10-18高考真题分类第27讲 双曲线【学生试卷】
高考数学试题分项版解析专题18双曲线理

专题18 双曲线1.【2017课标II ,理9】若双曲线22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则的离心率为()A .2B .C . D.3 【答案】A【解析】即:()22243c a c -=,整理可得:224c a =,双曲线的离心率2e ===。
故选A 。
【考点】双曲线的离心率;直线与圆的位置关系,点到直线的距离公式【名师点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围)。
2.【2017课标3,理5】已知双曲线C :22221x y a b-= (a >0,b >0)的一条渐近线方程为2y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=【答案】B【解析】试题分析:双曲线C :22221x y a b -= (a >0,b >0)的渐近线方程为b y x a=±, 椭圆中:2222212,3,9,c 3a b c a b ==∴=-==,椭圆,即双曲线的焦点为()3,0±,据此可得双曲线中的方程组:22223b a c a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,解得:224,5a b ==, 则双曲线的方程为2145x y 2-= . 故选B.3.【2017天津,理5】已知双曲线22221(0,0)x y a b a b-=>>的左焦点为,离心率为.若经过和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A )22144x y -=(B )22188x y -=(C )22148x y -=(D )22184x y -=【答案】【解析】由题意得224,14,188x y a b c a b c ==-⇒===⇒-=-,选B. 【考点】双曲线的标准方程【名师点睛】利用待定系数法求圆锥曲线方程是高考常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于,,a b c 的方程,解方程组求出,a b ,另外求双曲线方程要注意巧设双曲线(1)双曲线过两点可设为221(0)mx ny mn -=>,(2)与22221x y a b -=共渐近线的双曲。
2018年高考数学真题试卷(上海卷)【学生版】

2018年高考数学真题试卷(上海卷)一、填空题1.【2018•上海】行列式的值为________。
2.【2018•上海】双曲线的渐近线方程为________。
3.【2018•上海】在(1+x)7的二项展开式中,x²项的系数为________。
(结果用数值表示)4.【2018•上海】设常数,函数,若的反函数的图像经过点,则a=________。
5.【2018•上海】已知复数z满足(i是虚数单位),则∣z∣=________。
6.【2018•上海】记等差数列的前n项和为S,若,则S7=________。
7.【2018•上海】已知,若幂函数为奇函数,且在上递减,则α=________8.【2018•上海】在平面直角坐标系中,已知点A(-1,0),B(2,0),E,F是y轴上的两个动点,且||=2,则·的最小值为________9.【2018•上海】有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是________(结果用最简分数表示)=q n-1(n∈N*),前n项和为S n。
若,则10.【2018•上海】设等比数列{ }的通项公式为aq=________11.【2018•上海】已知常数>0,函数的图像经过点、,若,则=________12.【2018•上海】已知实数x₁、x₂、y₁、y₂满足:,,,则+ 的最大值为________二、选择题13.【2018•上海】设P是椭圆+ =1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2B.2C.2D.414.【2018•上海】已知,则“ ”是“ <1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件15.【2018•上海】《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA₁为底面矩形的一边,则这样的阳马的个数是()A.4B.8C.12D.1616.【2018•上海】设D是含数1的有限实数集,是定义在D上的函数,若的图像绕原点逆时针旋转后与原图像重合,则在以下各项中,的可能取值只能是()A. B. C. D.0三、解答题17.【2018•上海】已知圆锥的顶点为P,底面圆心为O,半径为2。
100题双曲线历年高考真题及解析

【答案】B
【解析】略
28.(2014·天津高考真题(理))已知双曲线 的一条渐近线平行于直线 : ,双曲线的一个焦点在直线 上,则双曲线的方程为
A. B.
C. D.
【答案】A
【解析】
试题分析:由已知得 在方程 中令 ,得 所求双曲线的方程为 ,故选A.
考点:1.双曲线的几何性质;2.双曲线方程的求法.
A. B.
C. D.
【答案】A
【详解】
圆心为 ,渐近线方程为 ,所以半径为 ,所以圆的方程是 ,即 ,选A.
15.(2007·辽宁高考真题(理))设 为双曲线 上的一点, 是该双曲线的两个焦点,若 ,则 的面积为()
A. B. C. D.
【答案】B
【解析】
试题分析:由已知可得 又
是直角三角形 ,故选B.
【解析】
试题分析:先根据双曲线得到其渐近线的方程,再利用圆心到渐近线的距离等于半径,就可求出 的值.
的渐近线方程是 ,即 ,又圆心是 ,所以由点到直线的距离公式可得 ,故选A.
考点:1、双曲线;2、双曲线的渐近线;3、直线与圆相切;4、点到直线的距离.
11.(2009·福建高考真题(文))若双曲线 的离心率为2,则 等于( )
解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),
即点(﹣2,﹣1)在抛物线的准线上,又由抛物线y2=2px的准线方程为x=﹣ ,则p=4,
解:渐近线y=± x.
准线x=± ,
求得A( ).B( ),
左焦点为在以AB为直径的圆内,
得出 ,
,
b<a,
c2<2a2
∴ ,
故选B.
点评:本题考查双曲线的准线、渐近线方程形式、考查园内的点满足的不等条件、注意双曲线离心率本身要大于1.
高考总复习高中数学高考总复习双曲线习题及详解学生版

高考总复习高中数学高考总复习双曲线习题及详解学生版Final revision on November 26, 2020高中数学圆锥曲线——双曲线一、选择题1.(文)(2016·山东潍坊)已知焦点在y轴上的双曲线的渐近线方程是y=±4x,则该双曲线的离心率是( )A. B.C. D.(理)(2016·河北唐山)过双曲线-=1的一个焦点F作一条渐近线的垂线,若垂足恰在线段OF(O为原点)的垂直平分线上,则双曲线的离心率为( ) A.2 B.C. D.2.(2010·全国Ⅰ文)已知F1、F2为双曲线C x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|·|PF2|=( )A.2 B.4C.6 D.83.(文)(2016·合肥市)中心在原点,对称轴为坐标轴的双曲线C的两条渐近线与圆(x-2)2+y2=1都相切,则双曲线C的离心率是( )A.或2 B.2或C.或D.或(理)已知F1、F2是双曲线-=1(a>0,b>0)的两个焦点,以线段F1F2为边作正△MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率为( ) A.4+2 B.-1C. D.+14.已知椭圆+=1和双曲线-=1有公共的焦点,那么双曲线的渐近线方程为( )A.x=±y B.y=±xC.x=±y D.y=±x5.(文)(2016·湖南师大附中模拟)已知双曲线-=1,直线l过其左焦点F1,交双曲线左支于A、B两点,且|AB|=4,F2为双曲线的右焦点,△ABF2的周长为20,则m的值为( )A.8 B.9C.16 D.20(理)(2016·辽宁锦州)△ABC中,A为动点,B、C为定点,B,C(其中m>0,且m为常数),且满足条件sin C-sin B=sin A,则动点A的轨迹方程为( )A.-=1B.-=1C.-=1(x>)D.-=16.设双曲线-=1(a>0,b>0)的两焦点为F1、F2,点Q为双曲线左支上除顶点外的任一点,过F1作∠F1QF2的平分线的垂线,垂足为P,则点P的轨迹是( )A.椭圆的一部分B.双曲线的一部分C.抛物线的一部分D.圆的一部分7.(文)(2016·温州市十校)已知点F是双曲线-=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过F且垂直于x轴的直线与双曲线交于A、B两点,若△ABE是锐角三角形,则该双曲线的离心率e的取值范围是( ) A.(1,+∞)B.(1,2)C.(1,1+) D.(2,1+)(理)(2016·浙江杭州质检)过双曲线-=1(a>0,b>0)的一个焦点F引它的渐近线的垂线,垂足为M,延长FM交y轴于E,若FM=ME,则该双曲线的离心率为( )A.3 B.2C. D.8.若直线y=kx+2与双曲线x2-y2=6的右支交于不同的两点,则k的取值范围是( )A. B.C. D.9.(文)(2010·福建理)若点O和点F(-2,0)分别为双曲线-y2=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则·的取值范围为( ) A.[3-2,+∞)B.[3+2,+∞)C.[-,+∞)D.[,+∞)(理)(2010·新课标全国理)已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB的中点为N(-12,-15),则E 的方程为( )A.-=1B.-=1C.-=1D.-=110.(文)过椭圆+=1(a>b>0)的焦点垂直于x轴的弦长为a,则双曲线-=1的离心率e的值是( )A. B.C. D.(理)(2016·福建宁德一中)已知抛物线x2=2py(p>0)的焦点F恰好是双曲线-=1的一个焦点,且两条曲线交点的连线过点F,则该双曲线的离心率为( )A. B.1±C.1+D.无法确定二、填空题11.(文)(2016·广东实验中学)已知P是双曲线-=1右支上的一点,双曲线的一条渐近线的方程为3x-y=0.设F1、F2分别为双曲线的左、右焦点.若|PF2|=3,则|PF1|=________.(理)(2010·东营质检)已知双曲线-=1的右焦点为(,0),则该双曲线的渐近线方程为________.12.(2016·惠州市模考)已知双曲线-y2=1(a>0)的右焦点与抛物线y2=8x 焦点重合,则此双曲线的渐近线方程是________.13.(2016·北京东城区)若双曲线-=1(a>0,b>0)的两个焦点为F1,F2,P 为双曲线上一点,且|PF1|=3|PF2|,则该双曲线离心率的取值范围是________.14.下列有四个命题:①若m是集合{1,2,3,4,5}中任取的一个值,中心在原点,焦点在x轴上的双曲线的一条渐近线方程为mx-y=0,则双曲线的离心率小于4的概率为.②若双曲线-=1(a>0,b>0)的一条渐近线方程为y=x,且其一个焦点与抛物线y2=8x的焦点重合,则双曲线的离心率为2;③将函数y=cos2x的图象向右平移个单位,可以得到函数y=sin的图象;④在Rt△ABC中,AC⊥BC,AC=a,BC=b,则△ABC的外接圆半径r=;类比到空间,若三棱锥S-ABC的三条侧棱SA、SB、SC两两互相垂直,且长度分别为a、b、c,则三棱锥S-ABC的外接球的半径R=.其中真命题的序号为________.(把你认为是真命题的序号都填上)三、解答题15.(文)已知双曲线的中心在原点,离心率为2,一个焦点F(-2,0)(1)求双曲线方程;(2)设Q是双曲线上一点,且过点F、Q的直线l与y轴交于点M,若||=2||,求直线l的方程.(理)(2016·湖南湘潭市)已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(,0).(1)求双曲线C的方程;(2)若直线l:y=kx+与双曲线C恒有两个不同的交点A和B,且·>2(其中O为原点),求k的取值范围.16.(2016·江苏苏州模拟)已知二次曲线C k的方程:+=1.(1)分别求出方程表示椭圆和双曲线的条件;(2)若双曲线C k与直线y=x+1有公共点且实轴最长,求双曲线方程;(3)m、n为正整数,且m<n,是否存在两条曲线C m、C n,其交点P与点F1(-,0),F2(,0)满足·=0?若存在,求m、n的值;若不存在,说明理由.17.(文)(2010·全国Ⅱ文)已知斜率为1的直线l与双曲线C:-=1(a>0,b>0)相交于B、D两点,且BD的中点为M(1,3).(1)求C的离心率;(2)设C的右顶点为A,右焦点为F,|DF|·|BF|=17,证明:过A、B、D 三点的圆与x轴相切.(理)(2016·广东理)已知双曲线-y2=1的左、右顶点分别为A1,A2,点P(x1,y1),Q(x1,-y1)是双曲线上不同的两个动点.(1)求直线A1P与A2Q交点的轨迹E的方程;(2)若过点H(0,h)(h>1)的两条直线l1和l2与轨迹E都只有一个交点,且l1⊥l2.求h的值.。
高三数学双曲线试题

高三数学双曲线试题1. 已知双曲线中心在原点且一个焦点为F 1(-,0),点P 位于该双曲线上,线段PF 1的中点坐标为(0,2),则双曲线的方程是( ) A .-y 2=1B .x 2-=1 C .-=1D .-=1【答案】B【解析】设双曲线的标准方程为-=1(a>0,b>0),由PF 1的中点为(0,2)知,PF 2⊥x 轴,P(,4),即=4,b 2=4a ,∴5-a 2=4a ,a =1,b =2,∴双曲线方程为x 2-=1.2. 在平面直角坐标系xOy 中,双曲线的中心在原点,焦点在y 轴上,一条渐近线方程为x -2y =0,则它的离心率为( ) A .B .C .D .2【答案】A【解析】依题意设双曲线的方程是-=1(其中a>0,b>0),则其渐近线方程是y =±x ,由题知=,即b =2a ,因此其离心率e ===.3. 已知双曲线-=1(a>0,b>0)的左、右焦点分别为F 1、F 2,过点F 2作与x 轴垂直的直线与双曲线一个交点为P ,且∠PF 1F 2=,则双曲线的渐近线方程为________. 【答案】y =±x【解析】根据已知可得,|PF 1|=且|PF 2|=,故-=2a ,所以=2,=,双曲线的渐近线方程为y =±x .4. 设分别为双曲线的左、右焦点,若在双曲线右支上存在点P ,满足,则该双曲线的渐近线方程为 .【答案】【解析】设中点为M ,因为所以为到直线的距离,即由得:,因此,双曲线的渐近线方程为,即.【考点】双曲线定义,双曲线渐近线5. (2013•重庆)设双曲线C 的中心为点O ,若有且只有一对相交于点O ,所成的角为60°的直线A 1B 1和A 2B 2,使|A 1B 1|=|A 2B 2|,其中A 1、B 1和A 2、B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( ) A .B .C .D .【答案】A【解析】由双曲线的基本性质对称轴是坐标轴,这时只须考虑双曲线的焦点在x轴的情形.因为有且只有一对相较于点O、所成的角为60°的直线A1B1和A2B2,所以直线A1B1和A2B2,关于x轴对称,并且直线A1B1和A2B2,与x轴的夹角为30°,双曲线的渐近线与x轴的夹角大于30°且小于等于60°,否则不满足题意.可得,即,,所以e>.同样地,当,即,所以e≤2.所以双曲线的离心率的范围是.故选A.6. (2014·咸宁模拟)双曲线-=1的渐近线与圆x2+(y-2)2=1相切,则双曲线离心率为() A.B.C.2D.3【答案】C【解析】因为双曲线-=1(a>0,b>0)的渐近线为bx±ay=0,依题意,直线bx±ay=0与圆x2+(y-2)2=1相切,设圆心(0,2)到直线bx±ay=0的距离为d,则d===1,所以双曲线离心率e==2.7.已知双曲线的离心率为,一个焦点与抛物线的焦点相同,则双曲线的渐近线方程为()A.B.C.D.【答案】A【解析】抛物线的焦点坐标为,因此,双曲线的离心率为,所以,因此双曲线的渐近线方程为,故选A.【考点】双曲线与抛物线的几何性质8.抛物线的焦点到双曲线的渐近线的距离是().A.B.C.D.【答案】【解析】抛物线的焦点为,双曲线的渐近线为,所以抛物线的焦点到双曲线的渐近线的距离是,选.【考点】抛物线、双曲线的几何性质,点到直线的距离公式.9.若双曲线的实轴长、虚轴长、焦距成等差数列,则双曲线的离心率为__________.【答案】【解析】由得,即得,即.故填【考点】等差中项双曲线离心率双曲线几何性质10.若双曲线=1的离心率e=2,则m=________.【答案】48【解析】根据双曲线方程=1知a2=16,b2=m,并在双曲线中有a2+b2=c2,∴离心率e ==2,=4=,m=48.11.已知抛物线y=x2+1与双曲线-=1(a>0,b>0)的渐近线没有公共点,则此双曲线的离心率可以是()A.B.C.D.【答案】A【解析】双曲线的渐近线为y=±x,由消去y整理得x2-x+1=0.∵双曲线的渐近线与抛物线没有交点,∴Δ=(-)2-4<0,即<2.∴双曲线的离心率e==∈(1,),所以只有选项A满足条件.故选A.12.已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A、B两点,且AB的中点为N(-12,-15),则E的方程为()(A)-=1 (B)-=1(C)-=1 (D)-=1【答案】B【解析】∵k==1,AB∴直线AB的方程为y=x-3.由于双曲线的焦点为F(3,0),∴c=3,c2=9.设双曲线的标准方程为-=1(a>0,b>0), 则-=1.整理,得(b2-a2)x2+6a2x-9a2-a2b2=0.设A(x1,y1),B(x2,y2),则x1+x2==2×(-12),∴a2=-4a2+4b2,∴5a2=4b2.又a2+b2=9,∴a2=4,b2=5.∴双曲线E的方程为-=1.故选B.13.设F1和F2为双曲线-=1(a>0,b>0)的两个焦点,若F1、F2、P(0,2b)是正三角形的三个顶点,则双曲线的离心率为()A.B.2C.D.3【答案】B【解析】由=,令b=,则c=2,∴a=1,∴e==2.故选B.14.已知F1、F2为双曲线C:-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则P到x轴的距离为()A.B.C.D.【答案】B【解析】由双曲线的方程可知a=2,b=1,c=,在△F1PF2中,根据余弦定理可得(2c)2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos60°,即4c2=(|PF1|-|PF2|)2+|PF1|·|PF2|,所以4c2=4a2+|PF1|·|PF2|,所以|PF1|·|PF2|=4c2-4a2=20-16=4,所以△F1PF2的面积为S=|PF1|·|PF2|sin60°=×4×=,设△F1PF2边F1F2上的高为h,则S=×2ch h=,所以高h==,即点P到x轴的距离为.故选B.15.已知双曲线-=1的一个焦点与圆x2+y2-10x=0的圆心重合,且双曲线的离心率等于,则该双曲线的标准方程为.【答案】-=1【解析】圆x2+y2-10x=0的圆心坐标为(5,0),∴c=5,又e==,∴a=,b2=c2-a2=20,∴双曲线标准方程为-=1.16.双曲线-=1(a>0,b>0)的离心率为2,则的最小值为()A.B.C.2D.1【答案】A【解析】因为双曲线的离心率为2,所以=2,即c=2a,c2=4a2;又因为c2=a2+b2,所以a2+b2=4a2,即b=a,因此==a+≥2=,当且仅当a=,即a=时等号成立.故的最小值为.17.已知双曲线的中心为原点,左、右焦点分别为、,离心率为,点是直线上任意一点,点在双曲线上,且满足.(1)求实数的值;(2)证明:直线与直线的斜率之积是定值;(3)若点的纵坐标为,过点作动直线与双曲线右支交于不同的两点、,在线段上去异于点、的点,满足,证明点恒在一条定直线上.【答案】(1);(2)详见解析;(3)详见解析.【解析】(1)根据双曲线的离心率列方程求出实数的值;(2)设点的坐标为,点的坐标为,利用条件确定与、之间的关系,再结合点在双曲线上这一条件,以及斜率公式来证明直线与直线的斜率之积是定值;(3)证法一是先设点、的坐标分别为、,结合(2)得到,,引入参数,利用转化为相应的条件,利用坐标运算得到点的坐标所满足的关系式,进而证明点恒在定直线上;证法二是设直线的方程为,将直线的方程与双曲线的方程联立,结合韦达定理,将条件进行等价转化为,结合韦达定理化简为,最后利用点在直线上得到,从而消去得到,进而证明点恒在定直线上.试题解析:(1)根据双曲线的定义可得双曲线的离心率为,由于,解得,故双曲线的方程为;(2)设点的坐标为,点的坐标为,易知点,则,,,因此点的坐标为,故直线的斜率,直线的斜率为,因此直线与直线的斜率之积为,由于点在双曲线上,所以,所以,于是有(定值);(3)证法一:设点且过点的直线与双曲线的右支交于不同的两点、,由(2)知,,,设,则,即,整理得,由①③,②④得,,将,,代入⑥得,⑦,将⑦代入⑤得,即点恒在定直线上;证法二:依题意,直线的斜率存在,设直线的方程为,由,消去得,因为直线与双曲线的右支交于不同的两点、,则有,设点,由,得,整理得,将②③代入上式得,整理得,④因为点在直线上,所以,⑤联立④⑤消去得,所以点恒在定直线.【考点】1.双曲线的离心率;2.向量的坐标运算;3.斜率公式;4.韦达定理18.已知双曲线C:=1(a>0,b>0)的右顶点,右焦点分别为A,F,它的左准线与x轴的交点为B,若A是线段BF的中点,则双曲线C的离心率为________.【答案】+1【解析】∵A是B,F的中点,∴2a=-+c.∴e2-2e-1=0,∵e>1,∴e=+1.19.已知双曲线C1:=1(a>0,b>0)的离心率为2.若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为 ().A.x2=y B.x2=y C.x2=8y D.x2=16y【答案】D【解析】∵双曲线C1:=1(a>0,b>0)的离心率为2,∴=2,∴b=a,∴双曲线的渐近线方程为x±y=0,∴抛物线C2:x2=2py(p>0)的焦点到双曲线的渐近线的距离为=2,∴p=8. ∴所求的抛物线方程为x2=16y.20.抛物线y2=4x的焦点到双曲线x2-=1的渐近线的距离是().A.B.C.1D.【答案】B【解析】抛物线y2=4x的焦点F(1,0),双曲线x2-=1的渐近线是y=±x,即x±y=0,∴所求的距离d==.21.已知双曲线=1(a>0,b>0)的渐近线方程为y=±x,则它的离心率为________.【答案】2【解析】由题意,得e====2.22.已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于,则C的方程是().A.=1B.=1C.=1D.=1【答案】B【解析】由题意知c=3,e==,所以a=2;b2=c2-a2=9-4=5,故所求双曲线方程为=1.23.已知0<θ< ,则双曲线C1:=1与C2:=1的A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等【答案】D【解析】双曲线C1的离心率e1=双曲线C2的离心率e2=,所以e1=e2,∴C1,C2离心率相等.24.已知中心在原点的双曲线的一个焦点是,一条渐近线的方程是。
高考真题汇编:双曲线真题汇编(红色为答案)

双曲线练习题一. 选择题1.已知双曲线的离心率为2,焦点是(4,0),(4,0)-,则双曲线的方程是A. 221412x y -=B. 221124x y -=C. 221106x y -=D. 221610x y -=2.设椭圆1C 的离心率为513,焦点在x 上,长轴长为26,若曲线2C 上的点到椭圆1C 的两个焦点距离差的绝对值等于8,则曲线2C 的标准方程是A. 2222143x y -=B. 22221135x y -=C. 2222134x y -=D. 222211312x y -=3. 已知双曲线22221x y a b-=的一条渐近线方程为43y x =,则双曲线的离心率等于A .53B .43C .54D .324. 已知双曲线22112x y n n+=-n = A.2- B .4 C.6 D.8-5.设1F 、2F 是双曲线22221x y a b-=的两个焦点,若1F 、2F 、(0,2)P b 是正三角形的三个顶点,那么其离心率是A.32 B. 52C. 2D. 3 6.已知双曲线2239xy -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线距离之比等于AC. 2D.4 7.如果双曲线22142x y-=上一点P 到双曲线右焦点的距离是2,那么点P 到y 的距离是A.B.C.D. 8.设12F F ,是双曲线22221x y a b-=的左、右焦点,若其右支上存在一点P 使得1290F PF ∠= ,且12PF =,则e =A.B. 1C.D. 19. 若双曲线22221x y a b-=的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是A .3B .5CD10. 设ABC △是等腰三角形,120ABC ∠= ,则以A B ,为焦点且过点C 的双曲线的离心率为A .221+ B .231+C .21+D .31+11. 双曲线22221x y a b-=的左、右焦点分别是12F F ,,过1F 作倾斜角为30 的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为 ABCD.312. 设1,a >则双曲线22221(1)x y a a -=+的离心率e 的取值范围是 A.B.C .(25),D.(213.已知双曲线()222102x y b b -=>的左、右焦点分别为1F 、2F ,它的一条渐近线方程为y x =,点0)P y 在该双曲线上,则12PF PF =A .12-B .2-C .0D .414.双曲线22221x y a b-=的两个焦点为1F 、2F ,若P 为其上一点,且122PF PF =,则离心率e 的取值范围是A .(1),3B .(1,3]C .(3)∞,+D .)+[3,∞15.设P 为双曲线22112y x -=上一点,1F 、2F 是双曲线的两个焦点,若1PF :2PF =3:2,则12PF F ∆的面积为 A.B .12C.D .2416.设1F 、2F 是双曲线2219y x -=的左、右焦点,P 为该双曲线上一点,且120PF PF = ,则12PF PF += A.B.CD.二.填空题17.已知双曲线22221(0,0)x y a b a b -=>>的两条渐近线方程是3y x =±,若顶点到渐近线的距离为1,则双曲线方程为 18.以1(60)F -,,2(60)F ,为焦点,离心率2e =的双曲线的方程是 19.中心在原点,一个焦点是1(30)F -,20y ±=的双曲线的方程为20.过点(20)N ,且与圆2240x y x ++=外切的动圆圆心的轨迹方程是21.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为22. 已知双曲线22291(0)y m x m -=>的一个顶点到它的一条渐近线的距离为15,则m =23.已知双曲线2221(2x y a a -=>的两条渐近的夹角为3π,则双曲线的离心率为24.已知双曲线22221x y a b -=的右焦点为F ,右准线与一条渐近线交于点A ,OAF ∆的面积为22a , (O 为坐标原点),则该双曲线的两条渐近线的夹角为25.过双曲线22143x y -=左焦点1F 的直线交双曲线的左支于M N ,两点,2F 为其右焦点,则22MF NF MN +-=26. 若双曲线22221x y a b-=的右支上存在一点,它到右焦点及左准线的距离相等,则e 取值范围是27..P 是曲线22221x y a b-=的右支上一点,F 为其右焦点,M是右准线:x = x 轴的交点,若60,PMF ∠=45PFM ∠= ,则双曲线方程是28.过双曲线221916x y -=的右焦点F 且平行双曲线的一条渐近线的直线与双曲线交于点B, A 为右顶点,则FAB ∆的面积等于三.解答题29.分别求满足下列条件的双曲线方程 (1)中心在原点,一条准线方程是5x =,离心率e =(2)中心在原点,离心率2e =5;30. 已知双曲线22221(00)x y C a b a b-=>>:,的两个焦点为1(20)F -,,2(20)F ,,点P 在双曲线C 上. ⑴求双曲线C 的方程;⑵记O 为坐标原点,过点(02)Q ,的直线l 与双曲线C 相交于不同的两点E F ,,若OEF =△S l 方程.双曲线练习题答案一.选择题1.A 2. A3.A4. B 5. C6. C7. A8D9. D10. B11. B12. B13.C 14.B15.B16B 二.填空题17. 223144y =18.221927x y -=19.22145x y -=20.()22113y x x -=≥21. 322. 4 23.324.2π25. 826.(1⎤⎦27.2211260x y -=28. 3215二. 解答题29.分别求满足下列条件的双曲线方程(1)中心在原点,一条准线方程是5x =,离心率e =2214y x -= (2)中心在原点,离心率e =2214x y -= 30. 已知双曲线22221(00)x y C a b a b-=>>:,的两个焦点为1(20)F -,,2(20)F ,,点P 在双曲线C 上. ⑴求双曲线C 的方程;⑵记O 为坐标原点,过点(02)Q ,的直线l 与双曲线C 相交于不同的两点E F ,,若OEF =△S 求l 方程.⑴解略:双曲线方程为22122x y -=. ⑵解:直线:l2y kx =+,代入双曲线C 的方程并整理,得22(1)460k x kx ---=. ①直线l 与双曲线C 相交于不同的两点E F ,,222110(4)46(1)0k k k k k ≠±⎧⎧-≠⎪⎪∴⇔⎨⎨<∆=-+⨯->⎪⎪⎩⎩,,,, (1)(11)k ∴∈-- ,. ②设1122()()E x y F x y ,,,,则由①式得12241k x x k +=-,12261x x k =--,EF ∴==而原点O 到直线l的距离d =1122OEFS d EF ∴=⋅==△.若OEFS =△4220k k =⇔--=,解得k =此满足②故满足条件的直线l 有两条,其方程分别为2y +和2y =+。
高考数学专题复习:双曲线(含解析)
【学习目标】1.理解双曲线的定义、几何图形和标准方程以及它的简单几何性质.2.理解数形结合的思想.3.了解双曲线的实际背景及其简单应用.【高考模拟】一、单选题1.设、分别是双曲线C:的左右焦点,点在双曲线C的右支上,且,则()A. B. C. D.【答案】B【解析】【分析】根据双曲线的性质求出c的值,结合向量垂直和向量和的几何意义进行转化求解即可.【详解】【点睛】本题主要考查双曲线性质的意义,根据向量垂直和向量和的几何意义是解决本题的关键.2.设是双曲线的左右焦点,为左顶点,点为双曲线右支上一点,,,, 为坐标原点,则A .B .C .D .【答案】D 【解析】 【分析】先求出双曲线的方程为,再求出点P 的坐标,最后求.【详解】【点睛】(1)本题主要考查双曲线的几何性质和向量的数量积运算,考查双曲线方程的求法,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2) 双曲线的通径为.3.已知直线的倾斜角为,直线与双曲线()的左、右两支分别交于、两点,且、都垂直于轴(其中、分别为双曲线的左、右焦点),则该双曲线的离心率为()A. B. C. D.【答案】D【解析】【分析】根据题意设点,,则,又由直线的倾斜角为,得,结合点在双曲线上,即可求出离心率.【详解】直线与双曲线的左、右两支分别交于、两点,且、都垂直于轴,根据双曲线的对称性,设点,,则,即,且,又直线的倾斜角为,直线过坐标原点,,,整理得,即,解方程得,(舍)故选D.【点睛】本题考查双曲线的几何性质、直线与双曲线的位置关系及双曲线离心率的求法,考查化简整理的运算能力和转化思想,属于中档题.圆锥曲线离心率的计算,常采用两种方法:1、通过已知条件构建关于的齐次方程,解出.根据题设条件(主要用到:方程思想,余弦定理,平面几何相似,直角三角形性质等)借助之间的关系,得到关于的一元方程,从而解得离心率.2、通过已知条件确定圆锥曲线上某点坐标,代入方程中,解出.根据题设条件,借助表示曲线某点坐标,代入曲线方程转化成关于的一元方程,从而解得离心率.4.已知双曲线,的左焦点为F,离心率为,若经过和两点的直线平行于双曲线的一条渐近线,则双曲线的方程为()A. B. C. D.【答案】D【解析】【分析】由双曲线的离心率为,则双曲线为等轴双曲线,即渐近线方程为y=±x,根据直线的斜率公式,即可求得c的值,求得a和b的值,即可求得双曲线方程.【详解】【点睛】本题考查双曲线的几何性质及其应用,对于双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得 (的取值范围).5.已知双曲线的右焦点在直线上,则实数的值为()A. B. C. D.【答案】D【解析】【分析】先求得直线与轴的交点,进而得c,再有,即可得解.【详解】因为直线与轴的交点为,所以在双曲线中有,故,即,故选D.【点睛】本题主要考查了双曲线焦点的概念,属于基础题.6.已知直线的倾斜角为,直线与双曲线()的左、右两支分别交于、两点,且、都垂直于轴(其中、分别为双曲线的左、右焦点),则该双曲线的离心率为()A. B. C. D.【答案】D【解析】【分析】根据题意设点,,则,又由直线的倾斜角为,得,结合点在双曲线上,即可求出离心率.【详解】故选D.【点睛】本题考查双曲线的几何性质、直线与双曲线的位置关系及双曲线离心率的求法,考查化简整理的运算能力和转化思想,属于中档题.圆锥曲线离心率的计算,常采用两种方法:1、通过已知条件构建关于的齐次方程,解出.根据题设条件(主要用到:方程思想,余弦定理,平面几何相似,直角三角形性质等)借助之间的关系,得到关于的一元方程,从而解得离心率.2、通过已知条件确定圆锥曲线上某点坐标,代入方程中,解出.根据题设条件,借助表示曲线某点坐标,代入曲线方程转化成关于的一元方程,从而解得离心率. 7.当时,方程所表示的曲线是()A.焦点在轴的椭圆 B.焦点在轴的双曲线C.焦点在轴的椭圆 D.焦点在轴的双曲线【答案】D【解析】【分析】先化简方程得,即得曲线是焦点在轴的双曲线.【详解】化简得,因为ab<0,所以>0,所以曲线是焦点在轴的双曲线.故答案为:D【点睛】本题主要考查双曲线的标准方程,意在考查学生对该知识的掌握水平和分析推理能力.8.已知双曲线的一条渐近线与直线垂直,则双曲线的离心率为( )A. B. C. D.【答案】C【解析】【分析】求出双曲线的渐近线方程,再由两直线垂直的条件,可得,b=2a,再由a,b,c的关系和离心率公式,即可得到所求.【详解】双曲线的渐近线方程为,直线的斜率为,由题意有,所以,,故离心率.故选:C.【点睛】本题考查双曲线的方程和性质,考查渐近线方程和离心率的求法,考查运算能力,属于基础题.9.已知双曲线的右焦点在直线上,则实数的值为()A. B. C. D.【答案】D【解析】【分析】先求得直线与轴的交点,进而得c,再有,即可得解.【详解】【点睛】本题主要考查了双曲线焦点的概念,属于基础题.10.《九章算术》是我国古代内容极为丰富的数学名著,第九章“勾股”,讲述了“勾股定理”及一些应用,还提出了一元二次方程的解法问题.直角三角形的三条边长分别称“勾”“股”“弦”.设、分别是双曲线,的左、右焦点,是该双曲线右支上的一点,若分别是的“勾”“股”,且,则双曲线的离心率为()A. B. C. D.【答案】D【解析】【分析】由题可得,所以,又,由此可求双曲线的离心率.【详解】由双曲线的定义得,所以,即,由题意得,所以,又,所以,解得,从而离心率故选D.【点睛】本题考查双曲线的离心率的求法,属中档题.11.已知直线与双曲线交于,两点,且线段的中点的横坐标为1,则该双曲线的离心率为()A. B. C. D.【答案】B【解析】【分析】设,则有,利用点差法可得,从而可得结果.【详解】因为直线与双曲线交于,两点,且线段的中点的横坐标为,所以,,设,则有,,两式相减可化为,可得,,双曲线的离心率为,故选B.【点睛】本题主要考查待定系数法求双曲线的方程与离心率及“点差法”的应用,属于难题.对于有弦关中点问题常用“ 点差法”,其解题步骤为:①设点(即设出弦的两端点坐标);②代入(即代入圆锥曲线方程);③作差(即两式相减,再用平方差公式分解因式);④整理(即转化为斜率与中点坐标的关系式),然后求解. 12.我们把焦点相同且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知是一对相关曲线的焦点,分别是椭圆和双曲线的离心率,若为它们在第一象限的交点,,则双曲线的离心率()A. B. C. D.【答案】C【解析】【分析】设F1(﹣c,0),F2(c,0),椭圆的长半轴长为a,双曲线的实半轴长为m,分别运用椭圆和双曲线的定义、结合余弦定理,和离心率公式,解方程可得所求值.【详解】设F1(﹣c,0),F2(c,0),椭圆的长半轴长为a,双曲线的实半轴长为m,可得PF1+PF2=2a,PF1﹣PF2=2m,可得PF1=a+m,PF2=a﹣m,由余弦定理可得F1F22=PF12+PF22﹣2PF1•PF2cos60°,即有4c2=(a+m)2+(a﹣m)2﹣(a+m)(a﹣m)=a2+3m2,由离心率公式可得+=4,e1e2=1,即有e24﹣4e22+3=0,解得e2=故选:C.【考点】椭圆、双曲线定义,离心率【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 13.焦点为且与双曲线有相同渐近线的双曲线方程是A .B .C .D .【答案】B 【解析】 【分析】由题意利用待定系数法求解双曲线的方程即可. 【详解】【点睛】求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为,再由条件求出λ的值即可.14.双曲线的渐近线方程为( )A .B .C .D .【答案】C 【解析】 【分析】把双曲线的标准方程中的1换成0,即得渐近线方程. 【详解】在双曲线的标准方程 中,把等号右边的1换成0,即得双曲线的渐近线方程y=±2x, 故选:C . 【点睛】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,把双曲线的标准方程中的1换成0,即得渐近线方程.15.已知点为双曲线的左右焦点,点P 在双曲线C 的右支上,且满足,则双曲线的离心率为( )A .B .C .D .【答案】A 【解析】 【分析】由特殊角等腰三角形的三边关系以及双曲线的定义可表示出a 、c 的关系,对关系式化简,通过离心率公式,对关系式变型,解方程求出离心率. 【详解】【点睛】本题考查双曲线的离心率,求离心率有两种方式,一种是由题目中条件求出参数值,根据离心率公式得离心率,另一种是根据条件求得a 、c 的齐次式,等号两侧同时除以a 或等,构造离心率.16.在平面直角坐标系中,设分别为双曲线的左、右焦点, 是双曲线左支上一点, 是的中点,且, ,则双曲线的离心率为( )A .B . 2C .D .【答案】C【解析】【分析】根据各个边长关系,判断出;根据勾股定理求出离心率。
高考数学十年真题专题解析—双曲线
双曲线年份题号考点考查内容2011理7双曲线直线与双曲线的位置关系,双曲线的几何性质2012理8文10双曲线抛物线与双曲线的几何性质,直线与双曲线的位置关系2013卷1文理4双曲线双曲线的离心率和渐近线2014卷1理4双曲线双曲线的标准方程及其几何性质文4双曲线双曲线的离心率卷2理5双曲线双曲线的标准方程及其几何性质2015卷1文16双曲线双曲线的定义;直线与双曲线的位置关系卷2理11双曲线双曲线的标准方程及其几何性质文15双曲线双曲线的标准方程的求法,双曲线的渐近线2016卷2理11双曲线双曲线的几何性质,双曲线离心率的计算2017卷1理15双曲线双曲线的几何性质,双曲线离心率的求法文5双曲线双曲线标准方程及其几何性质卷2理9圆、双曲线圆的几何性质,双曲线的几何性质,双曲线离心率的计算文5双曲线双曲线的几何性质,双曲线离心率的计算卷3理5双曲线双曲线与椭圆的几何性质,待定系数法求双曲线的方程文14双曲线双曲线的渐近线2018卷1理11双曲线双曲线的几何性质,直线与双曲线的位置关系卷2理5文6双曲线双曲线的几何性质卷3理11双曲线双曲线的几何性质,双曲线离心率的求法文10双曲线双曲线的离心率、渐近线,点到直线距离公式2019卷1理16双曲线双曲线的几何性质,双曲线离心率的求法文10双曲线双曲线的离心率、渐近线卷2理11文12圆、双曲线直线与圆的位置关系,双曲线的几何性质,双曲线离心率的求法卷3理10双曲线双曲线的定义、标准方程及其几何性质文10双曲线双曲线的定义、标准方程及其几何性质2020卷1理15双曲线双曲线的定义、标准方程及其几何性质,双曲线离心率的求法文11双曲线双曲线的定义、标准方程及其几何性质卷2理8文9双曲线双曲线的几何性质,直线与双曲线的位置关系卷3理11双曲线双曲线的定义、标准方程及其几何性质文14双曲线双曲线的渐近线、离心率考点出现频率2021年预测考点92双曲线的定义及标准方程23次考2次命题角度:(1)双曲线的定义及应用;(2)双曲线的标准方程;(3)双曲线的几何性质.核心素养:直观想象、数学运算考点93双曲线的几何性质23次考21次考点94直线与双曲线的位置关系23次考5次考点92双曲线的定义及标准方程1.(2017新课标Ⅲ理)已知双曲线C :22221(0,0)x y a b a b -=>>的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=【答案】B 【解析】由题意可得:52b a =,3c =,又222a b c +=,解得24a =,25b =,则C 的方程为2145x y 2-=,故选B .2.(2017天津理)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为A .22144x y -=B .22188x y -=C .22148x y -=D .22184x y -=【答案】B 【解析】设(,0)F c -,双曲线的渐近线方程为b y x a =±,由44PF k c c -==-,由题意有4b c a=,又ca=222c a b =+,得b =,a =B .3.【2017天津文】已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,点A 在双曲线的渐近线上,OAF△是边长为2的等边三角形(O 为原点),则双曲线的方程为()A .221412x y -=B .221124x y -=C .2213x y -=D .2213y x -=【答案】D【解析】由题意可得2222tan 603c c a b ba ⎧⎪=⎪=+⎨⎪⎪=︒=⎩,解得221,3ab ==,故双曲线方程为2213y x -=,故选D .4.(2016天津理)已知双曲线222=1(0)4x y b b->,以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为()A .22443=1y x -B .22344=1y x -C .2224=1x y b-D .2224=11x y -【答案】D 【解析】不妨设A 在第一象限,(,)A x y ,所以2242x y by x ⎧+=⎪⎨=⎪⎩,解得224424x b y b ⎧=⎪+⎪⎨⎪=⎪+⎩,故四边形ABCD 的面积为22232442444bxy b b b b =⨯==+++,解得212b =.故所求的双曲线方程为2224=11x y -,故选D .5.【2016天津文】已知双曲线)0,0(12222>>=-b a b y a x 的焦距为52,且双曲线的一条渐近线与直线02=+y x 垂直,则双曲线的方程为()A .1422=-y x B .1422=-y x C .15320322=-y x D .12035322=-y x 【答案】A【解析】由题意得2215,2,11241b x yc a b a ==⇒==⇒-=,故选A .6.(2015安徽理)下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是A .2214y x -=B .2214x y -=C .2214y x -=D .2214x y -=【答案】C 【解析】由题意,选项,A B 的焦点在x 轴,故排除,A B ,C 项的渐近线方程为2204y x -=,即2y x =±,故选C .7.(2014天津理)已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为A .221520x y -=B .221205x y -=C .2233125100x y -=D .2233110025x y -=【答案】A 【解析】依题意得22225b a c c a b ìï=ïïï=íïïï=+ïî,所以25a =,220b =,双曲线的方程为221520x y -=.8.(2012湖南文理)已知双曲线C :22x a -22y b =1的焦距为10,点P(2,1)在C 的渐近线上,则C 的方程为A .220x -25y =1B .25x -220y =1C .280x -220y =1D .220x -280y =1【答案】A 【解析】设双曲线C :22x a -22y b=1的半焦距为c ,则210,5c c ==.又 C 的渐近线为b y x a =±,点P(2,1)在C 的渐近线上,12ba∴=,即2a b =.又222c a b =+,a ∴==,∴C 的方程为220x -25y =1.9.(2011山东文理)已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均和圆C :22x y +-650x +=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为A .22154x y -=B .22145x y -=C .22136x y -=D .22163x y -=【答案】A 【解析】圆22:(3)4C x y -+=,3,c =而32bc=,则22,5b a ==,故选A .10.(2016北京文)已知双曲线22221x y a b-=(0,0)a b >>的一条渐近线为20x y +=,一个焦点为,则a =_______;b =_____________.【答案】1,2a b ==.【解析】依题意有2c b a⎧=⎪⎨-=-⎪⎩,结合222c a b =+,解得1,2a b ==.11.(2016北京理)双曲线22221(0,0)x y a b a b -=>>的渐近线为正方形OABC 的边,OA OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a =______.2【解析】不妨令B 为双曲线的右焦点,A 在第一象限,则双曲线图象如图,∵OABC 为正方形,2=OA∴==c OB π4∠=AOB ,∵直线OA 是渐近线,方程为=b y x a ,∴tan 1=∠=bAOB a,又∵2228+==a b c ,∴2=a.12.(2015新课标1文)已知双曲线过点)3,4(,且渐近线方程为x y 21±=,则该双曲线的标准方程为.【答案】2214x y -=【解析】∵双曲线的渐近线方程为x y 21±=,故可设双曲线的方程为22(0)4x y λλ-=>,又双曲线过点)3,4(,∴2244λ-=,∴1λ=,故双曲线的方程为2214x y -=.13.(2015北京理)已知双曲线()22210x y a a-=>0y +=,则a =.33【解析】因为双曲线()22210x y a a -=>的一条渐近线为y =,所以1a =,故33a =.14.(2011山东文理)已知双曲线22221(0,0)x y a b a b -=>>和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为.【答案】22143x y -=【解析】由题意可知双曲线的焦点(,,即c =心率为274c a =,∴2a =,故23b =,∴双曲线的方程为22143x y -=.考点93双曲线的几何性质15.(2020·新课标Ⅰ文)设12,F F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则12PF F △的面积为()A .72B .3C .52D .2【答案】B【解析】由已知,不妨设12(2,0),(2,0)F F -,则1,2a c ==,∵121||1||2OP F F ==,∴点P 在以12F F 为直径的圆上,即12F F P 是以P 为直角顶点的直角三角形,故2221212||||||PF PF F F +=,即2212||||16PF PF +=,又12||||22PF PF a -==,∴2124||||PF PF =-=2212||||2PF PF +-12||||162PF PF =-12||||PF PF ,解得12||||6PF PF =,∴12F F P S =△121||||32PF PF =,故选B .16.【2020年高考全国Ⅲ卷理数11】已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点12,F F ,离心率为5.P 是C 上的一点,且P F P F 21⊥.若21F PF ∆的面积为4,则=a ()A .1B .2C .4D .8【答案】A【思路导引】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.【解析】解法一:ca=c ∴=,根据双曲线的定义可得122PF PF a -=,12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=,12F P F P ⊥ ,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选A .解法二:由题意知,双曲线的焦点三角形面积为2tan 221θb S F PF =.∴︒45tan 2b =4,则2=b ,又∵5==ace ,∴1=a .解法三:设n PF m PF ==21,,则421==mn S F PF ,a n m 2=-,5,4222===+ace c n m ,求的1=a .17.【2020年高考浙江卷8】已知点()()()0,0,2,0,2,0O A B -.设点P 满足–2PA PB =,且P 为函数y =图像上的点,则OP =()A.2B.5CD.【答案】D【解析】由条件可知点P 在以,A B 为焦点的双曲线的右支上,并且2,1c a ==,∴23b =,方程为()22103yx x -=>且点P为函数y =上的点,联立方程()22103y x x y ⎧-=>⎪⎨⎪=⎩,解得:2134x =,2274y =,OP ∴==D .18.【2019·全国Ⅰ文】双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为()A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒【答案】D【解析】由已知可得tan130,tan 50b ba a-=︒∴=︒,1cos50 cea∴======︒,故选D.19.【2019年高考全国Ⅱ理】设F为双曲线C:22221(0,0)x y a ba b-=>>的右焦点,O为坐标原点,以OF 为直径的圆与圆222x y a+=交于P,Q两点.若PQ OF=,则C的离心率为A BC.2D【答案】A【解析】设PQ与x轴交于点A,由对称性可知PQ x⊥轴,又||PQ OF c==,||,2cPA PA∴=∴为以OF为直径的圆的半径,∴||2cOA=,,22c cP⎛⎫∴ ⎪⎝⎭,又P点在圆222x y a+=上,22244c c a∴+=,即22222,22c ca ea=∴==.e∴=,故选A.20.【2019年高考全国Ⅲ卷理数】双曲线C:2242x y-=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若=PO PF,则△PFO的面积为A .324B .322C .22D .32【答案】A【解析】由222,2,6,a b c a b ===+=6,2P PO PF x =∴=,又P 在C 的一条渐近线上,不妨设为在b y x a =上,则263222P P b y x a =⋅=⨯=,1133262224PFO P S OF y ∴=⋅=⨯⨯=△,故选A .【名师点睛】本题考查以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素养.21.【2019·全国Ⅲ文】已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为A .32B .52C .72D .92【答案】B【解析】设点()00,P x y ,则2200145x y -=①.又453OP OF ==+=,22009x y ∴+=②.由①②得20259y =,即053y =,0115532232OPF S OF y ∴=⋅=⨯⨯=△,故选B .22.【2019·北京文】已知双曲线2221x y a-=(a>0)的离心率是5,则a=()A 6B .4C .2D .12【答案】D【解析】∵双曲线的离心率c e a ==c =,∴1a=12a =,故选D .23.【2019·浙江卷】渐近线方程为x±y=0的双曲线的离心率是()A .22B .1C .D .2【答案】C【解析】∵双曲线的渐近线方程为0x y ±=,∴a b =,则c ==,∴双曲线的离心率ce a==C .24.(2018全国Ⅱ文理)双曲线22221(0,0)-=>>x y a b a b的离心率为()A .=yB .=yC .2=±y x D .2=±y x 【答案】A【解析】∵c e a ==,∴2222221312b c a e a a-==-=-=,∴b a =b y x a =±,∴渐近线方程为y =,故选A .25.【2018·全国Ⅲ文】已知双曲线2222:1(0,0)x y C a b a b-=>>,则点(4,0)到C 的渐近线的距离为A B .2C .322D .【答案】D【解析】c e a === 1b a ∴=,∴双曲线C 的渐近线方程为0x y ±=,∴点(4,0)到渐近线的距离d ==,故选D .26.【2018高考浙江2】双曲线2213x y -=的焦点坐标是()A .()),0,B .()()20,0,2,-C .((0,,0D .()()0,22,0,-【答案】B【解析】试题分析:根据双曲线方程确定焦点位置,再根据222c a b =+求焦点坐标.试题解析: 双曲线方程为2213x y -=,∴焦点坐标可设为()0,c ±.222,3142c a b c =+=+== ,∴焦点坐标为()20,±,故选B .【名师点睛】由双曲线方程()222210,0x y a b a b-=>>可得焦点坐标为()(,0c c ±=,顶点坐标为()0,a ±,渐近线方程为by x a=±.27.【2018高考全国1理11】已知双曲线13:22=-y x C ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为,M N .若OMN △为直角三角形,则=MN ()A .23B .3C .32D .4【答案】B【解析】【基本解法1】(直接法)∵双曲线221,(2,0)3x y F -=,∴渐近线方程为33y x =±,倾斜角分别为30,150 ,∴60MON ∠= ,不妨设90MNO ∠= ,∴30,30OMN FON ∠=∠= ,∵2OF =,∴在Rt FON ∆中,3cos3022ON OF =⋅=⨯=,∴在Rt MON ∆中,tan 603MN ON =⋅==.【基本解法2】(直接法)根据题意,可知其渐近线的斜率为()2,0F ,从而得到30FON ∠=︒,∴直线MN 的倾斜角为60︒或120︒,根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN的方程为)2y x =-,分别与两条渐近线y =和y x =联立,求得(33,,,32M N MN ⎛∴= ⎝⎭,故选B .28.【2018高考天津文理7】已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为()A .221412x y -=B .221124x y -=C .22139x y -=D .22193x y -=【答案】C【解析】设双曲线的右焦点坐标为()()00,F c c >,则A B x x c ==,由22221c y a b -=可得:2b y a =±,不妨设:22,,,b b Ac B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为:0bx ay -=,据此可得:21bc b d c -==,22bc b d c +==,则12226bc d d b c +===,则23,9b b ==,双曲线的离心率:2c e a ===,据此可得:23a =,则双曲线的方程为22139x y -=,故选C .29.【2017·全国Ⅰ文】已知F 是双曲线C :1322=-y x 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为A .13B .12C .23D .32【答案】D【解析】由2224c a b =+=得2c =,∴(2,0)F ,将2x =代入2213y x -=,得3y =±,∴3||=PF ,又点A 的坐标是(1,3),故△APF 的面积为133(21)22⨯⨯-=,故选D .30.【2017·全国Ⅱ文】若1a >,则双曲线2221x y a-=的离心率的取值范围是()A .)+∞B .2)C .D .(1,2)【答案】C【解析】由题意得222222111c a e a a a+===+,∵1a >,∴21112a <+<,则1e <<C .31.(2017新课标Ⅱ理)若双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线被圆22(2)4x y -+=所截得的弦长为2,则C 的离心率为()A .2B C D .233【答案】A 【解析】双曲线C 的渐近线方程为0bx ay ±=,圆心(2,0)到渐近线的距离为2b d c==,圆心(2,0)到弦的距离也为d ==,所以2b c =,又222c a b =+,所以得2c a =,所以离心率2ce a==,选A .32.(2016全国I 理)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是A .(–1,3)B .(–1,3)C .(0,3)D .(0,3)【答案】A 【解析】由题意得22()(3)0m n m n +->,解得223m n m -<<,又由该双曲线两焦点间的距离为4,得M 2234m n m n ++-=,即21m =,所以13n -<<.33.(2016全国II 理)已知1F ,2F 是双曲线E :22221x y a b-=的左、右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为()A B .32C D .2【答案】A 【解析】设1(,0)F c -,将x c =-代入双曲线方程,得22221c y a b -=,化简得2by a=±,因为211sin 3MF F ∠=,所以222212112||tan ||222b MF b c a a MF F F F c ac ac-∠=====122224c a e a c e -=-=,所以22102e e --=,所以e =A .34.(2016浙江理)已知椭圆1C :2221x y m +=(1m >)与双曲线2C :2221x y n -=(0n >)的焦点重合,1e ,2e 分别为1C ,2C 的离心率,则A .m n >且121e e >B .m n >且121e e <C .m n <且121e e >D .m n <且121e e <【答案】A 【解析】由题意知2211m n -=+,即222m n =+,222221222221111()2m n n n e e m n n n -+++=⋅=⋅+4242422111122n n n n n n ++==+>++,∴121e e >.故选A .35.(2015湖南文)若双曲线22221x y a b-=的一条渐近线经过点(3,4)-,则此双曲线的离心率为A.3B .54C .43D .53【答案】D 【解析】由已知可得双曲线的渐近线方程为by x a=±,点(3,4)-在渐近线上,∴43b a =,又222a b c +=,∴2222162599c a a a =+=,∴53c e a ==.36.(2015四川文理)过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于,A B 两点,则||AB =A.3B .C .6D .【答案】D 【解析】双曲线2213y x -=的右焦点为(2,0),渐近线方程为y =,将2x =代入y =得y =±,∴||AB =.37.(2015福建理)若双曲线22:1916x y E -=的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2PF 等于()A .11B .9C .5D .3【答案】B 【解析】由双曲线定义得1226PF PF a -==,即236PF -=,解得29PF =,故选B .38.(2015湖北理)将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >【答案】D【解析】由题意1e a ==,2e ==∵()()b b m m b a a a m a a m +--=++,由于0m >,0a >,0b >,所以当a b >时,01b a <<,01b m a m +<<+,b b m a a m +<+,22(()b b m a a m+<+,所以12e e <;当a b <时,1b a >,1b m a m +>+,而b b m a a m +>+,22((b b m a a m+>+,所以12e e >.所以当a b >时,12e e <;当a b <时,12e e >.39.(2015重庆文)设双曲线22221(0,0)x y a b a b-=>>的右焦点是F ,左、右顶点分别是12,A A ,过F 做12A A 的垂线与双曲线交于,BC 两点,若12A B A C ⊥,则双曲线的渐近线的斜率为A .12±B .22C .1±D.【答案】C 【解析】由题意,得12(,0),(,0),(,0)A a A a F c -,将x c =代入双曲线方程,解得2b y a =±.不妨设2(,)b B c a ,2(,)b C c a -,则1222,A BA C b b a a k k c a c a-==+-,根据题意,有221b b a a c a c a -⋅=-+-,整理得1b a=,∴双曲线的渐近线的斜率为1±.40.(2015重庆理)设双曲线22221x y a b-=(0,0a b >>)的右焦点为F ,右顶点为A ,过F 作AF 的垂线与双曲线交于,B C 两点,过,B C 分别作,AC AB 的垂线,两垂线交于点D .若D 到直线BC的距离小于a ,则该双曲线的渐近线斜率的取值范围是A .(1,0)(0,1)-∪B .(,1)(1,)-∞-+∞∪C.∪D.(,1))-∞-+∞∪【答案】A 【解析】由题意22(,0),(,),(,)b b A a B c C c a a -,由双曲线的对称性知D 在x 轴上,设(,0)D x ,由BD AC ⊥得221b b a a c x a c -⋅=---,解得42()b c x a c a -=-,所以42()b c x a a c a c a -=<=+-,所以42222b c a b a <-=221b a ⇒<01b a ⇒<<,而双曲线的渐近性斜率为b a±,所以双曲线的渐近线的斜率取值范围是(1,0)(0,1)- ,故选A .41.(2014新课标1文理)已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为AB .3CD .3m【答案】A 【解析】双曲线方程为22133x y m -=,焦点F到一条渐近线的距离为b =,故选A .42.(2014广东文理)若实数k 满足09k <<,则曲线221259x y k -=-与曲线221259x y k -=-的A .焦距相等B .实半轴长相等C .虚半轴长相等D .离心率相等【答案】A 【解析】∵09k <<,∴90,250k k ->->,本题两条曲线都是双曲线,又25(9)(25)9k k +-=-+,∴两双曲线的焦距相等,故选A .43.(2014重庆文理)设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存在一点P使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为A .34B .35C .49D .3【答案】B 【解析】由双曲线的定义得12||||||2PF PF a -=,又12||||3PF PF b +=,∴22221212(||||)(||||)94PF PF PF PF b a +--=-,即124||||9PF PF ab =,因此22949b a ab -=,即299()40b b a a --=,则(31b a +)(34ba-)=0,解得41(33b b a a ==-舍去),则双曲线的离心率251()3b e a =+=.44.(2013新课标1文理)已知双曲线C :22221x y a b-=(0,0a b >>)的离心率为52,则C 的渐近线方程为A .14y x =±B .13y x =±C .12y x =±D .y x=±【答案】C 【解析】由题知,52c a =,即54=22c a =222a b a +,∴22b a=14,∴b a =12±,∴C 的渐近线方程为12y x =±,故选C .45.(2013湖北文理)已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等【答案】D 【解析】双曲线1C 的离心率是11cos e θ=,双曲线2C 的离心率是()222sin 1tan 1sin cos e θθθθ+==,故选D .46.(2012新课标文理)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于A 、B 两点,34||=AB ,则C 的实轴长为()A .2B .22C .4D .8【答案】C 【解析】设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,23)A -(4,23)B --得:222(4)(23)4224a a a =--=⇔=⇔=47.(2012福建文理)已知双曲线22215x y a -=的右焦点为(3,0),则该双曲线的离心率等于A .31414B .324C .32D .43【答案】C 【解析】∵双曲线22215x y a -=的右焦点为(3,0),∴2a +5=9,∴2a =4,∴a =2,∵c =3,∴32c e a ==,故选C .48.(2011安徽文理)双曲线x y 222-=8的实轴长是()A .2B .22C .4D .42【答案】C 【解析】x y 222-=8可变形为22148x y -=,则24a =,2a =,24a =.故选C .49.(2011湖南文理)设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为A .4B .3C .2D .1【答案】C 【解析】由双曲线方程可知渐近线方程为3y x a=±,故可知2a =.50.(2011天津文理)已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为()A .23B .25C .43D .45【答案】B 【解析】双曲线22221(0,0)x y a b a b-=>>的渐近线为by x a =±,由双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1)得22p -=-,即4p =,又∵42pa +=,∴2a =,将(-2,-1)代入by x a=得1b =,∴225c a b =+=,即225c =.51.【2020年高考全国Ⅰ理15】已知F 为双曲线()2222:10,0x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为.【答案】2【思路导引】根据双曲线的几何性质可知,2b BF a=,AF c a =-,即可根据斜率列出等式求解即可.【解析】依题可得,3BFAF =,而2b BF a=,AF c a =-,即23b a c a=-,变形得22233c a ac a -=-,化简可得,2320e e -+=,解得2e =或1e =(舍去).故答案为:2.52.【2020年高考江苏6】在平面直角坐标系xOy 中,若双曲线2221(0)5x y a a -=>的一条渐近线方程为52y x =,则该双曲线的离心率是.【答案】32【解析】由22205x y a -=得渐近线方程为5y x a =±,又0a >,则2a =,2259c a =+=,3c =,得离心率32c e a ==.53.【2020年高考北京卷12】已知双曲线22:163x y C -=,则C 的右焦点的坐标为________;C 的焦点到其渐近线的距离是__________.【答案】(3,0)【解析】∵双曲线22163x y -=,∴26a =,23b =,222639c a b =+=+=,∴3c =,∴右焦点坐标为(3,0),∵双曲线中焦点到渐近线距离为b,∴b =.54.【2019·江苏】在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是▲.【答案】y =【解析】由已知得222431b-=,解得b =b =,∵0b >,∴b =.∵1a =,∴双曲线的渐近线方程为y =.55.【2018·北京文】若双曲线2221(0)4x y a a -=>的离心率为52,则a =________________.【答案】4【解析】在双曲线中c ==,且2c e a ==,∴2a a =,即216a =,∵0a >,∴4a =.56.(2018北京理14)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.12-;【解析】设椭圆的右焦点为(,0)F c ,双曲线N 的渐近线与椭圆M 在第一象限内的交点为A ,由题意可知(,22c A ,由点A 在椭圆M 上得,22223144c c a b +=,∴22222234b c a c a b +=,222b a c =-,∴22222222()34()a c c a c a a c -+=-,∴4224480a a c c -+=,∴428+40e e -=椭椭,∴24e =±椭,∴1e =椭(舍去)或1e =椭,∴椭圆M 1,∵双曲线的渐近线过点3(,22c A ,渐近线方程为y =,故双曲线的离心率2e ==双.57.【2018高考江苏8】在平面直角坐标系xOy 中,若双曲线()222210,0x y a b a b-=>>的右焦点(),0F c 到一条渐近线的距离为32,则其离心率的值是▲.【答案】2【解析】试题分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率.试题解析:∵双曲线的焦点(),0F c 到渐近线by x a=±即0bx ay ±=的距离为bcb c==,2b c ∴=,因此222222311244,,2a c b c c c a c e =-=-===.【名师点睛】双曲线的焦点到渐近线的距离为b ,焦点在渐近线上的射影到坐标原点的距离为a .58.【2018高考上海2】双曲线2214x y -=的渐近线方程为.【答案】2x y =±【解析】由已知得24,1a b ==,渐近线方程为2x y =±.【考点分析】双曲线简单的几何性质,考查运算求解能力59.(2017新课标Ⅰ理)已知双曲线C :22221(0,0)x y a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若MAN ∠=60°,则C 的离心率为________.【答案】233【解析】如图所示,AH MN ⊥,AM AN b ==,MAN ∠=60°,所以30HAN ∠= ,又MN 所在直线的方程为by x a=,(,0)A a 到MN的距离AH =在Rt HAN ∆中,有cos HA HAN NA =,所以32=,即2=,因为222c a b =+,得2a c =,所以3c e a ==.60.(2017新课标Ⅲ文)双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a =.【答案】5【解析】由双曲线的标准方程可得渐近线方程为3y x a=±,结合题意可得5a =.61.(2017山东文理)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>,的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点,若||||4||AF BF OF +=,则该双曲线的渐近线方程为.【答案】22y x =±【解析】由抛物线定义可得:||||=4222A B A B p p pAF BF y y y y p ++++=⨯⇒+=,∵22222222221202x y a y pb y a b a bx py⎧-=⎪⇒-+=⎨⎪=⎩,∴222A B pb y y p a a +==⇒=⇒渐近线方程为22y x =±.62.(2017北京文理)若双曲线221y x m-=的离心率为m =_________.【答案】2【解析】∵221,a b m ==,∴11c a ==2m =.63.【2016浙江文】设双曲线x 2–23y=1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是_______.【答案】(27,8).【解析】由已知得1,3,2a b c ===,则2ce a==,设(,)P x y 是双曲线上任一点,由对称性不妨设P 在双曲线的右支上,则12x <<,121PF x =+,221PF x =-,12F PF ∠为锐角,则2221212PF PF F F +>,即222(21)(21)4x x ++->,解得72x >,∴722x <<,则1247,8)PF PF x +=∈.64.(2016山东文理)已知双曲线E :22221x y a b-=(0,0)a b >>,若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2||3||AB BC =,则E 的离心率是.【答案】2【解析】依题意,不妨设6,4AB AD ==,作出图象如下图所示则2124,2;2532,1,c c a DF DF a ===-=-==故离心率221c a ==65.(2015新课标1文)已知F 是双曲线C :2218y x -=的右焦点,P 是C 左支上一点,(0,66)A ,当APF ∆周长最小时,该三角形的面积为.【答案】C :2218y x -=的右焦点为(3,0)F ,实半轴长1a =,左焦点为(3,0)M -,∵P 在C 的左支上,∴ΔAPF 的周长|||||l AP PF AF =++||||||||PF AF AM PM ++-≥=||||21515232AF AM a ++=++=,当且仅当,,A P M 三点共线且P 在,A M 中间时取等号,此时直线AM的方程为13x =-,与双曲线的方程联立得P的坐标为(2,-,此时,ΔAPF的面积为116622⨯⨯-⨯⨯=.66.(2015山东文)过双曲线()2222:10,0x y C a b a b-=>>的右焦点作一条与其渐近线平行的直线,交C 于点P ,若点P 的横坐标为2a ,则C 的离心率为.【答案】2【解析】设直线方程为()b y x c a =-,由22221()x y a b b y x c a ⎧-=⎪⎪⎨⎪=-⎪⎩,得222a c x c +=,由2222a c a c+=,ce a =,解得2e =+(2e =-舍去).67.(2015山东理)平面直角坐标系xOy 中,双曲线1C :22221x y a b -=(0,0)a b >>的渐近线与抛物线2C :22x py =(0p >)交于,,O A B ,若△OAB 的垂心为2C 的焦点,则1C 的离心率为_______.32【解析】22122:1(0,0)x y C a b a b-=>>的渐近线为by x a =±,则2222(,)pb pb A a a ,2222(,)pb pb B a a -,22:2(0)C x py p =>的焦点(0,)2p F ,则22222AFpb pa a k pb b a-==,即2254b a =,2222294c a b a a +==,32c e a ==.68.(2014山东文理)已知双曲线22221(0,0)x y a b a b-=>>的焦距为2c ,右顶点为A ,抛物线22(0)x py p =>的焦点为F ,若双曲线截抛物线的准线所得线段长为2c ,且||FA c =,则双曲线的渐近线方程为.【答案】y x =±【解析】抛物线的准线2p y =-,与双曲线的方程联立得2222(1)4p x a b =+,根据已知得2222(1)4p a c b +=①,由||AF c =得2224p a c +=②,由①②得22a b =,即a b =,∴所求双曲线的渐近线方程为y x =±.69.(2014浙江文理)设直线30(0)x y m m -+=≠与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A ,B ,若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是.【答案】2【解析】联立直线方程与双曲线渐近线方程b y x a =±可解得交点为(,)33am bmA b a b a--,(,33am bmB b a b a-++,而13ABk =,由||||PA PB =,可得AB 的中点3333(,)22am am bm bmb a b a b a b a -+-+-+与点)0,(m P 连线的斜率为-3,可得224b a =,∴52e =.70.(2014北京文理)设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________;渐近线方程为________.【答案】221312x y -=2y x =±【解析】设与2214y x -=具有相同渐近线的双曲线C 的方程为224y x k -=,将点()2,2代入C 的方程中,得3k =-.∴双曲线的方程为221312x y -=,渐近线方程为2y x =±.71.(2014湖南文理)设F 1,F 2是双曲线C :22221(0,0)x y a b a b-=>>的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为_________.1+【解析】由已知可得,12cos30PF c ==,22sin 30PF c c == ,由双曲线的定义,2c a -=,则1c e a ===.72.(2013辽宁文理)已知F 为双曲线22:1916x y C -=的左焦点,,P Q 为C 上的点,若PQ 的长等于虚轴长的2倍,点(5,0)A 在线段PQ ,则PQF ∆的周长为.【答案】44【解析】由题意得,||||6FP PA -=,||||6FQ QA -=,两式相加,利用双曲线的定义得||||28FP FQ +=,∴PQF ∆的周长为||||||44FP FQ PQ ++=.73.(2013陕西理)双曲线221169x y -=的离心率为.45【解析】所以离心率为45,45162516922222=⇒==⇒=e ac e a b 74.(2012辽宁文理)已知双曲线122=-y x ,点21,F F 为其两个焦点,点P 为双曲线上一点,若21PF PF ⊥,则21PF PF +的值为.【答案】121,22,a c PF PF a ==∴-==22112224PF PF PF PF ∴-+=22212121221212,(2)8,24,()8412,PF PF PF PF c PF PF PF PF PF PF ⊥∴+==∴=∴+=+=∴+= 75.(2012天津文理)已知双曲线)0,0(1:22221>>=-b a by a x C 与双曲线1164:222=-y x C 有相同的渐近线,且1C的右焦点为F ,则a =b =.【答案】1,2【解析】双曲线的116422=-y x 渐近线为x y 2±=,而12222=-b y a x 的渐近线为x a by ±=,∴有2=a b,a b 2=,又双曲线12222=-by a x 的右焦点为)0,5(,∴5=c ,又222b a c +=,即222545a a a =+=,∴2,1,12===b a a .76.(2012江苏文理)在平面直角坐标系xOy 中,若双曲线22214x y m m -=+m 的值为.【答案】2【解析】由题意得m >0,∴a =m ,b =,4,422++=∴+m m c m 由e =5=a c得542=++mm m ,解得m =2.77.(2011北京文理)已知双曲线2221(0)y x b b-=>的一条渐近线的方程为2y x =,则b =.【答案】2【解析】由2221(0)y x b b -=>得渐近线的方程为2220y x b-=,即y bx =±,由一条渐近线的方程为2y x =得2b =.考点94直线与双曲线的位置关系78.(2020·新课标Ⅱ文理8)设O 为坐标原点,直线a x =与双曲线()2222:10,0x y C a b a b-=>>的两条渐近线分别交于,D EODE 的面积为8,则C 的焦距的最小值为()A .4B .8C .16D .32【答案】B【思路导引】∵()2222:10,0x y C a b a b-=>>,可得双曲线的渐近线方程是b y x a =±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE ∆的面积为8,可得ab值,根据2c =结合均值不等式,即可求得答案.【解析】∵2222:1(0,0)x y C a b a b -=>>,∴双曲线的渐近线方程是b y x a=±,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于D ,E 两点,不妨设D 为在第一象限,E 在第四象限,联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩,故(,)D a b ,联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩,故(,)E a b -,∴||2ED b =,∴ODE ∆面积为:1282ODE S a b ab =⨯==△.双曲线2222:1(0,0)x y C a b a b-=>>,∴其焦距为28c =≥==,当且仅当a b ==取等号,∴C 的焦距的最小值:8,故选B .79.(2020·浙江卷)已知点O(0,0),A(–2,0),B(2,0).设点P 满足|PA|–|PB|=2,且P 为函数y=图像上的点,则|OP|=()A .222B .4105CD.【答案】D【解析】∵||||24PA PB -=<,∴点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413bc a=-=-=,即双曲线的右支方程为()22103y x x -=>,而点P 还在函数y =由()22103y x x y ⎧⎪⎨->==⎪⎩,解得132332x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP ==80.(2019天津文理)已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为()ABC .2D【答案】D【解析】抛物线24y x =的准线l 的方程为1x =-,双曲线的渐近线方程为by x a=±,则有(1,(1,)b b A B a a ---,∴2b AB a =,24b a =,2b a =,∴c e aa===D .【名师点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出AB 的长度.解答时,只需把4AB OF =用,,a b c 表示出来,即可根据双曲线离心率的定义求得离心率.81.【2018高考全国2理5】双曲线22221(0,0)x y a b a b-=>>,则其渐近线方程为()A.y =B.y =C .22y x =±D .32y x =±【答案】A【解析】试题分析:根据离心率得,a c 关系,进而得,a b 关系,再根据双曲线方程求渐近线方程,得结果.试题解析:222222,12,c b c a b e e a a a a-==∴==-=∴= .∵渐近线方程为,by x a=±∴渐近线方程为y =,故选A .【名师点睛】已知双曲线方程222210,0x y a b a b -=>>求渐近线方程:22220x y by x a b a-=⇒=±.【考点】双曲线的简单几何性质(离心率、渐近线方程)82.【2018高考全国3理11】设12F F ,是双曲线()2222100x y C a b a b-=>>:,的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P.若1PF =,则C 的离心率为()AB .2CD【答案】C【解析】试题分析:由双曲线性质得到2PF b =,PO a =,然后在2Rt POF △和在12Rt PF F △中利用余弦定理可得.试题解析:由题可知22,PF b OF c ==,PO a ∴=.在2Rt POF △中,222cos P O PF bF OF c ∠==,22221212212||||||cos P O 2||||PF F F PF b F PF F F c ∠+-=∴=,222224(6),322b c bc a b c c+-∴=∴=⋅,e ∴=,故选C .【名师点睛】本题主要考查双曲线的相关知识,考查了双曲线的离心率和余弦定理的应用,属于中档题.83.(2018天津文理)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为()A .22139x y -=B .22193x y -=C .221412x y -=D .221124x y -=【答案】A【解析】设双曲线的右焦点坐标为(,0)(0)F c c >,则A B x x c ==,由22221c y a b -=可得2by a=±,不妨设2(,)b A c a ,2(),b B c a -,双曲线的一条渐近线方程为0bx ay -=,据此可得21d ==2bc b c -,222bc b d c +==,则12226bc d d b c +===,则3b =,29b =,双曲线的离心率2c e a ====,据此可得23a =,则双曲线的方程为22139x y -=,故选A .84.(2014天津文)已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为A .221520x y -=B .221205x y -=C .2233125100x y -=D .2233110025x y -=【答案】A 【解析】依题意得22225b a c c a b ìï=ïïï=íïïï=+ïî,∴25a =,220b =,双曲线的方程为221520x y -=.85.(2013重庆文理)设双曲线C 的中心为点O ,若有且只有一对相较于点O 、所成的角为060的直线11A B 和22A B ,使1122A B A B =,其中1A 、1B 和2A 、2B 分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是A.(,2]3B.[,2)3C.(,)3+∞D.[,)3+∞【答案】A 【解析】设双曲线的焦点在x 轴上,则由作图易知双曲线的渐近线的离心率ba必须满足33b a <,∴21(33b a <≤,241()43ba <+≤,既有23<,又双曲线的离心率为。
双曲线历年高考真题100题 原卷版
1高考真题一、单选题A .221913x y -=B .221139x y -=C .2213x y -=D .2213y x -=A .2B .C .D .1A .B .3C .D .A .B .C .D .A .B .C .D .3A .(1,3)B .(]1,3 C .(3,+∞)D .[)3,+∞ A . B . C . D .A .(√2,2)B .(√2,√5)C .(2,5)D .(2,√5)A .3B .C .D .A .B .2C .3D .6A .2 BC .32D .12 A . B .5 C . D .A .22124x y -=B .22142-=x yC .22146x y -=D .221410x y -=A .221090x y x +-+=B .2210160x y x +-+=C .2210160x y x +++=D .221090x y x +++=A.B .12 C.D .24ABCDA .√2B .√3C .√3+12D .√5+12A .By=0 C .="0" D±y=0ABC.D. A .12m > B .1m ≥ C .1m > D .2m >A .12B.2C .1 DA .22182x y +=B .221126x y +=3C .221164x y +=D .221205x y +=A .12或32B .23或2 C .12或2 D .23或32A .2 B.C .4 D. A .4 B .3C .2D .1ABC .2D .3A.ab B .22b a + C .a D .bA .221520x y -=B .221205x y -=C .D .A .(0,)B .(1,)C .(,1)D .(,+∞)A .2B .2C .4D .4A .B .C .D .A .a 2=B .a 2=3C .b 2=D .b 2=2A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等A.14y x=±B.13y x=±C.12y x=±D.y x=±A.y=±2x B.y=C.12y x=±D.y=A.B.C.D.ABC.2 D.3A.22154x y-=B.22145x y-=C.22136x y-=D.22163x y-=A.1 B.2 C.3 D.4A.B.2CD.1A.B.C.D.A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=145AB .54C .43D .53A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >A .22=14y x -B .22=14x y -C .22=14y x -D .22=14x y -AB .2CDA .2 B.C .4D.A .14B .13C.4D.3A .22144x y -=B .22188x y -=C .22148x y -=D .22184x y -=A .13 B .1 2C .2 3D .3 2得的弦长为2,则C 的离心率为 ( ) A .2 BCDA.223=1 44x y-B.224=1 43x y-C.22=1 44x y-D.22=1 412x y-A.y=B.y=C.2y x=±D.2y x=±A.32B.3 C.D.4A.22139x y-=B.22193x y-=C.221412x y-=D.221124x y-=A.(√2,+∞)B.(√2,2)C.(1,√2)D.(1,2)A.221412x y-=B.221124x y-=C.2213xy-=D.2213yx-=A.221412x y-=B.22179x y-=C.22188x y-=D.221124x y-=A.220x-25y=1 B.25x-220y=1 C.280x-220y=1 D.220x-280y=1A.(1,0)(0,1)-6B.(,1)(1,) -∞-+∞C.(⋃D.(,(2,) -∞+∞A.2B.C.4D.A.3 B.2CDA.14B.35C.34D.45二、填空题7P,Q,其焦点是F1,F2,则四边形F1P F2Q的面积是________.三、解答题已知双曲线的两条渐近线分别为.(1)求双曲线的离心率;89(1)求12,C C 的方程;已知中心在原点的双曲线C 的一个焦点是,一条渐近线的方程是.(Ⅰ)求双曲线C 的方程; (Ⅱ)若以为斜率的直线与双曲线C 相交于两个不同的点M ,N ,线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围.(Ⅰ)求点P 的轨迹方程; (Ⅱ)设d 为点P 到直线l : 12x =的距离,若22PM PN =,求PM d的值.(Ⅰ)求双曲线C 的标准方程及其渐近线方程;(Ⅱ)如题(21)图,已知过点()11,M x y 的直线1l : 1144x x y y +=与过点()22,N x y (其中21x x ≠)的直线2l :的交点E 在双曲线C 上,直线MN 与双曲线的两条渐近线分别交于G 、H 两点,求·OG OH 的值.10(1)求双曲线C 的方程;(2)记O 为坐标原点,过点Q (0,2)的直线l 与双曲线C 相交于不同的两点E 、F ,若△OEF的面积为求直线l 的方程第3小题满分7分.已知双曲线2212x C y -=:.(1)求双曲线C 的渐近线方程;(2)已知点M 的坐标为(01),.设P 是双曲线C 上的点,Q 是点P 关于原点的对称点. 记·MP MQ λ=.求λ的取值范围;(3)已知点D E M ,,的坐标分别为(21)(21)(01)---,,,,,,P 为双曲线C 上在第一象限内的点.记l 为经过原点与点P 的直线,s 为DEM 截直线l 所得线段的长.试将s 表示为直线l 的斜率k 的函数.(1)设F 是C 的左焦点,M 是C 右支上一点. 若|MF|=2,求过M 点的坐标;(2)过C 的左顶点作C 的两条渐近线的平行线,求这两组平行线围成的平行四边形的 面积; (3)设斜率为的直线l2交C 于P 、Q 两点,若l 与圆相切,求证:OP ⊥OQ ;(1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.11(Ⅰ)求该双曲线的方程;(Ⅱ)如图,点A的坐标为(0),B是圆22(1x y +=上的点,点M 在双曲线右支上,求MA MB +的最小值,并求此时M 点的坐标(Ⅰ)若2322,,2a a a +成等差数列,求数列{a n }的通项公式;(Ⅱ)设双曲线2221n y x a -=的离心率为n e ,且253e =,证明:121433n nn n e e e --++⋅⋅⋅+>.(Ⅰ)求E 的方程;(Ⅱ)试判断以线段MN 为直径的圆是否过点F ,并说明理由.四、双空题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页,共 8 页 第27讲 双曲线 一、选择题
1.(2018浙江)双曲线2213xy的焦点坐标是( )
A.(2,0),(2,0) B.(2,0),(2,0) C.(0,2),(0,2) D.(0,2),(0,2)
2.(2018全国卷Ⅰ)已知双曲线C:2213xy,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直
角三角形,则||MN=( )
A.32 B.3 C.23 D.4
3.(2018全国卷Ⅱ)双曲线22221(0,0)xyabab
的离心率为3,则其渐近线方程为( ) A.2yx B.3yx
C.22yx D.32yx 4.(2018全国卷Ⅲ)设1F,2F是双曲线C:22221(0,0)xyabab的左、右焦点,O是坐标
原点.过2F作C的一条渐近线的垂线,垂足为P.若
1||6||PFOP,则C的离心率为( )
A.5 B.2 C.3 D.2 5.(2018天津)已知双曲线22221(0,0)xyabab的离心率为2,过右焦点
且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线同一条渐近线的距离分别为1d和
2d,且126dd,则双曲线的方程为( )
A.221412xy B.221124xy C.22139xy D.22193xy 6.(2017新课标Ⅱ)若双曲线C:22221(0,0)xyabab的一条渐近线被圆
22(2)4xy
所截得的弦长为2,则C的离心率
为( )
A.2 B.3 C.2 D.233
7.(2017新课标Ⅲ)已知双曲线C:22221(0,0)xyabab的一条渐近线方程为
52yx,且与椭圆221123xy有公共焦点,则C
的方程为( ) 第 2 页,共 8 页
A.221810xy B.22145xy C.22154xy D.22143xy 8.(2017天津)已知双曲线22221(0,0)xyabab的左焦点为F,离心率为2.若经过F和(0,4)P两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( ) A.22144xy B.22188xy C.22148xy D.22184xy 9.(2016天津)已知双曲线222=1(0)4xybb,以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形的ABCD的面积为2b,则双曲线的方程为( ) A.22443=1yx B.22344=1yx C.2224=1xyb D.2224=11xy
10.(2016年全国I)已知方程222213xymnmn表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( ) A.(–1,3) B.(–1,3) C.(0,3) D.(0,3)
11.(2016全国II)已知1F,2F是双曲线E:22221xyab
的左、右焦点,点M在E上,1MF与x轴
垂直,211sin3MFF,则E的离心率为( ) A.2 B.32 C.3 D.2
12.(2015四川)过双曲线2213yx的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于,AB两点,则AB( )
A.433 B.23 C.6 D.43
13.(2015福建)若双曲线22:1916xyE的左、右焦点分别为12,FF,点P在双曲线E上,且13PF,则2PF等于( ) A.11 B.9 C.5 D.3
14.(2015湖北)将离心率为1e的双曲线1C的实半轴长第 3 页,共 8 页
a和虚半轴长()bab同时增加(0)mm个单位长
度,得到离心率为2e的双曲线2C,则( )
A.对任意的,ab,12ee B.当ab时,12ee;当ab时,12ee C.对任意的,ab,12ee D.当ab时,12ee;当ab时,12ee 15.(2015安徽)下列双曲线中,焦点在y轴上且渐近线方程为2yx的是( ) A.2214yx B.2214xy C.2214yx D.2214xy 16.(2015新课标1)已知00(,)Mxy是双曲线C:2212xy上的一点,12,FF是C的两个焦点,若120MFMF,则0y的取值范围是( ) A.33(,)33 B.33(,)66 C.2222(,)33 D.2323(,)33 17.(2015重庆)设双曲线22221xyab(0,0ab)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于,BC两点,过,BC分别作,ACAB的垂线,两垂线交于点D.若D到直线BC的距离小于22aab
,则该双曲线的渐近线斜率的取值范围
是( ) A.(1,0)(0,1)∪
B.(,1)(1,)∪ C.(2,0)(0,2)∪ D.(,1)(2,)∪
18.(2014新课标1)已知F是双曲线C:223(0)xmymm
的一个焦点,则点F到C的
一条渐近线的距离为( ) A.3 B.3 C.3m D.3m
19.(2014广东)若实数k满足09k,则曲线221259xyk与曲线221259xyk的( )
A.焦距相等 B.实半轴长相等 C.虚半轴长相等 D.离心率相等
20.(2014天津)已知双曲线22221xyab-=()0,0ab>>
的一条渐近线平行于直
线l:210yx=+,双曲线的一个焦点在直线l上,则双曲线的方程为( )
A.221520xy-=
B.221205xy-= 第 4 页,共 8 页
C.2233125100xy-= D.2233110025xy-= 21.(2014重庆)设21FF,分别为双曲线)0,0(12222babya
x
的左、右焦点,双曲线上
存在一点P使得,49||||,3||||2121abPFPFbPFPF 则该双曲线的离心率为( ) A.34 B.35 C.49 D.3
22.(2013新课标1)已知双曲线C:22221xyab(0,0ab)的离心率为52,则C的
渐近线方程为( ) A.14yx
B.13yx C.12yx D.yx
23.(2013湖北)已知04,则双曲线1C:22221cossinxy与2C:22sin
y
2221sintany的( )
A.实轴长相等 B.虚轴长相等 C.焦距相等 D.离心率相等
24.(2013重庆)设双曲线C的中心为点O,若有且只
有一对相较于点O、所成的角为060的直线11AB和22AB,使1122ABAB,其中1A、1B和2A、2B分
别是这对直线与双曲线C的交点,则该双曲线的离心率的取值范围是( )
A.23(,2]3
B.23[,2)3 C.23(,)3 D.23[,)3
25.(2012福建)已知双曲线22215xya的右焦点为(3,0),则该双曲线的离心率等于( )
A.31414 B.324 C.32 D.43
26.(2012湖南)已知双曲线C:22xa-22yb=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为( ) A.220x25y=1
B.25x220y=1 C.280x220y=1 D.220x280y=1 27.(2011安徽)双曲线xy的实轴长是( ) 第 5 页,共 8 页
A. B. C. D. 28.(2011山东)已知双曲线22221(0,0)xyabab的两条渐近线均和圆
22:650Cxyx
相切,且双曲线的右焦点为
圆C的圆心,则该双曲线的方程为( )
A.22154xy
B.22145xy C.22136xy D.22163xy
29.(2011湖南)设双曲线2221(0)9xyaa的渐近线方程为320xy,则a的值为( ) A.4 B.3 C.2 D.1
30.(2011天津)已知双曲线22221(0,0)xyabab的左顶点与抛物线
22(0)ypxp
的焦点的距离为4,且双曲线的一
条渐近线与抛物线的准线的交点坐标为(2,1),则双曲线的焦距为( ) A.23 B.25
C.43 D.45
31.(2010新课标)已知双曲线E的中心为原点,(3,0)P是E的焦点,过F的直线l与E相交于A,
B两点,且AB的中点为(12,15)N,则E的方
程式为( )
A.22136xy
B.22145xy C.22163xy D.22154xy 32.(2010新课标)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为( )
A.6 B.5 C.62 D.52 33.(2010福建)若点O和点F分别为椭圆22143xy的中心和左焦点,点P为椭圆上的任意
一点,则OPFP的最大值为( ) A.2 B.3 C.6 D.8
二、填空题 34.(2018上海)双曲线2214xy的渐近线方程为____.
35.(2018江苏)在平面直角坐标系xOy中,若双曲线22221(0,0)xyabab的右焦点(,0)Fc到一条
渐近线的距离为32c,则其离心率的值是____.