遥感影像有效覆盖范围自动提取方法研究
遥感影像的海岸线自动提取方法研究进展

遥感影像的海岸线自动提取方法研究进展一、综述随着全球气候变化的加剧以及人类活动的不断拓展,海岸线作为陆地与海洋的交汇带,其动态变化受到了广泛关注。
准确、高效地提取海岸线信息对于海洋资源管理、环境监测、灾害预警以及沿海城市规划等领域具有重要意义。
遥感技术以其大面积、快速、同步观测的特点,在海岸线提取中发挥着越来越重要的作用。
随着遥感数据源的不断丰富和图像处理技术的快速发展,海岸线自动提取方法取得了显著进步。
海岸线自动提取方法主要依赖于遥感影像的处理和分析。
这些影像可以通过卫星光学遥感、微波遥感或激光雷达遥感等方式获取,包含丰富的地物信息和空间特征。
通过对这些影像进行预处理、特征提取和分类等操作,可以实现对海岸线的自动识别和提取。
在海岸线自动提取方法的发展历程中,学者们提出了多种算法和技术。
这些算法和技术大多基于图像处理的基本理论,结合地学知识和实际应用需求进行改进和优化。
阈值分割、边缘检测、区域生长等经典算法在海岸线提取中得到了广泛应用。
随着深度学习技术的兴起,神经网络分类等方法也逐渐被引入到海岸线提取中,并显示出良好的性能。
尽管海岸线自动提取方法取得了显著进展,但仍存在一些挑战和问题。
影像信息量不足、精度验证困难以及海岸线仅是过渡区的平均线等问题仍待解决。
不同地区的海岸线具有不同的特征和变化规律,因此需要针对具体情况选择合适的算法和技术进行提取。
遥感影像的海岸线自动提取方法研究进展迅速,但仍需不断完善和优化。
未来研究方向包括加强地物波谱机制研究、将图像处理的基本理论与地学知识更紧密地结合起来、探索新的提取算法和技术等。
通过这些努力,我们有望实现对海岸线的更精确、更高效的自动提取,为海洋资源管理和环境保护提供有力支持。
1. 遥感技术的发展及其在海岸线提取中的应用作为一种非接触式的远距离探测技术,近年来得到了迅猛的发展,并在地理信息系统(GIS)、环境监测、资源调查等多个领域展现出广泛的应用前景。
海岸线提取作为遥感技术应用的一个重要方向,对于海洋生态系统的保护、土地利用规划、海洋资源开发以及防灾减灾等方面具有至关重要的作用。
遥感影像信息提取方法研究

基于深度学习的遥感影像水稻种植面积提取研究

基于深度学习的遥感影像水稻种植面积提取研究基于深度学习的遥感影像水稻种植面积提取研究摘要:随着遥感技术的发展,利用遥感影像进行水稻种植面积提取成为农业生产管理和粮食安全保障的重要手段。
传统的水稻种植面积提取方法往往依赖于人工解译和专业知识,工作效率低下且易受主观因素影响。
而深度学习技术的崛起为水稻种植面积的自动提取提供了新的解决方案。
本文就基于深度学习的遥感影像水稻种植面积提取进行研究并进行了实验验证。
1.引言随着农业现代化的推进,水稻种植区域的准确识别和面积提取对于粮食安全保障和农业生产管理至关重要。
传统的水稻种植面积提取方法主要基于人工解译和专业知识,但这种方法存在工作效率低下、耗时耗力且易受主观因素影响的问题。
因此,利用深度学习技术对遥感影像进行水稻种植面积的自动提取成为一种新的解决方案。
2.深度学习技术在遥感影像中的应用深度学习技术是一种基于神经网络的机器学习方法,通过构造多层次的神经网络结构以自动学习特征并进行分类和识别。
在遥感影像分析中,深度学习技术可以替代传统的特征提取方法,实现对影像中的目标物体的自动提取和分类。
针对水稻种植面积提取问题,可以通过深度学习技术自动提取遥感影像中的水稻种植区域,并计算出相应的面积。
3.基于深度学习的水稻种植面积提取方法在本研究中,我们采用了基于卷积神经网络(CNN)的方法对遥感影像中的水稻种植面积进行提取。
首先,我们通过收集一定数量的标注数据集,对水稻种植区域进行人工标注。
然后,我们将数据集划分为训练集和测试集,并将其输入到CNN网络中进行训练。
训练完成后,我们利用测试集对网络进行验证,并评估其识别水稻种植面积的准确性和鲁棒性。
4.实验结果与分析我们选取了某地区的高分辨率遥感影像作为实验数据,通过对该影像进行卷积神经网络的训练与测试,成功提取出水稻种植面积的分布情况。
与传统的人工解译方法相比,基于深度学习的方法具有更高的准确性和提取效率。
实验结果表明,基于深度学习的水稻种植面积提取方法可以有效地提高识别和测算水稻种植面积的准确性和效率。
使用遥感影像进行建筑物提取的方法

使用遥感影像进行建筑物提取的方法引言:随着遥感技术的不断发展和进步,遥感影像已经成为获取地理信息的重要手段之一。
在城市规划、土地利用、自然资源管理等领域,使用遥感影像进行建筑物提取成为了必不可少的工作。
本文将探讨几种常见的建筑物提取方法,并对其特点和应用进行分析。
一、基于目标检测的建筑物提取方法基于目标检测的建筑物提取方法是最常见和常用的一种方法。
它通过分析遥感影像中的特定纹理、颜色或形状等特征来检测建筑物目标。
常见的目标检测算法包括基于像素的方法、基于对象的方法和基于机器学习的方法。
1. 基于像素的方法基于像素的建筑物提取方法是最简单和直接的方法之一。
它通过设定某些特定的像素值或像素组合来检测建筑物。
例如,可以利用建筑物通常使用的红色或灰色来提取建筑物。
这种方法的主要优点是简单快速,但也存在着较大的误差率,容易受到光照、阴影等因素的干扰。
2. 基于对象的方法基于对象的建筑物提取方法是在像素级别的基础上进行的更高层次的目标检测。
它对遥感影像中的建筑物目标进行分割和识别,将像素组合成为连续的建筑物区域。
常见的方法包括基于阈值分割、基于边缘检测、基于形态学等方法。
这种方法在提取建筑物形状和边界方面效果较好,但也容易受到遮挡和复杂背景的影响。
3. 基于机器学习的方法基于机器学习的建筑物提取方法是近年来非常流行的方法之一。
它通过训练一定数量的有标注的样本数据,利用机器学习算法对影像进行分类和预测,实现自动化的建筑物提取。
常见的机器学习方法包括支持向量机(SVM)、随机森林(RF)和深度学习等。
这种方法准确性较高,但对于样本数据的选取和处理要求较高,而且计算量也较大。
二、基于特征提取的建筑物提取方法基于特征提取的建筑物提取方法是指通过提取遥感影像中的特征信息来检测建筑物。
常见的特征包括纹理特征、颜色特征和形状特征等。
1. 纹理特征提取纹理特征提取是基于遥感影像中建筑物纹理的变化来进行建筑物提取的一种方法。
基于深度学习的遥感影像自然资源信息自动提取技术研究

基于深度学习的遥感影像自然资源信息自动提取技术研究摘要:遥感影像作为丰富的地面载体,可以为自然资源监测监管等业务提供影像支撑。
遥感技术能够全面、快速、有效地探查自然资源的分布情况,帮助自然资源部门摸清自然资源现状,及时掌握自然资源变化信息,辅助行使“两统一”职责。
当前,遥感已成为自然资源调查监管的重要手段。
遥感影像解译技术是随着遥感技术的产生发展而来的。
目前,精准的遥感信息提取主要靠人工目视解译来完成。
面对海量、多源、多时相的遥感影像数据,低效率的人工解译已经无法满足快速获取信息的需求。
为了建立高效的自然资源遥感监测服务体系,迫切需要开展高精度自动化信息提取技术研究,实现目标快速识别和信息提取。
关键词:深度学习;遥感影像;自然资源;信息自动提取技术1遥感影像配准中常用网络结构相较于早期的浅层神经网络,深层神经网络具有更多的隐藏层。
一般认为,网络隐藏层越多,其对复杂函数的拟合效果越好,即深层神经网络能够学习到数据更为本质的特征。
随着深度学习技术的不断发展,越来越多神经网络被应用于遥感影像处理领域。
其中,卷积神经网络CNN(Convolutional Neural Networks)、全卷积神经网络FCN(Fully Convolutional Networks)、孪生神经网络(Siamese Networks)是遥感影像配准中较为常用的网络结构。
CNN由卷积层、池化层与全连接层构成。
卷积层负责提取影像局部特征,池化层通过对提取特征进行下采样,以实现减少数据量,抑制模型过拟合的目的。
CNN通过多层次的“卷积—池化”操作提取影像深层语义特征,再由网络末端的全连接层对提取到的局部特征进行整合并输出分类结果。
由于卷积操作得到的特征仅仅与影像局部区域有关,所以CNN提取到的特征通常具有强鲁棒性。
FCN在CNN的基础上,进行了如下改动:(1)将全连接层替换为卷积层,使网络的输入数据尺寸不受约束;(2)引入转置卷积层,可以对压缩后的特征图进行上采样,增大数据尺寸,以实现对影像所有像元的分类。
基于eCognition的土地利用遥感影像自动提取研究

第48卷第12期2 0 1 7年6月人民长江Yangtze RiverVol.48,No. 12June,2017文章编号:1001 -4179(2017) 12 -0075 -04基于eCognition的土地利用遥感影像自动提取研究周勇兵,曹珥(武汉大学遥感信息工程学院,湖北武汉430079)摘要:遥感监测是开展区域水土流失动态监测的重要手段。
对同一地区不同时期遥感影像进行影像分类,对比分析两期分类结果可以实现对土地利用等水土流失影响因子的动态监测。
传统方法通常采用人工目视勾绘法获得土地利用分类结果,耗时耗力且效率不高。
以同一地区不同时期的遥感影像为对象,基于eCognition软件平台,采用多尺度分割和面向对象分类方法快速获取了影像分类结果。
结果表明,该方法分类精度较高,能有效提高工作效率。
关键词:水土流失;土地利用;多尺度分割;面向对象分类;eCognition中图法分类号:S157 文献标志码:A D O I:10. 16232/ki. 1001 -4179.2017. 12. 020水土流失可破坏水土资源,恶化生态环境,加剧自 然灾害,严重制约国家经济社会的可持续发展。
开展 水土流失动态监测对水土保持科学决策、生态建设和 环境保护至关重要。
近年来,遥感监测已成为区域水 土流失监测的重要技术手段。
土地利用、植被覆盖等 水土流失影响因子信息提取是遥感监测的核心环节,采用人工目视判读方法,往往需要很大的人力物力支 撑,所以通过一些自动或者半自动的分类方法是提高 工作效率的重要途径。
eCongnition作为世界第一个面 向对象的分类软件,可以有效地提高图像分类的效率,同时拥有较高的精度。
1面向对象的分类遥感图像分类的方法有很多种,例如K均值分 类、最大似然法分类、支持向量机分类、神经网络法分 类和面向对象法分类等。
非面向对象分类的方法是基 于像元的光谱信息进行分类,但是因为同物异谱以及 异物同谱现象的大量存在,容易产生“椒盐现象”,使 得这些方法分类效果不好,尤其是在对一些分辨率高 的遥感影像进行分类的时候。
遥感影像中道路自动提取方法研究的开题报告

遥感影像中道路自动提取方法研究的开题报告一、选题背景随着城市化进程的加快,道路建设已成为城市规划和交通建设的重要组成部分。
道路网络的快速发展对道路信息的快速获取、处理与建立更为迫切的需求。
传统的道路调查方法需要耗费大量的人力、物力与财力,效率低下,成本高昂。
遥感技术因其具有广覆盖面、空间信息的连续性、全天候观测等优点成为道路自动提取的有效手段。
因此,在遥感遥感影像中道路自动提取方法研究领域具有重要的应用价值。
二、选题意义1.促进城市规划与管理。
通过遥感遥感影像中道路自动提取方法的研究,可以提高道路信息的获取效率和准确性,促进城市规划与管理的科学化和现代化。
2.优化交通规划与建设。
道路信息的准确性和全面性对交通规划与建设至关重要。
通过道路自动提取方法的研究,可以提高道路信息的准确性和全面性,为交通规划与建设提供重要的支持。
3.加速智慧交通建设。
随着智慧交通建设的不断推进,道路信息的精确性会对智慧交通的运营产生重大影响。
因此,发展道路自动提取技术,将为智慧交通的建设提供有利的支持。
三、研究内容本文主要研究遥感遥感影像中道路自动提取方法,包括以下内容:1.遥感遥感影像预处理。
对遥感遥感影像进行预处理,包括影像的读取、图像增强、噪声去除等操作。
2.道路特征提取。
利用较好的特征描述方法,提取道路的边缘、纹理、颜色等特征。
3.道路区域分割。
根据道路特征和图像分割技术进行道路区域的分割。
4.道路细化与结构化。
道路提取完毕后,为了去除噪声和细节,进行道路的细化和结构化处理。
5.实验数据与结果分析。
进行实验数据的采集和处理,并对实验结果进行分析和总结。
四、研究方法本文主要采用图像处理、机器学习、计算机视觉等方法进行道路自动提取方法的研究。
1.图像处理。
图像预处理是道路自动提取的基础,通过预处理对图像的清晰度、对比度等进行优化,为道路自动提取提供更好的基础。
2.机器学习。
利用机器学习的方法,识别道路特征集,包括颜色、形态和纹理等,以实现道路自动提取的目标。
基于深度学习的高分辨率遥感影像道路自动提取研究

基于深度学习的高分辨率遥感影像道路自动提取研究1. 引言1.1 研究背景和意义随着遥感技术的飞速发展,高分辨率遥感影像已经成为地理空间信息获取的主要手段。
从高分辨率遥感影像中自动提取道路信息,对于城市规划、交通管理、灾害监测等领域具有重要的应用价值。
然而,传统的基于图像处理的方法在道路提取中往往受到噪声、阴影、光谱变异等因素的干扰,难以实现高精度、高效率的自动提取。
深度学习技术的兴起为遥感影像道路自动提取提供了新的解决方案。
通过深度学习模型的学习和优化,可以从复杂的遥感影像中准确地提取出道路信息,大大提高了道路提取的精度和效率。
1.2 国内外研究现状国内外学者在基于深度学习的遥感影像道路提取方面进行了大量的研究。
早期的研究主要集中在利用卷积神经网络(CNN)进行道路提取,通过设计不同的网络结构和训练策略来提高提取精度。
近年来,随着全卷积网络(FCN)和U-Net等模型的提出,研究者开始尝试利用这些模型进行遥感影像的道路提取,取得了显著的效果。
此外,还有一些研究将深度学习与其他技术相结合,如条件随机场(CRF)、图模型等,以进一步提高道路提取的准确性。
1.3 研究目标和方法本文的研究目标是基于深度学习技术,设计并实现一种高精度、高效率的高分辨率遥感影像道路自动提取方法。
为实现这一目标,本文将采用以下研究方法:首先,对高分辨率遥感影像进行预处理,包括辐射定标、大气校正、正射校正等步骤,以提高影像质量;其次,设计一种基于深度学习的道路提取模型,通过大量的训练数据对模型进行训练和优化;最后,对提取结果进行后处理和优化,以提高道路提取的准确性和完整性。
2. 高分辨率遥感影像数据预处理2.1 数据来源和特性本文所采用的高分辨率遥感影像数据主要来源于卫星遥感平台。
这些数据具有高空间分辨率、多光谱特性和丰富的地物信息。
然而,由于受到大气条件、传感器误差等因素的影响,原始遥感影像往往存在辐射失真、几何变形等问题,需要进行预处理以消除这些影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提供的 ArcPy 开发包,分别研究了通过影像产品元数据文件和栅格文件像素分析构建影像范围多边形矢量的方法,可以满足查
询定位和准确覆盖分析的需求,实现不同工作环境条件下相关业务的自动化和批量化,有助于提高作业效率。
关键词:遥感影像;覆盖范围;GDAL;ArcPy
中图分类号:P237
文献标志码:B
文章编号:1672-4623(2019)08-0033-03
图 1 资源三号影像产品元数据四角坐标段示例
1.2 通过影像分析提取范围 对于元数据不可用,或者卫星影像产品在二次加
工过程中范围发生变化的情况,需要对影像的像素值 特征进行分析,提取覆盖范围。假设影像背景值为 N, 则需要逐一判断影像每个波段中对应位置的所有像素 是否均为 N,满足的为 0,否则为 1,生成与原始影像 尺寸一致的掩膜影像,再转换为多边形矢量即可。
2 实验与结果
本文选取了一幅资源三号整景影像,并对其进行 不规则裁剪,用于开展有效覆盖范围提取的实验。实 验采用的程序开发语言为 Python,分别采用开源的 GDAL 库和商业软件 ArcGIS 提供的 ArcPy 库。GDAL 是著名的开源栅格空间数据转换库 [6],利用抽象数据 模型来表达所支持的各种栅格数据格式,并通过 OGR 子项目提供对矢量数据的支持,许多 GIS 类产品在底 层都使用了 GDAL/OGR 库 [7]。同时考虑到目前测绘地 理信息行业中 ArcGIS 软件已较为普及,也使用了其提 供的 ArcPy 库进行工具开发。ArcPy 是 ArcGIS 提供的 执行地理数据分析、转换、管理和自动化制图等功能 的 Python 站点包 [8],它对地理处理工具和函数进行了 集成,便于批量化自动处理。
itemLong = root.getElementsByTagName(tag[0])[0] itemLat = root.getElementsByTagName(tag[1])[0] x = float(itemLong.firstChild.data) y = float(itemLat.firstChild.data) coords.append((x, y)) return cords 读取坐标标签时应注意使 4 个角点保持顺时针方
1 技术思路
1.1 通过元数据提取范围 元数据文件以结构化标签的形式记录了数据产品
的有关信息 [5],一般随卫星影像产品一起分发,详细 提供了影像产品的卫星平台、传感器类型、接收站、 轨道号、拍摄时间、卫星及相机的姿态、太阳位置、 波段等多类信息,其中也包括影像四角地理坐标。不 同卫星产品的标签字段不一定相同,图 1 展示了资源 三号 Level 一级影像产品的元数据示例。通过这 4 个角 点坐标,可以构建多边形矢量,实现整景影像的落图 文件提取。
知的坐标标签文本,从卫星产品元数据文件提取四角
坐标数值,以坐标对的形式存于列表中,将其封装为
getGeoFromMeta 函数,主要代码和注释如下:
from xml.dom.minidom import * def getGeoFromMeta(metafile):
dom = parse(metafile) root = dom.documentElement tags = [ (‘dataUpperLeftLong’,‘dataUpperLeftLat’), (‘dataUpperRightLong’,‘dataUpperRightLat’),(‘dataLower RightLong’,‘dataLowerRightLat’), (‘dataLowerLeftLong’, ‘dataLowerLeftLat’)]# 资源三号影像四角坐标标签 coords = [] for tag in tags:
(1. 江苏省测绘工程院,南京 210013;2. 卫星测绘技术与应用国家测绘地理信息局重点实验室,南京 210013)
摘 要:遥感影像有效范围提取是影像管理、分发和应用工作中经常遇到的问题。根据实际需求一般可分为整景卫星影像产品
落图文件提取和影像实际覆盖范围提取 2 个方面。利用 Python 开发语言,基于开源空间数据处理库 GDAL 和商业软件 ArcGIS
2019 年 8 月 第 17 卷第 8 期
doi:10. 3969 / j. issn. 1672 - 4623. 2019. 08. 009
地理空间信息
GEOSPATIAL INFORMATION
Aug.,动提取方法研究
高 磊 1,2,许 康 1,2
收稿日期:2018-03-23。 项目来源:国家测绘地理信息局 2017 年度青年学术和技术带头人科技活动资助课题([2017]17 号文件)。
·34·
地理空间信息
第 17 卷第 8 期
2.1 读取元数据构建影像范围
2.1.1 由元数据文件提取坐标
利用 Python 自带的 xml 文件解析标准库,根据已
根据用户感兴趣区域查询遥感存档数据是各类 影像服务平台和海量影像管理系统提供的基本功能 之一 [1-2],这就需要对影像数据的实际有效范围进行准 确地提取。对于数据提供商分发的各级别卫星影像产 品,一般都带有包含四角坐标的元数据文件或者矢量 落图文件 [3],但用户在使用过程中,通常会对原始影 像产品进行正射校正、镶嵌、裁剪、融合等二次加工, 由此造成影像变形及范围发生变化,需要对有效覆盖 区域进行重新确定。在影像制图时也需要对有效区域 外的部分进行掩膜美化 [4],以遮盖背景部分。常规的做 法是在数字化平台中目视移屏,沿影像边界手工勾绘 矢量图形,相当耗时耗力。本文利用 Python 语言,基于 GDAL(Geospatial Data Abstraction Library)开源空间 数据处理库和商业软件 ArcGIS 提供的 ArcPy 开发包, 从元数据解析和影像分析 2 个方面分别实现了影像有 效范围提取方法,从而满足不同工作环境用户的需求。