作电流3.8uA ¾ 兼容ROHS 和无铅标准。

¾采用SOT23-6封装形式塑封。

三、 应用¾ 单芯锂离子电池组;¾ 锂聚合物电池组。

四、 订货信息型号封装过充检测电压 [V CU ](V ) 过充解除电压[V CL ](V )过放检测电压[V DL ](V )过放解除电压 [V DR ](V )过流 (A )打印标记DW07D SOT23-6 4.4 4.2 2.8 3.0 3A DW07D五、 引脚图及说明DW07D二合一锂电池保护IC六、 极限参数参数符号参数范围单位电源电压VDD VSS-0.3~VSS+12 V CSI输入管脚电压VCSI VDD+15~VDD+0.3 V 工作温度Topr -40~+85 ℃存储温度Tstg -40~+125 ℃七、 电气特性参数参数符号测试条件最小值典型值最大值单位工作电压工作电压VDD -- 1.5--10V 电流消耗工作电流IDD VDD= 3.9V --3.06.0 uA检测电压过充电检测电压A档VOCP --4.350 4.375V B档 4.375 4.400 4.425C档 4.425 4.450过充电释放电压VOCR -- 4.15 4.20 4.25 V 过放电检测电压VODP -- 2.72 2.80 2.88 V 过放电释放电压VODR -- 2.92 3.00 3.08 V 过电流1检测电压VOI1 -- 0.12 0.15 0.18 V 过电流2(短路电流)检测电压VOI2 VDD= 3.6V 0.80 1.00 1.20 V 过电流复位电阻Rshort VDD= 3.6V 50100150 KΩ过电器检测电压VCHA -- -0.8 -0.5 -0.2 V 向0V电池充电的功能充电器起始电压V0CH 允许向0V电池充电功能1.2 -- -- V迟延时间过充电检测迟延时间TOC VDD= 3.6V~4.4V -- 110 200 ms过放电检测迟延时间TOD VDD= 3.6V~2.0V -- 80 140 ms过电流1检测迟延时间TOI1 VDD= 3.6V 51320 ms过电流2(短路电流)检测迟延时间TOI2 VDD= 3.6V --550 usMOS参数单个MOS管漏极到源极的导通阻抗R DS(on) V GS = 2.5V, I D =0.5A-- 22.0 30.0 mΩR DS(on) V GS = 4.5V, I D = 1.0A-- 16.0 25.0过流I ODC VDD= 3.6V 2.0 3.0 4.0 A 漏-源击穿电压V(BR)DSS V GS = 0V, I D= 250μA19 20 -- V连续的漏极电流I D(DeviceRef.)T J= 25°C 5 ADW07D二合一锂电池保护IC 栅极阈值电压V GS(th)V DS=VGS, I D=250μA0.55 0.65 0.95 V漏-源极电流I DSS V DS=20V, V GS= 0V,T J= 25°C1 uA栅-源极电流I GSS V GS= ±10V 100 nA 八、功能描述DW07D监控电池的电压和电流,并通过断开充电器或负载,保护单节可充电锂电池不会因为过充电压,过放电压,过放电流以及短路等情况而损坏。

HY2120-CB双节锂电池保护IC

HY2120-CB双节锂电池保护IC

HY2120规格书2节锂离子/锂聚合物电池保护IC .目录1. 概述 (4)2. 特点 (4)3. 应用 (4)4. 方框图 (5)5. 订货信息 (6)6. 产品目录 (6)7. 封装、脚位及标记信息 (7)8. 绝对最大额定值 (7)9. 电气特性 (8)10. 电池保护IC应用电路示例 (9)11. 工作说明 (10)11.1. 正常工作状态 (10)11.2. 过充电状态 (10)11.3. 过放电状态及休眠状态 (10)11.4. 放电过流状态(放电过流检测功能和负载短路检测功能) (11)11.5. 充电过流状态 (11).12. 特性(典型数据) (12)13. 封装信息 (15)13.1. SOT-23-6(第一种) (15)13.2. SOT-23-6(第二种) (16)14. 修订记录 (17)注意:1、本说明书中的内容,随着产品的改进,有可能不经过预告而更改。

请客户及时到本公司网站下载更新。

2、本规格书中的图形、应用电路等,因第三方工业所有权引发的问题,本公司不承担其责任。

3、本产品在单独应用的情况下,本公司保证它的性能、典型应用和功能符合说明书中的条件。

当使用在客户的产品或设备中,以上条件我们不作保证,建议客户做充分的评估和测试。

4、请注意输入电压、输出电压、负载电流的使用条件,使IC内的功耗不超过封装的容许功耗。

对于客户在超出说明书中规定额定值使用产品,即使是瞬间的使用,由此所造成的损失,本公司不承担任何责任。

5、本产品虽内置防静电保护电路,但请不要施加超过保护电路性能的过大静电。

6、本规格书中的产品,未经书面许可,不可使用在要求高可靠性的电路中。

例如健康医疗器械、防灾器械、车辆器械、车载器械及航空器械等对人体产生影响的器械或装置,不得作为其部件使用。

7、本公司一直致力于提高产品的质量和可靠度,但所有的半导体产品都有一定的失效概率,这些失效概率可能会导致一些人身事故、火灾事故等。

锂电池二次保护芯片-概述说明以及解释

锂电池二次保护芯片-概述说明以及解释

锂电池二次保护芯片-概述说明以及解释1.引言1.1 概述概述锂电池是一种应用广泛的高能量密度电池,具有轻巧、长寿命和快速充电的特点,因此在移动设备、电动车辆和可再生能源等领域得到了广泛应用。

然而,锂电池在充放电过程中存在着一定的安全风险,如过充、过放、短路等问题,可能引发电池爆炸、火灾等危险情况。

为了保障使用者的安全和电池的稳定性,锂电池二次保护芯片应运而生。

锂电池二次保护芯片是一种重要的安全措施,用于监测和控制锂电池的充放电过程。

它具备实时监测电池状态、实现电池保护和管理的功能。

在使用过程中,二次保护芯片能够检测电池的电压、温度和电流等参数,并及时采取相应措施,如断开电池连接、降低电池输出功率等,以防止电池发生过载、过放、短路等异常情况。

二次保护芯片的出现,为锂电池的安全性能提供了重要保障。

它能够有效预防电池过充和过放,通过控制充电电压和截止电压,确保电池在安全范围内运行。

此外,二次保护芯片还能够检测电池的温度变化,并根据温度控制电池的充电和放电功率,以防止过热引发危险情况。

随着科技的不断进步和市场需求的增加,锂电池二次保护芯片的研发也在不断完善和发展。

未来,我们可以预见二次保护芯片将会更加智能化,能够通过与其他设备的连接,实现更精细化的电池管理和控制。

同时,新材料和新技术的应用也将提升二次保护芯片的性能和安全性,使其在未来的锂电池领域发挥更重要的作用。

1.2文章结构文章结构部分的内容可以如下所示:1.2 文章结构本文将按照以下几个方面进行论述锂电池二次保护芯片的相关内容:2. 正文2.1 锂电池概述首先,我们将介绍锂电池的基本原理和结构组成,包括正负极材料、电解质和隔膜等方面,以使读者对锂电池有一个综合的了解。

2.2 二次保护芯片的作用接下来,我们将详细介绍二次保护芯片在锂电池中的作用及其重要性。

通过对电池电压、温度和电流等参数的监测和控制,二次保护芯片能够保护锂电池免受过充、过放、过流和短路等异常情况的影响,从而提高锂电池的安全性和稳定性。

SDC6067 节锂电池保护数据手册说明书

SDC6067 节锂电池保护数据手册说明书

1.概述内置高精度电压检测电路和延时电路进行电压、电流以及温度的监控,保证Pack 安全。

此外, 具有0V 充电功能,提升Pack 使用寿命。

具有三种工作模式:正常模式、休眠模式和关机模式。

当任意电芯处于低容量状态时,进入休眠模式来降低系统功耗。

2.特点◆ 高精度电压检测功能:过充电保护电压V OV :3.600V-4.375V (档位25mV) 过充电保护电压精度:±25mV 迟滞电压:0-350mV过放保护电压V UV :2.0V - 3.1V (档 位100mV) 过放电保护电压精度:±80mV 过放电保护解除迟滞电压:0-1.0V◆ 放电过流检测功能:过流1保护电压V DOC1:0.025V - 0.350V (档位25mV) 过流1保护电压精度:±10mV过流2保护电压V DOC2:2×VDOC1 (档位50mV) 过流2保护电压精度:±20mV◆ 短路检测功能:短路保护电压V SC :4.5×VDOC1 (档位112.5mV) 短路保护电压精度:±45mV◆ 温度检测功能:充电高温保护温度:50°C 充电高温保护温度精度:±4℃(Max.) 充电低温保护温度:0°C 充电低温保护温度精度:±4℃(Max.)ZCC8993ZCC8993ZCC8993ZCC8993放电高温保护温度:70°C 放电高温保护温度精度:±4℃(Max.)◆外接电容设置过放电保护延时、放电过流1保护延时以及放电过流2保护延时◆过充电保护延时、短路保护延时以及温度保护延时固定◆工作电压范围:3V - 26V◆工作温度范围:-40℃~85℃◆集成N-MOSFET驱动◆低功耗设计:正常工作功耗:18 uA (Max.)休眠模式功耗:5 uA (Max.)◆封装形式:16-pin TSSOP◆SEL管脚选择3/4串应用3.订购信息注释:目前只有A,B版本VC1VC2VC3VC4VDDGNDSELVI DSGCHG TSCDCDSD CHSEVMTEST图系统框图ZCC8993TEST CHSE CHG VM DSG DSD CDC VIVDDVC1VC2VC3VC4GNDSELTS 管脚图6.管脚定义ZCC89937.功能描述7.1正常模式下列条件均满足时, 处于正常模式:(1) 所有电芯电压位于过充电保护电压 (V OV ) 与过放电保护电压 (V UV ) 之间 (2) VI 管脚电平小于放电过流1保护电压V DOC1(3) TS 管脚检测温度位于充电高温保护温度T COT 与充电低温保护温度T CUT 之间 (4) 无安全保护发生7.2过充电保护状态下列条件均满足时,进入过充电保护状态: (1) 任意电芯电压高于过充电保护电压V OV (2) 状态(1)持续时间超过过充电保护延时t OV 处于过充电保护状态时,CHG 管脚输出高阻态。

RICOH锂电保护IC资料

RICOH锂电保护IC资料

17.理光3~4颗电芯的保护芯片
-- 功能和封装
18. 理光3~4颗电芯的保护芯片
-- 电流和电压
理光3~4颗电芯 芯片 过充恢复功能 过放恢复功能 消耗电流:工作 时 消耗电流:过放 自动恢复 自动恢复/ 锁定 低于27uA A.自动恢复 1.2uA(典型值) B.0.1uA(锁定) 30V 1.8-28V 可以 MM1414 自动恢复 自动恢复 27uA(典型值) 2.0uA (典型值) 24V 1.8-24V ? S-8254 自动恢复 自动恢复 30uA(最大值) 0.1uA(最大值) S-8243 自动恢复 自动恢复 120uA(最大值 ) 0.1uA(最大值)
V short
tV DET1
充电时过充 电保护检测 延时
1S 1S 1S 1S 1S 1S 1S
tV DET2
Hale Waihona Puke tV DET3tV DET4
过放电 过放电 短路保护 恢复检测 恢复检测 检测电压 -3V 3V 3V -3V 3.1V -3V 3V 3V -3V 3.1V 1V 1V 1V 1V 1V 1V 1V
V DET4
过充电 电流检测 -0.4V -0.4V -0.4V -0.2V -0.2V -0.2V -0.2V
V REL1U
过充电 恢复检测 4.15V 4.05V 4.15V 4.15V 4.15V 4.05V 4.05V
V REL1L
过充电 恢复检测 4.15V 4.05V 4.15V 4.15V 4.15V 4.05V 4.05V
Tshort
短路保护 延时
300uS 300uS 300uS 300uS 300uS 300uS 300uS
201AC 202AC 204AB 206AC 207AC 207AA 208AA

XB5352G 贴片SOT23-5 单节锂电池充电保护芯片 电源管理IC

XB5352G 贴片SOT23-5 单节锂电池充电保护芯片 电源管理IC

XB5352G ____________________________________________________________________________________________________________________________ One Cell Lithium-ion/Polymer Battery Protection ICGENERAL DESCRIPTIONThe XB5352G product is a high integration solution for lithium-ion/polymer battery protection.XB5352G contains advanced power MOSFET, high-accuracy voltage detection circuits and delay circuits.XB5352G is put into an ultra-smallSOT23-5 package and only oneexternal component makes it an ideal solution in limited space of battery pack. XB5352G has all the protection functions required in the battery application including overcharging, overdischarging, overcurrent and load short circuiting protection etc. The accurate overcharging detection voltage ensures safe and full utilization charging. The low standby current drains little current from the cell while in storage.The device is not only targeted for digital cellular phones, but also for any otherLi-Ion and Li-Poly battery-powered information appliances requiring long-term battery life. FEATURES·Protection of Charger Reverse Connection·Protection of Battery Cell Reverse Connection·Integrate Advanced Power MOSFET with Equivalent of 45mΩ R SS(ON)·Ultra-small SOT23-5 Package ·Only One External Capacitor Required·Over-temperature Protection ·Overcharge Current Protection ·Two-step Overcurrent Detection: -Overdischarge Current-Load Short Circuiting·Charger Detection Function·0V Battery Charging Function- Delay Times are generated inside ·High-accuracy Voltage Detection ·Low Current Consumption- Operation Mode: 2.8μA typ.- Power-down Mode: 1.5μA typ. ·RoHS Compliant and Lead (Pb) FreeAPPLICATIONSOne-Cell Lithium-ion Battery PackLithium-Polymer Battery PackFigure 1. Typical Application CircuitORDERING INFORMATIONNote: “YW” is manufacture date code, “Y” means the year, “W” means the weekPIN CONFIGURATIONFigure 2. PIN ConfigurationPIN DESCRIPTIONABSOLUTE MAXIMUM RATINGS(Note: Do not exceed these limits to prevent damage to the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)ELECTRICAL CHARACTERISTICSTypicals and limits appearing in normal type apply for T A= 25o C, unless otherwise specifiedFigure 3. Functional Block Diagram FUNCTIONAL DESCRIPTIONThe XB5352G monitors the voltage and current of a battery and protects it from being damaged due to overcharge voltage, overdischarge voltage, overdischarge current, and short circuit conditions by disconnecting the battery from the load or charger. These functions are required in order to operate the battery cell within specified limits.The device requires only one external capacitor. The MOSFET is integrated andits R SS(ON) is as low as45mΩtypical. Normal operating modeIf no exception condition is detected, charging and discharging can be carried out freely. This condition is called the normal operating mode.Overcharge ConditionWhen the battery voltage becomes higher than the overcharge detection voltage (V CU) during charging under normal conditionand the state continues for the overcharge detection delay time (t CU) or longer, theXB5352G turns the charging control FEToff to stop charging. This condition is called the overcharge condition. The overcharge condition is released in the following two cases:1, When the battery voltage drops below the overcharge release voltage (V CL), the XB5352G turns the charging control FET on and returns to the normal condition.2, When a load is connected and discharging starts, the XB5352G turns the charging control FET on and returns to the normal condition. The release mechanism is as follows: the discharging current flows through an internal parasitic diode of the charging FET immediately after a load is connected and discharging starts, and the VM pin voltage increases about 0.7 V (forward voltage of the diode) from the GND pin voltage momentarily. TheXB5352G detects this voltage and releases the overcharge condition. Consequently, in the case that the battery voltage is equal to or lower than the overcharge detection voltage (V CU), the XB5352G returns to the normal condition immediately, but in the case the battery voltage is higher than the overcharge detection voltage (V CU),the chip does not return to the normal condition until the battery voltage drops below the overcharge detection voltage (V CU) even if the load is connected. In addition, if the VM pin voltage is equal to or lower than the overcurrent 1 detection voltage when a load is connected and discharging starts, the chip does not return to the normal condition.Remark If the battery is charged to a voltage higher than the overcharge detection voltage (V CU) and the battery voltage does not drops below the overcharge detection voltage (V CU) even when a heavy load, which causes an overcurrent, is connected, the overcurrent 1 and overcurrent 2 do not work until the battery voltage drops below the overcharge detection voltage (V CU). Since an actual battery has, however, an internal impedance of several dozens of mΩ, and the battery voltage drops immediately after a heavy load which causes an overcurrent is connected, the overcurrent 1 and overcurrent 2 work. Detection of load short-circuiting works regardless of the battery voltage.Overdischarge ConditionWhen the battery voltage drops below the overdischarge detection voltage (V DL) during discharging under normal condition and it continues for the overdischarge detection delay time (t DL) or longer, theXB5352G turns the discharging control FET off and stops discharging. This condition is called overdischarge condition. After the discharging control FET is turned off, the VM pin is pulled up by the R VMD resistorbetween VM and VDD in XB5352G. Meanwhile when VM is bigger than 1.5V (typ.) (the load short-circuiting detection voltage), the current of the chip is reduced to the power-down current (I PDN). This condition is called power-down condition. The VM and VDD pins are shorted by theR VMD resistor in the IC under the overdischarge and power-down conditions. The power-down condition is released when a charger is connected and the potential difference between VM and VDD becomes 1.3 V (typ.) or higher (load short-circuiting detection voltage). At this time, the FET is still off. When the battery voltage becomes the overdischarge detection voltage (V DL) or higher (see note), the XB5352G turns the FET on and changes to the normal condition from the overdischarge condition.Remark If the VM pin voltage is no less than the charger detection voltage (V CHA), when the battery under overdischarge condition is connected to a charger, the overdischarge condition is released (the discharging control FET is turned on) as usual, provided that the battery voltage reaches the overdischarge release voltage (V DU) or higher. Overcurrent ConditionWhen the discharging current becomes equal to or higher than a specified value (the VM pin voltage is equal to or higher than the overcurrent detection voltage)during discharging under normal condition and the state continues for the overcurrent detection delay time or longer, theXB5352G turns off the discharging control FET to stop discharging. This condition is called overcurrent condition. (The overcurrentincludes overcurrent, or load short-circuiting.)The VM and GND pins are shorted internally by the R VMS resistor under the overcurrent condition. When a load is connected, the VM pin voltage equals the VDD voltage due to the load.The overcurrent condition returns to the normal condition when the load is released and the impedance between the B+ and B- pins becomes higher than the automatic recoverable impedance. When the load is removed, the VM pin goes back to the GND potential since the VM pin is shorted the GND pin with the R VMS resistor. Detecting that the VM pin potential is lower than the overcurrent detection voltage(V IOV), the IC returns to the normal condition.Abnormal Charge Current DetectionIf the VM pin voltage drops below the charger detection voltage (V CHA) during charging under the normal condition and it continues for the overcharge detection delay time (t CU) or longer, the XB5352G turns the charging control FET off and stops charging. This action is called abnormal charge current detection. Abnormal charge current detection works when the discharging control FET is on and the VM pin voltage drops below the charger detection voltage (V CHA). When an abnormal charge current flows into a battery in the overdischarge condition, the XB5352G consequently turns the charging control FET off and stops charging after the battery voltage becomes the overdischarge detection voltage and the overcharge detection delay time (t CU) elapses.Abnormal charge current detection is released when the voltage difference between VM pin and GND pin becomes lower than the charger detection voltage (V CHA) by separating the charger. Since the 0 V battery charging function has higher priority than the abnormal charge current detection function, abnormal charge current may not be detected by the product with the 0 V battery charging function while the battery voltage is low.Load Short-circuiting conditionIf voltage of VM pin is equal or below short circuiting protection voltage (V SHORT), the XB5352G will stop discharging and battery is disconnected from load. The maximum delay time to switch current off is t SHORT. This status is released when voltage of VM pin is higher than short protection voltage (V SHORT), such as when disconnecting the load.Delay CircuitsThe detection delay time for overdischarge current 2 and load short-circuiting starts when overdischarge current 1 is detected. As soon as overdischarge current 2 or load short-circuiting is detected over detection delay time for overdischarge current 2 or load short- circuiting, the XB5352G stops discharging. When battery voltage falls below overdischarge detection voltage due to overdischarge current, the XB5352G stop discharging by overdischarge current detection. In this case the recovery of battery voltage is so slow that if battery voltage after overdischarge voltage detection delay time is still lower than overdischarge detection voltage, the XB5352G shifts to power-down.Figure 4. Overcurrent delay time0V Battery Charging Function (1) (2) (3) This function enables the charging of a connected battery whose voltage is 0 V by self-discharge. When a charger having 0 V battery start charging charger voltage(V0CHA) or higher is connected between B+ and B- pins, the charging control FET gate is fixed to VDD potential. When the voltage between the gate and the source of the charging control FET becomes equal to or higher than the turn-on voltage by the charger voltage, the charging control FET is turned on to start charging. At this time, the discharging control FET is off and the charging current flows through the internal parasitic diode in the discharging control FET. If the battery voltage becomes equal to or higher than the overdischarge release voltage (V DU), the normal condition returns. Note(1) Some battery providers do not recommend charging of completely discharged batteries. Please refer to battery providers before the selection of 0 V battery charging function.(2) The 0V battery charging function has higher priority than the abnormal charge current detection function. Consequently, a product with the 0 V battery charging function charges a battery and abnormal charge current cannot be detected during the battery voltage is low (at most 1.8 V or lower).(3) When a battery is connected to the IC for the first time, the IC may not enter the normal condition in which discharging is possible. In this case, set the VM pin voltage equal to the GND voltage (short the VM and GND pins or connect a charger) to enter the normal condition.TIMING CHART1.Overcharge and overdischarge detectionV V CU -V V DL +V V DL ONONCHARGEV DDV ov1V SS V VMFigure5-1 Overcharge and Overdischarge Voltage Detection2.Overdischarge current detectionV CU V CU -V HC V DL +V DH V DLONDISCHARGEOFFV DDV V ov2V ov1V SS(1)(4)(1)(1)(1)(4)(4)Figure5-2 Overdischarge Current DetectionRemark: (1) Normal condition (2) Overcharge voltage condition (3) Overdischarge voltage condition (4)Overcurrent condition3.Charger DetectionVV CU-VV DL+VV DLONV DDVMV SSVFigure5-3 Charger Detection4.Abnormal Charger DetectionVV CU-VV DL+VV DLONONCHARGEV DDVMV SSVFigure5-4 Abnormal Charger DetectionRemark: (1) Normal condition (2) Overcharge voltage condition (3) Overdischarge voltage condition (4)Overcurrent conditionTYPICAL CHARACTERISTICS(Test based on XB5352G version, V BAT = 3.6V, T A= 25 C unless otherwise specified)Internal FET On-Resistance vs. Junction TemperatureTYPICAL APPLICATIONAs shown in Figure 6, the bold line is the high density current path which must be kept as short as possible. For thermal management, ensure that these trace widths are adequate. C1 is a decoupling capacitor which should be placed as close as possible to XB5352G.Fig 6 XB5352G in a Typical Battery Protection CircuitPrecautions• Pay attention to the operating conditions for input/output voltage and load current so that the power loss in XB5352G does not exceed the power dissipation of the package.• Do not apply an el ectrostatic discharge to this XB5352G that exceeds the performance ratings of the built-in electrostatic protection circuit.XB5352G______________________________________ ____________________________________________________ ________ _________ ____________ - 11 -PACKAGE OUTLINESOT23-5 PACKAGE OUTLINE AND DIMENSIONS。

锂离子可充电电池二次保护 IC 数据手册说明书

锂离子可充电电池二次保护 IC 数据手册说明书

5-7节锂电池二次保护IC概述HTL6217系列内置高精度电压检测电路和延迟电路,是用于锂离子可充电电池的二次保护IC。

通过将各节电池间短路,可适用于5节 ~7节电池的串联连接。

特点⏹针对各节电池的高精度电压检测电路过充电检测电压n(n=1~7):3.60 V ~ 4.80 V (50 mV进阶)精度±25 mV (Ta = +25℃)精度±30 mV (Ta = -5︒C ~ +55︒C) 过充电滞后电压n(n=1~7):0.1V ~ 0.4V (0.1V进阶)精度:±50mV⏹仅通过内置电路即可获得检测时的延迟时间 (不需要外接电容)⏹可选择过压检测延时时间:1s,2s,4s,6s⏹可选择输出方式:CMOS输出、NMOS漏极输出、PMOS漏极输出⏹可选择输出逻辑:动态 "H"、动态 "L"⏹可选断线保护功能⏹高耐压:绝对最大额定值40V⏹工作电压范围广: 4 V ~ 35V⏹工作温度范围广: Ta = -40︒C ~ +85︒C⏹消耗电流低各节电池V CUn -1.0 V时:5.0μA(最大值)(Tα = +25︒C)⏹无铅(Sn 100%)、无卤素应用锂离子可充电电池(二次保护用)5-7节锂电池二次保护IC 典型应用电路1、7节串联VCCVC7VC6VC5VC4 VC3 VC2 VC1 VSSCHC HTL6217系列R VCC R1C VCCC6C5C4C3C2C1BAT7 BAT6 BAT5 BAT4 BAT3 BAT2 BAT1SC PROTECTORFETEB+EB-R7R6R5R4R3R2C7R H2R H1图1 7节串联外接元器件参数No. 元器件最小值典型值最大值单位1 R1 ~ R7 0.5 1 10 kΩ2 C1 ~ C7 0.01 0.1 1 μF3 C VCC0.1 1 10 μF4 R VCC0.05 0.5 1 kΩ5 R H1,R H2 1 5 10 MΩ注意:1.上述参数有可能未经预告而改变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xb7602锂电池保护芯片参数
简介
x b7602锂电池保护芯片是一款常用于锂电池管理系统中的保护芯片,能够有效保护锂电池的安全和寿命。

本文将详细介绍x b7602锂电池保护芯片的参数及其作用。

1.功能特点
-适用于锂离子电池(L i-io n)、聚合物锂离子电池(L i-p o ly)及锂铁磷酸电池(L iFe P O4)等各种类型的锂电池。

-支持单体锂电池电压范围广,可适应不同容量和电压的锂电池。

-具备过电压保护功能,当锂电池电压超过设定范围时,及时切断充电或放电路径,避免过充或过放,从而保护锂电池的稳定运行。

-具备过流保护功能,当电流超过设定阈值时,及时切断充电或放电路径,防止过大电流对锂电池造成损害。

-具备温度保护功能,可以监测电池温度,并在温度过高或过低时采取相应措施,保持锂电池在正常温度范围内工作。

-支持放电过流短路保护功能,当发生短路时,及时切断电池与负载之间的连接,避免过大电流通过短路处,造成电池或周边电路损坏。

-具备平衡充电功能,可以对锂电池内单体进行均衡充电,确保每个单体电压一致,提高整个电池组的使用寿命。

2.技术参数
-工作电压范围:3.0V-4.5V
-充电电压范围:4.2V-5.0V
-过压保护电压:4.25V±0.05V
-放电过流保护电流:25A±3A
-温度保护范围:-20°C-+85°C
-短路保护延时:250μs
3.锂电池保护流程
1.检测锂电池电压,如果电压低于过压保护电压,则跳至步骤5。

2.检测锂电池电压,如果电压高于过压保护电压,则切断充电路径。

3.检测锂电池电压,如果电压高于过压保护电压,则切断放电路径。

4.均衡充电,对锂电池内各单体进行充电均衡。

5.检测锂电池电压,如果电压低于欠压保护电压,则切断放电路径。

6.检测电池温度,如果温度过高或过低,则切断充放电路径。

4.应用领域
-电动汽车及混合动力汽车
-电动工具和便携设备
-家用电器和消费电子产品
-太阳能和风能存储系统
-医疗设备和无线通信设备
总结
x b7602锂电池保护芯片是一款功能强大的锂电池保护芯片,具备过压保护、过流保护、温度保护、短路保护和均衡充电功能。

它在各种类型锂电池管理系统中广泛应用,为锂电池的安全和寿命提供可靠保障。

注:本文档仅供参考,请以实际产品参数为准。

相关文档
最新文档