金融数学第一章练习题详细讲解
金融数学引论-利息基本计算

则在第二个计息期末的价值为 1+2i 依此类推 因此 累积函数为时间的线性函数
a (t) = 1 + i t , t 0 为整数
从实质上看 单利计算可以表述为 利息与经过的时间成正比
也可以用更严格的数学方法来定义单利 考虑满足如下条件的a (t) 函数
a ( s+t)=a ( s) a (t) 1 , t 0, s 0
6
第一章7
结论 1.5 实利率i 实贴现率d 与贴现因子有如下关系
1 贴现率是同期期末的利率用贴现因子贴现到期初的值 即
d =i v
2 贴现率与贴现因子互补 即
d =1 v
3 利率与贴现率的差等于利率与贴现率的积 即
i d =i d
证明 由结论 1.4 和贴现因子的定义即可得到上述关系 例 1.3 如何用贴现率比较收益 现有面额为 100 元的债券在到期前一年的时刻价格为 95 元 同 时 短期一年储蓄利率为 5.25% 如何进行投资选择
1 a 1(t) =1 d t , 0 t < d
(1.1.11)
与累积过程类似 若每个计息期内的实贴现率d n 相同 则简称为复贴现模式 discount 一般也用d 表示实贴现率
在复利方式下 累积与贴现过程是完全等价的 常用的概念还有
compound
定义 1.9 贴现因子 discount factor 定义为
示 一般为累积函数的倒数函数 因此有
单利情形
a 1(t) = (1+ it) 1
(1.1.8)
其中i为单利率
复利情形
a 1(t) = (1+ i) t
(1.1.9)
其中i为实利率
从定义可以看出 贴现与累积是两种互相对称的计算货币时间价值的方法 对于贴现计算过程
金融数学练习题及解析

金融数学练习题及解析1. 计算复利某银行提供年利率为5%的存款账户,假设利息每年复利一次,求本金10000元在5年后的累积金额。
2. 债券定价一张面值为1000元的债券,年利率为6%,每年支付60元利息,到期期限为10年。
如果市场利率为5%,求该债券的当前市场价格。
3. 期权定价某股票当前价格为50元,期权执行价格为55元,到期时间为3个月,无风险利率为2%。
假设股票价格服从几何布朗运动,求欧式看涨期权的理论价格。
4. 利率期限结构给定以下不同期限的零息债券收益率:- 1年期:3%- 2年期:3.5%- 3年期:4%使用这些数据,计算2年期的远期利率。
5. 货币时间价值某投资者计划在5年后购买一套价值200000元的房子,假设年利率为4%,每年复利一次,求该投资者每年需要存入多少金额以满足购房需求。
6. 风险管理一家公司持有价值100000元的股票组合,为了对冲市场风险,公司决定购买看跌期权。
如果期权的执行价格为95000元,期权费为5%,求公司在市场下跌时的最大损失。
7. 股票价格预测某股票过去5年的年化收益率为10%,标准差为20%。
假设未来股票价格的变动遵循正态分布,求该股票未来一年内价格下跌超过30%的概率。
8. 投资组合优化投资者有100000元资金,可以选择投资于两种资产:股票和债券。
股票的预期收益率为8%,标准差为15%;债券的预期收益率为4%,标准差为5%。
假设股票和债券之间的相关系数为0.2,求在给定风险水平下,投资者应如何分配资金以最大化预期收益。
以上题目要求学生运用金融数学的相关知识进行解答,并在解答过程中注意公式的正确应用及计算的准确性。
(完整版)金融学第一章金融体系习题附答案

(完整版)金融学第一章金融体系习题附答案第一章金融体系概述一、挑选题1、直截了当融资的优点是:。
A.投资者承担较小的投资风险 B.容易实现资金供求期限和数量的匹配C.有利于落低信息成本和合约成本 D.能够节省交易成本2、直截了当融资的缺点包括等。
①投资者需要花费大量的搜集信息、分析信息的时刻和成本②投资者要承担较大的投资风险③别利于经过分散化来落低金融风险④融资的门槛比较高A.①②③④ B.①③④ C.②③④ D.①②③3、金融机构可经过来筹集资金。
①发行存单②提供贷款③发行债券④发行股票A.①②③ B.①③④ C.①②④ D.①②③④4、以下阐述正确的是。
①金融市场是金融资产交易的场所②金融市场是金融资产的供求关系、交易活动和组织治理等活动的总和③金融市场的发育程度直截了当妨碍金融体系功能的发挥④金融市场为有形市场A.②③④ B.①③④ C.①②③ D.①②④5、金融创新包括等在内的创新。
①金融工具②金融市场③金融制度④金融机构A.①②③ B.①③④ C.②③④ D.①②③④6、的金融创新对传统的金融市场和体制带来巨大冲击。
A.20世纪50年代 B.离岸金融市场—欧洲货币市场的建立C.18世纪英国中央银行制度的建立 D.20世纪70年代别断涌现7、当代金融创新的直截了当导因是。
①国际资本的加速流淌②世界范围的放松金融管制③国际债务危机的爆发和妨碍④电子计算机技术和网络技术在金融领域的广泛应用A.①②③④ B.②④ C.②③④ D.①③④8、以下哪一选项别是金融创新所能产生的积极作用?A.金融创新扩大了金融机构的资金来源渠道,扩大了金融服务业务领域 B.有利于发挥利率杠杆在调节金融资源配置中的作用C.能落低金融系统的风险D.有利于世界金融和经济的深化进展9、金融市场创新别包括:A.市场种类的创新 B.市场组织形式的创新C.市场制度的创新 D.汇率制度的创新10、金融工具的创新具体包括:①时刻衍生②功能衍生③种类衍生④复合衍生A.①②③④ B.以上都别是 C.①②④ D.②③④11、以下对金融资产的描述别正确的是A.市场价值稳定 B.是一种无形资产C.是一种将来收益的索取权 D.市场价值受市场供求状况妨碍二、推断题1、在现代经济条件下,资金的流淌要紧是经过金融体系来实现的。
《_金融数学-课后习题答案》

金融数学-课后习题答案本文档为金融数学课后习题的参考答案。
在解答问题时,我会尽量给出详细的步骤和推导过程,帮助读者更好地理解金融数学的概念和方法。
1. 第一章:时间价值1.1 问题一题目:如果我现在存入1000元,年利率是5%,请问5年后我能得到多少钱?解答:首先需要计算每年的复利,即每年利息和本金的总和。
根据复利计算公式:年末总金额 = 本金 * (1 + 年利率)^时间年数代入数据进行计算:年末总金额 = 1000 * (1 + 0.05)^5 = 1000 * 1.2762815625 ≈ 1281.28元因此,5年后你能得到大约1281.28元。
1.2 问题二题目:如果我希望在5年后拥有2000元,年利率是5%,请问我需要存入多少钱?解答:首先需要计算本金与利息的比例,然后根据比例计算需要的本金。
根据复利计算公式:年末总金额 = 本金 * (1 + 年利率)^时间年数可以将该式转化为:本金 = 年末总金额 / (1 + 年利率)^时间年数代入数据进行计算:本金 = 2000 / (1 + 0.05)^5 = 2000 / 1.2762815625 ≈ 1567.45元因此,你需要存入大约1567.45元。
2. 第二章:贴现与现值2.1 问题一题目:如果一笔未来支付3000元的现金流在5年后,年利率是6%,请问它的现值是多少?解答:为了计算现值,我们需要使用贴现率(年利率)和时间年数。
根据贴现计算公式:现值 = 未来支付金额 / (1 + 年利率)^时间年数代入数据进行计算:现值= 3000 / (1 + 0.06)^5 = 3000 / 1.33822557689 ≈ 2241.53元所以,该未来支付的现金流的现值大约为2241.53元。
2.2 问题二题目:如果我希望在5年后得到3000元的现金流,年利率是6%,请问我愿意支付多少现值?解答:为了计算现值,我们使用贴现率(年利率)和时间年数。
孟生旺《金融数学基础》参考答案

孟生旺《金融数学基础》参考答案(中国人民大学出版社,2015年2月第一版)第1章 利息度量1.1360021500.125,2000(1)2848i i i ⨯=⇒=+=1.2 /121/1218/121004314271141.6T v v v T =+⇒= 1.3:(2)2i A X i X =⋅, ()()1615:1/21/2B X i X i +-+ 1615[(1/2)(1/2)]0.09458X i i i X i +-+=⋅⇒=1.427.72e 20.025δδ=⇒=, 当0.5i δ= 时, /2(12)7.0480n n δ+=⇒=1.5 1/42100(146%)114.71-⨯⨯-⨯=1.6 ()()11118//mmm m i i d d m m m -+=+=-=-⇒=⎡⎤⎡⎤⎣⎦⎣⎦1.7 12:()(1.01)tA a t =, 2/12:()e tB a t =, 212/12(1.01)e 1.43t tt =⇒=1.8 2:()exp()/2A a t an bn =+, 2:()exp()/2B a t gn hn =+, 2()/()n a g h b =--1.9 8512()100(1)exp /4(1)d 2600.129a t d t t d --=-⋅⎡⎤+=⇒=⎢⎥⎣⎦⎰ 1.10 11/(1)t δ=+, 222/(1)t t δ=+, 0.41t = 1.11 2()(1)a t t =+1111300(3)600(6)200(2)(5)=315.82a a a X a X ----⨯+⨯=⨯+⨯⇒1.12 ()10.2025330(3)exp e/100d a t t --==-⎰.1.13 20.5()0.040.031,(0.5)/(0.5)0.068a t t t a a δ'=++== 1.14 ()320(3)100exp/100d 109.42A t t X X=⋅+=+⎰()623(6)(109.42)exp /100 1.8776(109.42)A X t dt X =+⋅=+⎰(6)(3)(109.42)(0.87761)784.61A A X X X -=+=⇒=1.15 t = 4时的累积值为:()30.04501000exp0.02d e 1144.54t t ⋅=⎰令名义利率为x , 则 161000(1/4)1144.540.03388x x +=⇒=1.16 ()20.075i=, (4)(2)(2)21/2/2/2ln (1)41(1)0.1466d i i δ⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦+=++-+= 1.17 ()()510205expd exp/25d 2.71830.414kt t kt t k ⋅=⇒=⎰⎰1.18 0()exp d (2)/2,()(0)/216tt a t t t a n a n n δδ⎡⎤==+=-=⇒=⎢⎥⎣⎦⎰ 1.19 201000exp 1068.94d t t δ⋅=⎡⎤⎢⎥⎣⎦⎰ 1.20 1010267.5, 10(1.0915)30(1.0915), 2.3254nn A B n --==+=第2章等额年金2.1 1363元 2.2 279430元 2.3260052.4 基金在第30年初的现值为658773.91, 如果限期领取20年, 每次可以领取57435, 如果无限期地领下去, 每次可以领取39526 2.5 31941.68元, 21738.97元, 46319.35元 2.6 9年 2.7 29月末2.8 0.1162 2.9 8729.23 2.10 45281.05 2.11 0.2 2.12 302 2.13 4.06%2.14假设最后一次付款的时间为n , 则有:4410000010000(10.05)23.18n a n --=+⇒=假设在23年末的非正规付款额为X , 则有4231910000010000(10.05)(10.05)1762.3a X X --=+++⇒=2.15 601004495.503860000.749329k k a v v k ==⇒=⇒=2.16 20101020153810721072153846600.08688a a v v i =⇒-+=⇒=2.17 设j 为等价利率, 则0.040604j =, 1681000()32430s s =+=&&&&累积值 2.18 以每半年为一个时期, 每个时期的实际利率为/2i , 两年为一个时期的实际利率为()411/2j i =-+, 故 5.891/0.08j i ⇒==2.19 ()20101012126410.7520.09569i s i s i i ⋅⋅+⋅⋅=⇒+=⇒=2.20 {}ln(1)1exp d d 1n nta n r t r==+-+⎰⎰2.21 20()exp d (10.5)tr a t r t δ==+⎡⎤⎣⎦⎰, 5(5)(5)(5)...12.828(1)(2)(5)a a a s a a a =+++=2.22()8888111188100d (1)d tt v a a t v t δδδδ-==-=-=⎛⎫- ⎪⎝⎭⎰⎰()()5/48101810018100v v δδδδ=--⋅⇒=--⎡⎤⎣⎦()[]5/410101181001v a δδδδ----==2.23 1/302.24 1[ln(/)]/i δδ- 2.25 4e 12e 3n n δδ=⇒=, e 112121/6n n s δδδ-=⇒=⇒=第3章变额年金3.1 ()29/229229 /22972.8865.440.1/2j j j s j Is j s j j -⎡⎤=⋅=⋅⇒=⇒=⎢⎥⎢⎥⎣⎦&&&& 3.2 1010900100()a I a += 1088.693.3 2312(1)23......n n n nn i a a v v v nv nv nv id++++++++++==3.4 335792222468...49.89(1)v X v v v v v =++++==-3.5A 的现值为:102010105555()X a a v a ==+B 的现值为:1020101010306090X a v a v a =++ 故 10102055(1)3060900.07177574.74v v vi X +=++⇒=⇒=3.6 1()()n n n n nIa v Da a a -+=⋅&& 3.7 71520()1602146.20Da a +=3.8 11846.663.9每季度复利一次的利率为0.0194, 所有存款在第八年末的终值为40.019480.08()183.01s Is =&&, /0.08183.0114.64X X =⇒= 3.10 3433203.11 166073.12 现值为5197.50, 累积值为9333.98.3.13 111193070()9998.16a Ia +=&&&&, 终值为23312.11. 3.14 现值为111120()2803246.03Da a +=, 在第20年末的终值为10410.46. 3.15 212.343.16 此项投资在第10年末的终值为:106%106%80000(5000)500()X s Ds =-+&&&&80000(5000)(13.97164)500(83.52247)7736.88X X =-+⇒=3.17 ()4106%116%100()200015979.37X v Da a =+=. 3.18 第20年末的终值为:16115%(1)200()19997.38i Ia +=3.19 前5年的现值为77.79, 从第6年开始, 以后各年付款的现值为:()510.092010.09v k k +⎛⎫+ ⎪-⎝⎭, 总现值为335, 故 3.76%k =.3.20 104%104%9010()1735.96s I s +=3.21 第8年的终值为:87%87%605()894.48478s Ds +=第10年末的终值为1024.10. 3.22100(43)exp (0.030.04)d d 89.97t t s s t ⎡⎤+-+=⎢⎥⎣⎦⎰⎰ 3.23 在时刻5的现值为:102255(1.22)exp (0.00060.001)d d 382.88tt t s s s t ⎡⎤+-+=⎢⎥⎣⎦⎰⎰ 时刻零的现值为:50382.88exp (0.0040.01)d 346.44t t⎡⎤-+=⎢⎥⎣⎦⎰ 3.24 ()10100250009exp 1/(9)d d 190131.58t k tk s s t k k ⎡⎤=++=⇒=⎢⎥⎣⎦⎰⎰第4章收益率4.10.1483 4.2 1221.99 4.3 时间加权收益率0.5426, 币值加权收益率0.5226, 两者之差0.0236.4.4 93000 4.5 −10%4.6 120100506565(10050)136,0.1834100120100501009/12503/12D D i D D --+-⋅⋅=⇒===-+-+⨯-⨯ 4.7 0.1327 4.8 7.5% 4.9 236.25 4.100.06194.11 5年末投资者共得到56245.5元. 设购买价格为P , 要得到4%的收益率, 有5(1.04)56245.546229.7P P =⇒=4.12 20.0820/220/25000100000(5000)()34.710.1i i s i Is s i =+⇒=⇒=&&&& 4.13 再投资利率为8.73%. 投资者B 的利息再投资后的积累值为6111.37.4.14 ()10200.75100.7512126410.7520.09569i i i s i s i i ⋅⋅+⋅⋅=⇒+=⇒=4.15 3项投资在2015年初的余额为320.46万元, 在2015年末的余额为344.56万元, 故2015年中所获利息为24.10万元.第5章 贷款偿还方法5.1 X = 704.065.2 设每年的等额分期付款金额为R , 由已知28(1)135R v -=, 147(1)108(1)72R v R v -=⇒-=5.3 301301(1)/32/322.69t t R vR v t -+-+-=⇒=⇒=故在第23年分期付款中利息金额最接近于付款金额的三分之一. 5.4 109832290.35,408.55Rv Rv Rv Rv Rv Rv =++=++0.05,150.03,1158.4i R L ⇒===. 支付的利息总金额为10341.76R L -=5.5 1510.65.6 (1)借款人第2年末向偿债基金的储蓄额应为4438.42(2)第2年末的余额为9231.91 (3)第2年末的贷款净额为10768.095.7 0| 4| 6104.56/20000/8.4911%k i i R L a a i ===⇒= 5.8 第5次偿还中的利息为66.89万元.5.9 22912125,0001 1.02(1.02)(1.02)526i Ra v v v R ⎡⎤=+++⋅⋅⋅⋅+⇒=⎣⎦5.10 各期还款的积累值为 20200.0510*******(1)0.0616s i i =+⇒=5.11 121212155000500.3812 0.09173077.9455000(1)500.38jn njn a i j j s -=⎧⎪⇒==⎨=+-⎪⎩ 5.12 第一笔贷款偿还的本金为490.34, 第二笔贷款偿还的本金为243.93, 两笔贷款的本金之和为 734.27. 5.13 3278.5.14 第3次支付的本金金额为784.7, 第5次支付的利息金额为51.4. 5.15 0.1196. 5.16 64.74.5.17 调整后最后一次的偿还额为1239.1. 5.18 第11年末.5.19 调整后借款人增加的付款为112.5.20 20301019100001900100()5504.7Xa v a v Ia X =++⇒=. 5.21 11190.11.第6章证券定价6.1 价格为957.88元, 账面值为973.27元.6.2价格为974.82元, 账面值为930.26元(理论方法), 929.82(半理论方法), 1015(实践方法.6.37.227% . 6.4 6.986% .6.5 10201010101000.11000.091000.0897.74P a v a v a --=⨯+⨯+⨯=元.6.6债券每年末的息票收入为80元, 故有()()()54321082.27(1)801801801099.84(1)80(1)80 6.5%V V i V i i i i i ==+-=+-+-⎡⎤⎣⎦=+-+-⇒=(3)3 8010001099.8412n n i a v n --⋅+=⇒= 1212 0.065801000(1.065)1122.38P a -=⋅+=元.6.7应用债券定价的溢价公式可以建立下述三个等式:20202040(1) 45(2) 50(3) 2X C i a C Y C i a C X C i a C ⎛⎫-=- ⎪⎝⎭⎛⎫=- ⎪⎝⎭⎛⎫=- ⎪⎝⎭由(3)/(1)得:501302403Ci Ci Ci --=⇒=-由(1)(3)+得:2020(902)902XX Ci a a Ci=-⇒=-所以有 20(45)/25Y Ci a X =-==元. 6.8 t = 7/12, 理论方法的账面值为87.35元, 实践方法的账面值为87.35元.6.9110019019/110910/33n n n v v a =⇒=⇒= 0.0311********.03n n P v a =+=.6.10 40n n P a M v =+⋅, 30n n Q a M v =+⋅, 令债券C 的价格为X , 则有8054n n X a M v X P Q =+⋅⇒=-.6.11 ()()()()1010 0.041010 0.0510*******.040.03581.49100011001.05P r a r P r a --⎧=+⎪⇒=⎨-=+⎪⎩ ()1010 0.0351*******.0351371100 1.0351371070.80X a -=⨯+⨯=6.12 ()()()219202320105050 1.03 1.03 1.03837.78P v v v v v ⎡⎤=+++++=⎣⎦L .6.13 偿还值的现值为55200584.68()v a =元, 未来息票收入的现值为5556012()355.99()a v Da +=元, 故债券的价格为940.67元. 也可以应用Makeham公式计算, 即0.06/0.07(1000584.68)584.68940.67P =⨯-+=元.6.14 2020 10104010001071.06401041.58P a v P P a X v X ⎧=+=⎧⎪⇒⎨⎨=+⋅=⎪⎩⎩6.15 债券每年末的息票收入为60元, 修正息票率为60/1050 = 5.7143%, 小于投资者所要求的收益率8%, 所以赎回越晚(即到期时赎回), 债券的价格越低. 由此可得该债券的价格为1010501050(5.7143%8%)888.94P a =+⨯-⨯=元.6.16 股票在第六年的红利为60.50.2(1.10)⨯⨯, 以后每年增长10%. 应用复递增永续年金的公式, 该股票的价格为6510.50.2(1.10) 1.1110.510.110.1P -=⨯⨯⨯⨯=-元.6.17 投资者每个季度的实际收益率为 2.47%j =, 应用复递增永续年金的公式, 投资者购买该股票的价格为0.3/(2.47%2%)63.83P =-=元. 6.18 1.5/305%10%i =+=. 6.19 30元.6.20 每股利润为109.500.50-=元, 保证金为100.505⨯=元, 保证金所得利息为50.0500.25⨯=元, 每股红利为0.1元, 卖空收益率为(0.50.250.1)/513%+-=.6.21 8.59%第7章利率风险7.115D =马, 基于名义收益率的修正久期为15/(11%)14.85D =+=. 年实际收益率为12.68%i =, 基于实际收益率的修正久期为15/(112.68%)13.31D =+=.7.2 1()/()e 1n nD P P δδδδ'==--7.3 假设债券的面值为100, 则92.648.027.57P D D ===马,, 7.4债券的马考勒久期可以表示为nm j a D m=&&马, 其中()/m j im =. 变形可得:()()()11(1)1(1)(1)n n m m m nm jni v D j a j a m i d--+-=+=+==&&马. 7.5 对年金的现值关于利率i 求导, 应用修正久期的定义公式可得111n nnv D i v +=--.7.6对于期末付永续年金, 现值为()1/P i i =, 2()1/P i i '=-, 所以修正久期为1/D i =, 马考勒久期为=(1)(1)/D D i i i +=+马.7.7对于期初付永续年金, 现值为()(1)/P i i i =+, 2()1/P i i '=-, 所以修正久期为1/[(1]D i i =+), 马考勒久期为=(1)1/D D i i +=马.7.8 24 /2()510096.53()169.29 1.75()i P i P a v P i D P i ''=+=⇒=-⇒=-= 7.97.49D =效7.10 7.8861D D i ==+马, () 1.18%Pi D P∆=-∆⋅= ⇒ 新的债券价格近似为:75.98 1.01876.88⨯= 7.11 8.92D =效, 13.35C =效.2()0.5()8.85%Pi D i C P∆=-∆⋅+⋅∆⋅=-, 债券的新价格近似为95.59元. 7.12 修正久期为8.12, 凸度为101.24. 7.13 马考勒凸度为105.15.7.14 22231d 1d 216.67d d P P P i i i i i==⇒=- = ()116.67()P i D P i i'⇒=-==2()2555.55()P i C P i i''⇒=== 7.152()0.5() 4.28%Pi D i C P∆=-∆⋅+⋅∆⋅=- 7.16 负债的现值为12418.43L P =, 负债的马考勒久期为5LD =马, 负债的马考勒凸度为25L C =马. 不妨假设两种零息债券的面值均为1000元, 则4年期零息债券的价格为441000/(1)683.01P i =+=元, 10年期零息债券的价格为10101000/(1)385.54P i =+=元. 假设有%x 的债券投资4年期的零息债券, (1%)x -的债券投资10年期的零息债券, 由ALD D =马马, 有:(%)(4)(1%)(10)5%83.33%x x x +-=⇒=投资4年期零息债券的金额为10348.28元, 投资10年期零息债券的金额2070.15元. 7.17 债券A 的价格为982.17元, 马考勒久期为1.934, 马考勒凸度为3.8. 债券B 的价格为1039.93元, 马考勒久期为4.256, 马考勒凸度为19.85. 在债券A 上投资11.02%, 在债券B 上投资88.98%, 则债券组合的马考勒久期等于负债的马考勒久期, 均为4年, 债券组合的马考勒凸度为18.08, 大于负债的马考勒凸度16, 满足免疫的条件. 7.18 各种债券的购买数量分别如下:购买5年期债券的数量 80000 购买4年期债券的数量 300000 购买2年期债券的数量 600000 购买1年期零息债券100000购买各种债券以后净负债的现金流如下(单位:万元): 年度 1 2 3 4 5 负债的现金流1794 6744 144 3144 824 5年期债券的现金流 24 24 24 24 824 净负债的现金流 1770 6720 120 3120 0 4年期债券的现金流 120 120 120 3120 0 净负债的现金流 1650 6600 0 0 0 2年期债券的现金流 600 6600 0 0 0 净负债的现金流 1050 0 0 0 0 1年期债券的现金流 1050 0 0 0 0 净负债的现金流第8章利率的期限结构8.1一年期债券的价格为102.78P =;两年期债券的价格为92.96P =;三年期债券的价格为112.43P =.11111102.788%1s s =⇒=+ 2212323123510592.969.03%1(1)1515115112.4310.20%1(1)(1)s s s s s s s =+⇒=++=++⇒=+++8.2现金流分别按对应的即期利率折现得债券的价格为:231010110105.751.05 1.06 1.08P =++= 8.3 各年远期利率分别为8%、10.1%和12.6%. 8.4假设债券的面值为100元, 计算5年期债券的价格:2345234512345234123410101010110101010101101.07 1.07 1.07 1.07 1.071(1)(1)(1)(1)1111 3.741(1)(1)(1)s s s s s s s s s ++++=+++++++++⇒+++=++++每年支付40元的5年期期初付年金按对应的即期利率折现即得其现值为:23412341111401189.751(1)(1)(1)s s s s ⎡⎤++++=⎢⎥++++⎣⎦8.5由远期利率计算的债券价格为:1010110107.251.07(1.07)(1.05)(1.07)(1.05)(1.1)++=(元)8.6假设债券的面值为100元, 则有:001041004%(1)f f =⇒=+1001200101261061008.16%(1)(1)(1)8810810012.69%(1)(1)(1)(1)(1)(1)f f f f f f f f f f f ⇒=+⇒=+++⇒=++⇒=++++++8.7 应用即期利率和远期利率的关系, 有101022012330123116%(1)(1)(1) 5.50%(1)(1)(1)(1) 6.98%s f s f s f f s s f f f s +=+⇒==+=++⇒=+=+++⇒=8.8用t C 表示债券在t 年末的现金流入, 则有:111120%1.21C Cs s =⇒=+ 1212222220%1.2 1.2 1.2(1)C C C C s s +=+⇒=+ 33121232323320%1.2 1.2 1.2 1.2 1.2(1)C C C C C Cs s ++=++⇒=+ 8.91001120%s f f +=+⇒=3211221.21.2(1.2)(1)20%,120%1.2f f f =+⇒==-=8.10 00110106 3.77%1f f =⇒=+ 1001200101251059512.20%1(1)(1)991091029.37%1(1)(1)(1)(1)(1)f f f f f f f f f f f =+⇒=+++=++⇒=++++++用远期利率计算年息票率为15%, 面值为100元的3年期债券的价格:0010121515115117.651(1)(1)(1)(1)(1)P f f f f f f =++=++++++ 8.11 用远期利率分别计算3年期和4年期零息债券的价格可得:01210082(1)(1)(1)f f f =+++,30123100759.33%(1)(1)(1)(1)f f f f f =⇒=++++8.12 21012012115%,(1)(1)(1)6%s f s s f f s +=+⇒=+=++⇒=假设债券的面值为100元, 则有:3233881081008.2%1.05 1.06(1)s s =++⇒=+8.13 通过收益率计算的债券价格为 2610693.061.1(1.1)P =+= 通过即期利率计算的债券价格为2610694.831.07(1.09)P =+= 债券价格被低估了1.77元, 故可以按94.83元的价格购买一个2年期债券, 同时按即期利率出售一个1年期的面值为6元的零息票债券和一个2年期的面值为106元的零息票债券.8.14 与远期利率一致的债券价格为5510597.421.05(1.05)(1.06)(1.05)(1.06)(1.07)P =++=(元) 债券的市场价格为100元, 说明债券被高估了, 因而存在套利机会.套利者可以按100元的价格卖出一个三年期债券, 同时将97.42元按4%的利率投资一年. 在第一年末, 支付已出售债券的5元利息后, 把剩余的资金在第二年按6%的远期利率再投资一年. 在第二年末, 支付已出售债券的5元利息后, 把剩余的资金在第三年按8%的远期利率进行投资. 在第三年末的累积值正好用于支付套利者所售债券在第三年末的偿还值. 完成上述步骤后, 套利者即可在当前时刻获得100 - 97.42 = 2.58元的无风险收益.第9章远期、期货和互换9.1股票多头的回收和盈亏如下表所示: 1年后的股票价格多头的回收多头的盈亏50 50 −16 60 60 −6 70704如果1年后的股票价格为66元时, 则股票多头的回收为66元. 购买股票的初始费用在1年后的累积值为66元, 所以盈亏为0元. 9.2股票空头的回收和盈亏如下表所示, 与多头的回收和盈亏正好相反. 1年后的股票价格空头的回收 空头的盈亏50 −50 16 60 −60 6 70−70−4如果1年后股票的价格是66元时, 则空头的回收为−66元. 初始所得在1年后的累积值为66元, 所以盈亏为 0元. 9.3 40.06/40.061(105 1.7e )e 104.54t t F -==-⨯=∑(元)9.4日股利为0.02/3651050.00575⨯=元. 若在年初持有一单位股票, 年末将持有0.02e 1.0202=单位. 若要在年末持有一单位股股票, 年初应持有0.02e 0.9802-=单位,故投资额为0.02105e 102.92-=元. 9.5(1)0.060.570e 72.13F ⨯=⨯=元. (2)0.0670e 720.032δδ-⨯=⇒=.9.6无套利的远期价格为 0.060.5105108.20F e ⨯==(元)(1)远期价格115 > 108.20, 所以投资者可以先签出一份远期合约, 约定在6个月末以115元的价格卖出股票. 同时借入105元购买股票, 承诺在6个月末还款. 到6个月末, 以115元卖出手中的股票, 同时偿还借款108.20元, 最终无风险获利6.80元. (2)远期价格107 < 108.20, 所以投资者可以先签订一份远期合约, 约定在6个月末以107元购买股票. 同时将手中持有的股票卖出, 获得105元, 将这105元投资于5%的零息债券, 6个月末可以获得108.20元. 6个月末利用远期合约买入股票, 最终获得无风险利润1.20元.9.7 22838483.491.05 1.055 1.05 1.055x xx +=+⇒= 9.8(1)232382838482.981.05 1.055 1.06 1.05 1.055 1.06x x xx ++=++⇒= (2)2323838483.501.055 1.06 1.055 1.06x xx +=+⇒= 9.9四个时期的浮动利率分别为0.06、 0.07、 0.08和 0.09. 互换利率为0.0745.9.10 应用债券组合的定价方法:0.13/120.1059/120.1115/120.13/124e 4e 104e 98.24(5.1100)e 102.5198.24102.51 4.27B B f B B -⨯-⨯-⨯-⨯=++==+==-=-=-固浮浮固第10章 期权10.1 远期多头的回收分别为−10元、−5元、0元、5元和10元, 空头的回收是其相反数. 看涨期权多头的回收分别为0元、0元、0元、5元和10元. 看跌期权的回收分别为10元、5元、0元、0元和0元.10.2 回收分别为0元、0元和5元. 盈亏分别为−6.01元、−6.01元和−1.01元.10.3 看跌期权的回收分别为5元、0元和0元. 盈亏分别为3.96元、−1.04元和−1.04元. 10.4 组合的回收分别为105元、105元、110元和115元. 组合的盈亏分别为−7.56元、−7.56元、−2.56元和2.44元.10.5 组合的回收分别为−105元、−105元、−110元和−115元. 组合的盈亏分别为12.81元、12.81元、7.81元和2.81元.10.6 多头的盈亏为0.95元, 盈亏平衡点为42.05元. 10.7 多头的盈亏为3.47元, 盈亏平衡点为28.53元. 10.8 看跌期权的期权费是3.13元. 10.9 10.2417d =, 20.09167d =.根据Black−Scholes 公式, 欧式看涨期权价格为:12()e () 3.61rTC S d K d -=Φ-Φ=根据平价公式, 欧式看跌期权价格为e 2.38rT P C K S -=+-=10.10 1.0905u =, 1/0.9170d u ==, 0.5266r t e dp u d∆-==- 欧式看跌期权的价值为2.62, 相应的二叉树如下:美式看跌期权的价值为2.71, 相应的二叉树如下:10.11 1.0524u =, 1/0.9502d u ==, ()0.5118r tedp u dτ-∆-==-欧式看涨期权的价值为19.63, 相应的二叉树如下:10.12 回收和盈亏如下表:股票价格 看跌期权回收总回收 成本及其利息 盈亏 90 5 95 −105.98 −10.98 100100−105.98−5.9810.13回收和盈亏如下表:股票价格看涨期权回收股票空头回收总回收净收入及其利息盈亏90 0 −90 −90 94.03 4.03100 5 −100 −95 94.03 −0.97 10.14回收和盈亏如下表:股票价格看涨期权回收空头回收总回收净收入及其利息盈亏100 0 −100 −100 97.44 −2.56 110 5 −110 −105 97.44 −7.5610.15回收和盈亏如下表:股票价格看涨期权回收看跌期权回收贷出资金回收总回收净成本及其利息盈亏90 0 −5 95 90 −105 −15100 5 0 95 100 −105 −5 10.16回收和盈亏如下表:股票价格看涨期权回收看跌期权回收借入资金的回收总回收净收入及其利息盈亏100 0 5 −105 −100 105 5 110 −5 0 −105 −110 105 −510.17105(9.31 1.69) 1.0597--⨯=10.18通过下表可以看到两种交易的盈亏相同:股票价格买进看涨期权的回收卖出看涨期权的回收总回收净成本及其利息盈亏90 0 0 0 −2.46 −2.5100 5 0 5 −2.46 2.54 10.19通过下表可以看到两种交易的盈亏相同:股票价格买进看涨期权的回收卖出看涨期权的回收总回收净成本及其利息盈亏90 0 0 0 3.41 3.41 100 0 −5 −5 3.41 −1.59第11章随机利率11.1 A 10的完整分布如下:概率 A 10 (A 10)2 0.20 1.63 2.65 0.40 2.10 4.41 0.402.918.48(1) 十年末累积值的期望为2330.05元.(2) 十年末累积值的方差为255027.66, 标准差为505.11.2 期望累积值为2593.74元. 累积值的方差为83865.54, 标准差为289.60. 11.3 期望累积值为1560.9元. 11.4 公式(3)和(4)是正确的.11.5 三个投资额的期望累积值分别为6350.4元, 3528元和2240元. 第3年末该账户的期望累积值为12118.4元.11.6 期望累积值为1.1449, 累积值的方差为0.000916.11.7 (1) ln(1)t i +的期望为0.073189, ln(1)t i +的方差为0.000122.(2) ()()25050ln 50, var ln 50E A A μσ==⎡⎤⎡⎤⎣⎦⎣⎦()()()[][]5050Pr 100040000Pr ln ln 40Pr 0.3761Pr 0.376A A Z Z >=> ≈> =-<⎡⎤⎣⎦ []Pr 0.3760.65Z <=, ()50Pr 1000AV 400000.35>= 11.8 累积价值的95%置信区间为(0.81, 1.34). 11.9 (1)t i +的期望和方差分别为222/22E(1)e , var(1)e (e 1)t t i i μσμσσ+++=+=-, 故有E()0.0844, var()0.00235t t i i ==假设年收益率的中位数为k , 则有()ln(1)Pr()0.5Pr ln(1)ln(1)0.5Pr 0.5t t k i k i k Z μσ+-⎛⎫<=⇒+<+=⇒<= ⎪⎝⎭ln(1)08.33%k k μσ+-=⇒=.11.10 利率树:现金流和各节点的价值:可赎回债券的价格为99.19元.11.11 第1年末的即期利率由当前的即期利率发展而来, 在当前利率水平的基础上上调30%的概率为0.75, 下降30%的概率为0.25. 第2年末的即期利率由第1年末的即期利率发展而来, 在第1年末利率水平的基础上上调30%的概率为0.75, 下降30%的概率为0.25. 利率树如下:[]()()()()()()()()()()()()2E 0.750.750.08450.750.250.050.250.750.050.250.250.029596.813%i =+++=。
《数理金融》习题参考答案

《数理金融》习题参考答案第一章〔P52〕题1-1 希德劳斯基模型的金融学含义是什么?解:参考方程〔1.2.13〕式后面的一个自然段。
题1-2 欧拉方程的经济学和金融学的含义是什么?解:参考方程〔1.5.9〕式和方程〔1.5.10〕式后面的一个自然段。
题1-3 假如你借款1000美元,并以年利率8%按每季度计息一次的复利形式支付利息,借期为一年。
那么一年后你欠了多少钱?解: 每季度计息一次的8%的年复合利率,等价于每个季度以2%的单利利率支付一次利息,而每个季度索要的利息,不仅要考虑原有的本金,而且还要加上累计到该时刻的利息。
因此,一个季度后你的欠款为: 1000(1+0.02)两个季度后你的欠款为: 21000(1+0.02)(1+0.02)1000(1+0.02)=三个季度后你的欠款为: 231000(1+0.02)(10.02)1000(1+0.02)+=四个季度后你的欠款为:341000(1+0.02)(10.02)1000(1+0.02)1082.40+==题1-4 许多信用卡公司均是按每月计息一次的18%的年复合利率索要利息的。
假如在一年的年初支付金额为P ,而在这一年中并没有发生支付,那么在这一年的年末欠款将是多少? 解:如此的复合利率相当于每个月以月利率1812%1.5%=支付利息,而累计的利息将加到下一个月所欠的本金中。
因此,一年后你的欠款为:12P(1+0.015)1.1956P =题1-5 假如一家银行所提供的利息是以名义利率5%连续地运算利息,那么每年的有效利率应该是多少?解:有效利率应为:0.050.05eff Pe P r e 10.05127P-==-≈ 即有效利率是每年5.127%。
题1-6 一家公司在以后的5年中需要一种特定型号的机器。
这家公司当前有一台这种机器,价值6000美元,以后3年内每年折旧2000美元,在第三年年末报废。
该机器开始使用后,第一年运转费用在该年年初值为9000美元,之后在此基础上每年增加2000美元。
《金融数学引论第二版》复习提纲

《金融数学引论》复习提纲第一章 利息的基本计算 第一节 利息基本函数一. 累积函数a(t)与总量函数A(t)某一度量期的实际利率是指该度量期内得到的利息金额与此度量期开始时投资的本金金额之比,通常用字母i 来表示。
利息金额I n =A(n)-A(n-1)对于实际利率保持不变的情形,i=I 1/A(0); 对于实际利率变动的情形,则i n =I n /A(n-1); 二.单利和复利考虑投资一单位本金,(1) 如果其在t 时刻的积累函数为 a(t)=1+i*t ,则称这样产生的利息为单利;实际利率 )()()()(1111-+=---=n i in a n a n a i n(2) 如果其在t 时刻的积累函数为a(t)=(1+i)t ,则称这样产生的利息为复利。
实际利率 i i n =三.. 贴现函数一个度量期的实际贴现率为该度量期内取得的利息金额与期末的投资可回收金额之比,通常用字母d 来表示实际贴现率。
等价的利率i 、贴现率d 和贴现因子(折现因子)v 之间关系如下:,(1),1111,,,1d ii d i i d d iv d d iv v i d idi=+==-+=-==-=+四.名利率与名贴现率用()m i 表示每一度量期支付m 次利息的名义利率,这里的m 可以不是整数也可以小于1。
所谓名义利率,是指每1/m 个度量期支付利息一次,而在每1/m 个度量期的实际利率为()/m i m 。
与()m i 等价的实际利率i 之间的关系:()1(1/)m m i i m +=+。
名义贴现率()m d ,()1(1/)m m d d m -=-。
名义利率与名义贴现率之间的关系:()()()()m m m m i d i d m m m m-=⋅。
五.连续利息计算定义利息强度(利息力)为()()()()t A t a t A t a t δ''==, 0()ts ds a t e δ⎰=一个常用的关系式如下:()()11[1]1(1)[1]m p m p i d i v d e m pδ---+=+==-=-=要求:δ,,,,)()(p m d i d i ,之间的计算。
金融数学引论答案 .docx

第一章习题答案1.设总量函数为A(t) = t2 + 2/ + 3 o试计算累积函数a(t)和第n个吋段的利息【仇°解:把t =()代入得4(()) = 3于是:4(t) t? + 2t + 3啲=丽=3In = 4(北)一A(n一1)=(n2 + 2n + 3) — ((n — I)2 + 2(n — 1) + 3))= 2n+l2.对以下两种情况计算从t时刻到冗(£ < n)时刻的利息:(1)厶(0 < r < n);(2)/r =2r(0<r <n).解:(1)I = A(n) - A(t)—In + in-1+ • • • + A+l n(n + 1) t(t + 1)=2 2I = A(n) - A(t)n n=乞h = 土hk=t+l A:=t+13.已知累积函数的形式为:Q(t) = at2 +几若0时刻投入的100元累积到3吋刻为172元,试计算:5时刻投入的10()元在10时刻的终值。
解:由题意得。
(0) = 1, «(3) = = L72=> a = 0.0& 6=14(5) = 100>1(10) = 4(0) • «(10) = 4⑸• W = 100 x 3 = 300.a(5)4.分别对以下两种总量函数计算订和讪:(1) A(t) = 100 + 5t; (2) A(t) = 100(1 + 0.1尸・解:(1)_ 4(5) - 4(4)5 _ 4(4)5二面-.17% . 4(10)-4(9)210 =—4(9)—5=—^ 3.45%145⑵_ 4(5) - 4(4)5 - 4⑷_ 100(1 + 0.1)5 - 100(1 + 0.1)4 = 100(1+ 0.1)4=10%. 4(10) —4(9)皿=_ 100(1+ O.1)10-100(1+ 0.1)9 = 100(1 + 0.1)9=10%5•设4(4) = 1000, i n = O.Oln.试计算4(7)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金融数学第一章练习题详解第 1 章 利息度量1.1 现在投资$600,以单利计息,2 年后可以获得$150 的利息。
如果以相同的复利利率投资$2000,试确定在 3 年后的累积值。
65.2847%)5.121(2000%5.1215026003=+=⇒=•i i1.2 在第 1 月末支付 314 元的现值与第 18 月末支付 271 元的现值之和,等于在第 T 月末支付 1004 元的现值。
年实际利率为 5% 。
求 T 。
58.1411205.1ln /562352.0ln 562352.0ln 05.1ln 12562352.01004/)05.127105.1314(05.105.1%)51()1(271314100412/1812/112/12/1812/112/=⨯-==-=⨯+⨯==+=+=+=------T T i v v v v T tt t t T 两边取对数,其中1.3 在零时刻,投资者 A 在其账户存入 X ,按每半年复利一次的年名义利率 i 计息。
同时,投资者B在另一个账户存入 2X ,按利率 i (单利)来计息。
假设两人在第八年的后六个月中将得到相等的利息,求 i 。
094588.02)12(2)21(2)21()21()21())21()21((212:))21()21((:215/11515151615161516=⨯-==+•+=+-+==+-+=⨯⨯+-+i i i i i i i Xi i i X Xi i X B i i X A i A 两边取对数,的半年实际利率为1.4 一项投资以 δ 的利息力累积,27.72 年后将翻番。
金额为 1 的投资以每两年复利一次的名义利率 δ 累积 n 年,累积值将成为 7.04。
求 n 。
()802)05.1ln /04.7(ln 04.7)21025.072.27/2ln 2)1()(1ln 2/5.072.27=⨯==+=====+=+=n i e e i t a i n tt δδδδδδ(1.5 如果年名义贴现率为 6%,每四年贴现一次,试确定$100 在两年末的累积值。
71.114%)641(10024/1=⨯-⨯-1.6 如果 )(m i = 0.1844144 , )(m d = 0.1802608 ,试确定 m 。
81802608.01844144.01802608.01844144.01111111111112=-⨯=-•=•=-=•--+=⎥⎦⎤⎢⎣⎡-•⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡-•⎥⎦⎤⎢⎣⎡+-=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=+-m m m m mm m m mm m m m m m m m m m m m m d i d i m md i d i m d i m d i m d m i m d m i d m d m i i1.7 基金 A 以每月复利一次的名义利率 12 %累积。
基金 B 以t δ= t / 6 的利息力累积。
在零时刻,分别存入 1 到两个基金中。
请问何时两个基金的金额将相等。
()43.101.1ln 14412/01.1ln 1212/%121212/6/1220=⨯===⎰=+t t t e e t dt t t t两边取对数,1.8 基金 A 以 t δ= a+bt 的利息力累积。
基金 B 以t δ= g+ht 的利息力累积。
基金 A 与基金 B 在零时刻和 n 时刻相等。
已知 a > g > 0 , h > b > 0 。
求n 。
hb a g n hn gn bn an n b n a b a e e t b e e t a ht gt dt ht g bt at dt bt a t t --=⇒+=+⇒===⎰==⎰=++++)(22121)()(),0()0()()(22)21()()21()(20201.9 在零时刻将 100 存入一个基金。
该基金在头两年以每个季度贴现一次的名义贴现率支付利息。
从 t = 2 开始,利息按照 tt +=11δ的利息力支付。
在 t = 5 时,存款的累积值为 260。
求δ。
()()1290.0)2100/(26014260)4/1(100260)4/1(1008/1-)3ln 6(ln 24-1124-52=⨯-⨯==⨯-=⎰⨯--⨯+⨯δδδδe e dt t 现率指前两年内的年名义贴1.10 在基金 A 中,资金 1 的累积函数为 t+1,t>0;在基金 B 中,资金 1 的累积函数为1+t 2 。
请问在何时,两笔资金的利息力相等。
41.012012121112,11222=-=⇒=-+⇒+=+⇒=+=+=t t t tt t t t t B A B A δδδδ令1.11 已知利息力为tt +=12δ。
第三年末支付 300 元的现值与在第六年末支付 600 元的现值之和,等于第二年末支付 200 元的现值与在第五年末支付 X 元的现值。
求 X 。
82.315))51/(())21(200-)61(600)31(300()5()2(200)6(600)3(300)1()()1()(22-221111212)1ln(2120=++⨯+⨯++⨯=⇒⨯+⨯=⨯+⨯+=⇒+==⎰=---------++X a X a a a t t a t e e t a t dt t t1.12 已知利息力为1003t t =δ。
请求)3(1-a 。
8167.0)3(2025.0400/81)03(400/110014303====⎰=---⨯---e e e ea dt t1.13 资金 A 以 10%的单利累积,资金 B 以 5%的单贴现率累积。
请问在何时,两笔资金的利息力相等。
51.011.0-205.0105.01.011.005.0105.0)05.01()(05.01)%51()(:1.011.01.01)%101()(:11=⇒+=⇒-=+⇒=-=⇒-=⇒-=-=+=⇒+=+=--t t t tt t t t a t t t a B tt t t a A B A B A δδδδ令 1.14 某基金的累积函数为二次多项式,如果向该基金投资 1 年,在上半年的名义利率为 5%(每半年复利一次),全年的实际利率为 7%,试确定5.0δ。
06829.0103.004.003.008.0103.004.0)(,1,03.0,04.0%71)1(2/%515.025.0)5.0(1)0()(5.025.022=+++=++====⇒+=++=+=++===++==t t t t t t t a c b a c b a a c b a a c a cbt at t a δ设累积函数为1.15 某投资者在时刻零向某基金存入 100,在时刻 3 又存入 X 。
此基金按利息力1002t t =δ累积利息,其中 t > 0。
从时刻 3 到时刻 6 得到的全部利息为 X ,求 X 。
61.784)42.109(8776.0)3()6()42.109(8776.1)42.109()6(42.109100)3(632302100100=⇒=+=-+=⎰+=+=+⎰=X X X A A X e X A XX e A dt t dt t1.16 一位投资者在时刻零投资 1000,按照以下利息力计息:⎩⎨⎧>≤≤=3,045.030,02.0t t t t δ求前 4 年每季度复利一次的年名义利率。
%39.30339.0)11445.1(41445.11000)4/1(1000,1445.1)4(16/144045.009.0045.002.04330==-⨯=⇒⨯=+==⎰⎰=⨯++x x x e e a dt dt t 设年名义利率为1.17 已知每半年复利一次的年名义利率为 7.5%,求下列两项的和:(1)利息力;(2)每季度贴现一次的年名义贴现率。
14658.007295.0))2/%5.71(-1(4)2/%5.71()4/1(,07363.0)2/%5.71ln()2/%5.71()()4/1(22422=+=+⨯=⇒+=-=+=+=-⨯-x x x x t a t t t t tδδ设名义贴现率为注:个人认为,求这两个数的和并没有实际意义1.18 假设利息力为⎪⎩⎪⎨⎧≤<≤<=105,25150,2t kt t kt t δ,期初存入单位 1 在第 10 年末将会累积到 2.7183。
试求 k 。
0414.07183.2)(1667.24)1251000(751225251105250=⇒===⎰⎰=-++k e e et a k k k dt kt ktdt1.19 已知利息力为tt +=21δ,一笔金额为 1 的投资从 t=0 开始的前 n 年赚取的总利息是 8。
试求 n 。
1681211)(21)(2ln )2ln(210=⇒=-+=-+==⎰=-++n n n a t e e t a t dt t t1.20 1996 年 1 月 1 日,某投资者向一个基金存入 1000,该基金在 t 时刻的利息力为 0.1(t-1)2 ,求 1998 年 1 月 1 日的累积值。
94.10681000100006667.0)1(1.0202==⎰=-e e A dt t1.21 投资者 A 今天在一项基金中存入 10,5 年后存入 30,已知此项基金按单利 11%计息;投资者 B 将进行同样数额的两笔存款,但是在 n 年后存入 10, 在 2n 年后存入 30,已知此项基金按复利 9.15%计息。
在第 10 年末,两基金的累积值相等。
求 n 。
5244.20915.1ln /8017.0ln 40014.20915.18017.00915.1302)5.67(0915.1304)0915.110(0915.1105.670915.1300915.1100915.1ln /ln ,0915.15.67%)15.91(30%)15.91(10%)15.91(30%)15.91(10:5.67)5%111(30)10%111(10:10101021010210102101021010=-===⨯⨯-⨯⨯⨯-⨯+⨯-==⨯⨯+⨯⨯-===+++⇒+++=⨯++⨯+-----n t t t t n t B A n n n nn 即令 注:不知道为什么,笔者算出来的答案恰好是参考答案的两倍,将2.5244带进去右边=66,将1.262代进去,右边=80,由此可得2.5244接近真实结果1.22 已知利息力为12-=t t δ,2 ≤ t ≤10 。