三角函数的图像与性质

合集下载

三角函数的图象与性质 (共44张PPT)

三角函数的图象与性质 (共44张PPT)

(
)
3 3 A.-2,2 3 3 3 3 C. - , 2 2
解析: 当 故
π π 1 π π 5π x∈0,2 时, 2x- ∈- 6, 6 , sin2x-6 ∈-2,1, 6
上是减函数 - π , 0 C.在[0,π]上是增函数,在
)
π π π π D.在2,π和-π,-2上是增函数,在-2,2 上是减函数
3.(2015· 皖南八校模拟)函数 f(x)=cos 2x+2sin x 的最大值与最小值 的和是 A.-2 3 C.- 2
4.求函数 y=cos x+sin
2
π x|x|≤4 的最大值与最小值.
π 2 2 解:令 t=sin x,∵|x|≤ ,∴t∈- , . 4 2 2
∴y=-t
2
1 2 5 +t+1=-t-2 + , 4
1- 2 1 5 2 ∴当 t= 时,ymax= ,当 t=- 时,ymin= . 2 4 2 2 ∴函数 y=cos x+sin
sin 2x>0, 解析:由 2 9-x ≥0,
π kπ<x<kπ+ ,k∈Z, 2 得 -3≤x≤3.
π π ∴-3≤x<- 或 0<x< . 2 2 ∴函数 y=lg(sin 2x)+ 9-x
2
π π 的定义域为-3,2 ∪0,2 .
2
π 1- 5 x通法]
1.三角函数定义域的求法 求三角函数定义域实际上是构造简单的三角不等式(组),常借 助三角函数线或三角函数图象来求解.
2.三角函数值域的不同求法 (1)利用 sin x 和 cos x 的值域直接求;

三角函数图像与性质

三角函数图像与性质

三角函数图像与性质
三角函数是基本的初等函数之一,它以角度为自变量,以任意角度的终边与单位圆或其比值的交点坐标为因变量。

接下来看看常见三角函数的图像和性质。

三角函数的图像
三角函数的性质
1.正弦函数
在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A 的正弦,记作sinA,即sinA=∠A的对边/斜边。

正弦值在[2kπ-π/2,2kπ+π/2](k∈Z)随角度增大(减小)而增大(减小),在[2kπ+π/2,2kπ+3π/2](k∈Z)随角度增大(减小)而减小(增大)。

图像:波形曲线
值域:[-1,1]
定义域:R
2.余弦函数
在Rt△ABC(直角三角形)中,∠C=90°(如图所示),∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为
cosa=AC/AB。

余弦函数:f(x)=cosx(x∈R)。

余弦值在[2kπ-π,2kπ](k∈Z)随角度增大(减小)而增大(减小),在[2kπ,2kπ+π](k∈Z)随角度增大(减小)而减小(增大)。

图像:波形曲线
值域:[-1,1]
定义域:R
3.正切函数
在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是
tanB=b/a,即tanB=AC/BC。

正切值在[kπ-π/2,kπ+π/2](k∈Z)随角度增大(减小)而增大(减小)。

图像:右图平面直角坐标系反映
定义域:{x|x≠(π/2)+kπ,k∈Z}
值域:实数集R。

原创三角函数的概念图像及性质.ppt

原创三角函数的概念图像及性质.ppt

① asin□与bcos□之间是“+”连接
② a,b分别是sin□与cos□的系数 注3.辅助角φ的确定方法:
(a,b)
方法甚多凭爱好 坐标定义是基础
φ
数形结合两限制 注释说明一般角
O
X
(2) a sin □ bcos□ a2 b2 cos(□ )
(其中 tan a,Φ与点(b,a)同象限)
cos A b2 c2 a2 2bc
cos B a2 c2 b2 2ac
cos C a2 b2 c2 2ab
三角式运算公式总述
1.公式:
①同角关系 ②异角关系
2.作用:
一角二名三结构……
世上本无路三角走运的算人公多式了关便联有图了路
半角
作用
商数 平方 关系 关系
倒数
关系
同角
基本
1、同角基本关系式
(1)公式:
①平方关系 sin 2 cos2 1
②商数关系 sin tan cos③倒数关系 tan Fra bibliotekot 1 sinx
注:记忆图
①平方关系:阴影三角形…
tanx
②商数关系:边上左右邻居…
③倒数关系:对角线……
secx
cosx
1
cotx
cscx
1、同角基本关系式
(1).公式:……
(2).作用: 变名变结构
注:经典题型:同角两弦的和差商积可互化.即“知一有n”
桥梁: (sin x cos x)2 1 2sin x cos x 1 sin 2x
sin x n1 sin x cos x n3 sin x cos x n5 sin 2 x cos2 x n7
五点做图象 “代

三角函数的图像与性质

三角函数的图像与性质

三角函数的图像与性质三角函数是数学中的一类重要的函数,包括正弦函数(sin)、余弦函数(cos)、正切函数(tan),以及它们的倒数函数(csc,sec,cot)。

下面是关于三角函数的一些图像与性质:1. 正弦函数(sin)的图像:正弦函数是一个周期函数,它的图像在一个周期内呈现出振荡的形式,取值范围在-1到1之间。

当自变量取0、π/2、π、3π/2等特殊值时,正弦函数的值为0、1、0、-1,分别对应于函数的最小值、最大值、0点和最大负值。

2. 余弦函数(cos)的图像:余弦函数也是一个周期函数,它的图像与正弦函数的图像非常相似,只是相位差了π/2。

余弦函数的取值范围也在-1到1之间,当自变量取0、π/2、π、3π/2等特殊值时,余弦函数的值依次为1、0、-1、0。

3. 正切函数(tan)的图像:正切函数的图像在每个周期上有无穷多个交点,它的值可以为任何实数。

正切函数与正弦函数和余弦函数之间存在着一定的关系,即tan(x) =sin(x) / cos(x)。

当自变量取π/2、3π/2、5π/2等特殊值时,正切函数的值为正无穷大;取-π/2、-3π/2、-5π/2等特殊值时,正切函数的值为负无穷大。

4. 三角函数的周期性:正弦函数、余弦函数和正切函数都是周期函数,它们的周期分别为2π、2π和π。

这意味着,当自变量增加一个周期时,函数的值将重复出现。

例如,sin(x + 2π) = sin(x)。

5. 三角函数的奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。

奇函数的图像关于原点对称,即f(-x) = -f(x);偶函数的图像关于y轴对称,即f(-x) =f(x)。

这些是关于三角函数图像与性质的一些基本信息,三角函数在数学、物理、工程等领域都有广泛的应用。

三角函数的图象与性质

三角函数的图象与性质

-
;
-1
y=cosx
2 3
4 5 4 5
6 x 6 x
五.定义域 、值域及取到最值时相应的x的集合:
-6 -5
-4 -3
复习回顾
-2 -
y y=sinx
1 o
-1
2 3
y
si-n6x的对称-5轴:x
k -4
2-,3对 称点-:2(k
,0);
-
y cosx的对称轴:x k , 对称点:(k ,0);
1.4.1正弦、余弦函数的图象
复习
回顾 三角函数
三角函数线
正弦函数 余弦函数 正切函数
sin=MP
正弦线MP cos=OM 余弦线OM tan=AT 正切线AT
y PT
-1
O
M A(1,0) x
正弦、余弦函数的图象
问题:如何作出正弦、余弦函数的图象?
途径:利用单位圆中正弦、余弦线来解决。
描图:用光滑曲线
复习回顾
一.正弦余弦函数的作图: 几何描点法(利用三角函数线) 五点法作简图
二.周期性:
函数y Asin(x )和y Acos(x ),x R的周期T 2 | |
三.奇偶性:
y sin x为奇函数,图像关于原点对称; y cosx为偶函数图像关于y轴对称。
-6 -5
-4 -3
复习回顾 y y=sinx
(0,11)
3
( 2 ,1)
-
(-o12 ,0)
( 2 ,0)
2
( ,-1)
3
线
4
5 6 x
正弦、余弦函数的图象
y
五点画图法
1
(
2
,1)

三角函数的图像与性质课件

三角函数的图像与性质课件

1
0 -1
y
y=-cosx x [0,2 ]
1

o

3●
2
x
2
2
-1 ●

思考:
1、函数y=1+sinx的图象与函数y=sinx的图象有什么关系? 2、函数y=-cosx的图象与函数y=cosx的图象有什么关系?
y 2
1
o
2
-1
y
1
o
2
-1
y=1+sinx x[0, 2 ]
3
2
x
2
y=sinx x[0, 2 ]
解:(1)函数的定义域为 R,

f(x)

cos(
π 2

2x)


sin
2x.∵f( -x) =-
sin(-2x)=sin 2x=-f(x),∴函数 f(x)=cos(2x
+52π)是奇函数.(2)函数的定义域为 R,
且 f(-x)=sin[cos(-x)]=sin(cos x)=f(x),
∴函数 f(x)=sin(cos x)是偶函数.
【名师点评】 判断函数奇偶性时,必须先检查定义 域是否是关于原点的对称区间.如果是,再验证f(-x) 是否等于-f(x)或f(x),进而判断函数的奇偶性;如果 不是,则该函数必为非奇非偶函数.
跟踪训练
3.判断下列函数的奇偶性.
(1)f(x)=cos(2x+52π);
(2)f(x)=sin(cos x).
(2)y= - cosx, x [0, 2 ]
解:(1)按五个关键点列表
x
0
2
3
2
2
sinx 0 1 0 -1 0

三角函数的图像与性质(名师经典总结)

三角函数的图像与性质(正弦、余弦、正切)【知识点1】函数y =sin x ,y =cos x ,y =tan x 的图象性质题型1:定义域例1:求下列函数的定义域(1)xx y cos 2cos 1+=; (2)x y 2sin = 2lg(4)x -题型2:值域 例2:求下列函数值域 (1))3π2,6π(,sin 2-∈=x x y (2)y=2sin(2x-3π),x 5,46ππ⎡⎤∈⎢⎥⎣⎦(3) )3π,2π(),3π2cos(2-∈+=x x y(4)函数1)6π21cos(2++-=x y 的最大值以及此时x 的取值集合题型3:周期例3:求下列函数的周期: (1)f(x)=2sin2x (2)y=cos(123x π-) (3)y=tan(2x 4π-) (4)y=sin x 例4: 若函数()2sin(2)3f x kx π=+的最小正周期T 满足12T <<,则自然数k 的值为______.例5:若)10(sin 2)(<<=ϖϖx x f 在区间[0,]3π上的最大值是2,则ϖ=________.例6:使x y ωsin =(ω>0)在区间[0,1]至少出现2次最大值,则ω的最小值为【 】A .π25B .π45C .πD .π23例7:设函数f(x)=2sin(25x ππ+),若对于任意的x R ∈,都有f(1x )2()()f x f x ≤≤成立,则12x x -的最小值是A.4B.2C.1D.12题型4:奇偶性 例8:函数y =sin (x +2π)(x ∈[-2π,2π])是【 】A.增函数B.减函数C.偶函数D.奇函数例9:判断下列函数的奇偶性 (1)y=xsin(x π+) (2)y=cos 1sin x x+例10:已知函数f(x)=x 3cosx+1,若f(a)=11,则f(-a)=________ 题型5:单调性例11:函数y =21log sin(2x +4π)的单调递减区间是【 】 A.(k π-4π,k π](k ∈Z ) B.(k π-8π,k π+8π](k ∈Z ) C.(k π-83π,k π+8π](k ∈ D.(k π+8π,k π+83π](k ∈Z )例12:.求1cos()3412logx y π+=的单调区间例13:求下列函数的单调增区间(1))3π21cos(-=x y ; (2) ]0,π[),6π2sin(2-∈+=x x y ;(3))23πsin(2x y -=例14:(1)求函数y=2sin(2x-3π)的单调递减区间。

3.4三角函数的图像与性质


例2 求函数y=cos3x的最大值及取得最大值时自变量x的集合.
解:令t=3x,y=cos3x=cost,ymax=1.
因为使函数cost取得最大值的t的集合为{t|t=2kΠ,k∈Z}因为t=3x,
所以{x|x=23kΠ,k∈Z}
练习
1.比较cos5与cos7值的大小.
解:5=36°,7≈26°,因为区间[0,Π]是减函数,所以cos5<cos7.
y=sinx是奇函数,从图像来看,y=sinx的图像关于原点对称,也能判断
出y=sinx是奇函数.
周期性:物体有规律地重复出现,做周期运动.
正弦曲线的部分图像是重复出现的,因此正
弦函数具有周期性.
周期函数:一般地,对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内
的每一个值,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么,函数f(x)就
下面五个点在确定图像形状
时起着关键作用:

(0,1),(
,0),(Π,2
1),(3
,0),(2Π,1)
2
这五个点描出后,余弦函数
y=cosx(x∈[0,2Π]) 的 图 像
形状就基本确定了.
0=0°,2=90°,Π=180°,3
=270°,2Π=360°,这五个点都是相差90°角
2
的关系.像这样画余弦函数的方法称为五点法.
(2)求出它的最大值和最小值;
(3)判断它的奇偶性;
(4)指出这个函数在[0,2Π]上的单调区间.
(2)ymin=-0.5,ymax=0.5.
(3)函数y=12sinx是奇函数.
(4)单调减区间为[ 2 , 3
],

三角函数的图像与性质详解

三角函数的图像与性质详解在数学领域中,三角函数是一组常见且重要的函数。

它们不仅具有许多实际应用,同时也有着丰富的图像特性和数学性质。

本文将详细介绍三角函数的图像和性质,以帮助读者更好地理解和应用这些函数。

一、正弦函数的图像与性质正弦函数是最基本的三角函数之一,用符号sin表示。

正弦函数的图像是一个连续的波形,具有以下性质:1. 周期性:正弦函数的图像在一个周期内重复。

正弦函数的周期由2π决定。

2. 对称性:正弦函数的图像关于y轴对称,即f(x) = -f(-x)。

3. 范围:正弦函数的值在[-1, 1]的范围内变化。

二、余弦函数的图像与性质余弦函数是另一个常见的三角函数,用符号cos表示。

余弦函数的图像也是一个连续的波形,具有以下性质:1. 周期性:余弦函数的图像也在一个周期内重复。

余弦函数的周期同样由2π决定。

2. 对称性:余弦函数的图像关于y轴对称,即f(x) = f(-x)。

3. 范围:余弦函数的值同样在[-1, 1]的范围内变化。

三、正切函数的图像与性质正切函数是三角函数中的另一个重要成员,用符号tan表示。

正切函数的图像具有以下性质:1. 周期性:正切函数的图像在每个π的倍数处出现垂直渐近线。

因此,正切函数没有固定的周期。

2. 对称性:正切函数的图像关于原点对称,即f(x) = -f(-x)。

3. 范围:正切函数在定义域内可以取任何实数值。

四、其他三角函数除了正弦、余弦和正切函数之外,还有许多与三角函数相关的函数,例如反正弦、反余弦和反正切函数。

这些函数的图像和性质相对复杂,超出了本文的范围。

感兴趣的读者可以进一步学习和了解这些函数的性质。

综上所述,三角函数是数学中常见而重要的函数。

它们的图像和性质有助于我们理解和应用这些函数。

通过研究三角函数的性质,我们可以更好地解决与周期性和周期性相关的问题,例如波动、震动和周期性运动。

希望本文的内容能够对读者在学习和应用三角函数时有所帮助。

§4.3 三角函数的图象与性质


于点( x0 ,0) 中心对称.
( ) 设 f( x) =
4cos
ωx-
π 6
sin ωx - cos ( 2ωx + π) , 其 中 ω
>0.
(1)求函数 y = f(x)的值域;
[ ] (2)若 f(x)在区间
- 32π,
π 2
上为增函数,求 ω 的最大值.
( ) 解析 (1)f(x)= 4

(2) (2019 成都七中 1 月月考,14) 如图为一弹簧振子作简 谐运动的图象,横轴表示振动的时间,纵轴表示振动的位移,则 这个振子振动的一个函数解析式是 .
解析
( 1) 由
T 4

11 12
π-
2 3
π=
π 4
,得


π,

T=
2π ,∴
ω
ω = 2,∴
f( x) =
对称性
对称轴:x = kπ+
π 2
( k∈Z) ;
对称中心:( kπ,0) ( k∈Z)
周期
2π
单调性
单调增区间:
[ ] 2kπ-
π 2
,2kπ+
π 2
( k∈Z) ;
单调减区间:
[ ] 2kπ+
π 2
,2kπ+
3π 2
( k∈Z)
奇偶性
奇函数
[ -1,1]
对称轴:x = kπ( k∈Z) ;
( ) 对称中心:
换,设


ωx+φ,由


0,
π 2
3π ,π, ,2π

来求出相
应的
x,通过列
表、计算得出五点坐标,描点连线后得出图象.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学过程一、课堂导入问题:三角函数的画法?三角函数的性质有哪些?二、复习预习1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响.2.要注意求函数y=A sin(ωx+φ)的单调区间时ω的符号,尽量化成ω>0时的情况.三、知识讲解考点1用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0). 余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).考点2正弦函数、余弦函数、正切函数的图象和性质[-1,1][-1,1]四、例题精析考点一求三角函数的定义域和最值例1函数y =2sin ⎝ ⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( )A .2- 3B .0C .-1D .-1- 3【规范解答】利用三角函数的性质先求出函数的最值. ∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴sin ⎝ ⎛⎭⎪⎫π6x -π3∈⎣⎢⎡⎦⎥⎤-32,1.∴y ∈[]-3,2,∴y max +y min =2- 3. 答案 A【总结与反思】求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.考点二三角函数的单调性、周期性例2写出函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调区间及周期。

【规范解答】y =-sin ⎝ ⎛⎭⎪⎫2x -π3,它的增区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的减区间,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z . 由2k π+π2≤2x -π3≤2k π+3π2,k ∈Z ,得k π+5π12≤x ≤k π+11π12,k ∈Z .故所给函数的减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z ;增区间为⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12,k ∈Z .最小正周期T =2π2=π.【总结与反思】求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中,ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.考点三三角函数的奇偶性和对称性例3 已知f (x )=sin x +3cos x (x ∈R ),函数y =f (x +φ) ⎝ ⎛⎭⎪⎫|φ|≤π2的图象关于直线x =0对称,则φ的值为________.【规范解答】f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3,y =f (x +φ)=2sin ⎝ ⎛⎭⎪⎫x +π3+φ图象关于x =0对称,即f (x +φ)为偶函数.∴π3+φ=π2+k π,k ∈Z ,φ=k π+π6,k ∈Z ,又∵|φ|≤π2,∴φ=π6.【总结与反思】若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大值或最小值. 若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0. 如果求f (x )的对称轴,只需令ωx +φ=π2+k π (k ∈Z ),求x . 如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π (k ∈Z )即可.五、课堂运用【基础】1、已知ω>0,函数f(x)=sin(ωx+π4)在(π2,π)上单调递减,则ω的取值范围是()A.[12,54] B.[12,34] C.(0,12] D.(0,2]【规范解答】由π2<x <π得π2ω+π4<ωx +π4<πω+π4,由题意知(π2ω+π4,πω+π4)⊆[π2,3π2], ∴⎩⎪⎨⎪⎧π2ω+π4≥π2,πω+π4≤3π2,∴12≤ω≤54,故选A.2、已知ω>0,0<φ<π,直线x=π4和x=5π4是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ等于()A.π4B.π3C.π2D.3π4【规范解答】利用三角函数的对称轴求得周期.由题意得周期T =2⎝ ⎛⎭⎪⎫5π4-π4=2π,∴2π=2πω,即ω=1,∴f (x )=sin(x +φ),∴f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π4+φ=±1,∵0<φ<π,∴π4<φ+π4<5π4,∴φ+π4=π2,∴φ=π4.【巩固】1、设函数f(x)=3sin(π2x+π4),若存在这样的实数x1,x2,对任意的x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为________.【规范解答】f(x)=3sin(π2x+π4)的周期T=2π×2π=4,f(x1),f(x2)应分别为函数f(x)的最小值和最大值,故|x1-x2|的最小值为T2=2.2、已知函数f (x )=cos x sin x (x ∈R ),给出下列四个命题:①若f (x 1)=-f (x 2),则x 1=-x 2;②f (x )的最小正周期是2π;③f (x )在区间[-π4,π4]上是增函数; ④f (x )的图象关于直线x =3π4对称.其中真命题是________.【规范解答】f(x)=12sin 2x,当x1=0,x2=π2时,f(x1)=-f(x2),但x1≠-x2,故①是假命题;f(x)的最小正周期为π,故②是假命题;当x∈[-π4,π4]时,2x∈[-π2,π2],故③是真命题;因为f(3π4)=12sin32π=-12,故f(x)的图象关于直线x=34π对称,故④是真命题.答案③④【拔高】1、已知函数f(x)=sin 2x-3cos 2x+1.(1)当x∈[π4,π2]时,求f(x)的最大值和最小值;(2)求f(x)的单调区间.【规范解答】(1)f(x)=sin 2x-3cos 2x+1=2sin(2x-π3)+1.∵π4≤x≤π2,∴π2≤2x≤π,∴π6≤2x-π3≤2π3,∴12≤sin(2x-π3)≤1,∴1≤2sin(2x-π3)≤2,于是2≤2sin(2x-π3)+1≤3,∴f(x)的最大值是3,最小值是2.(2)由2kπ-π2≤2x-π3≤2kπ+π2,k∈Z,得2kπ-π6≤2x≤2kπ+5π6,k∈Z,∴kπ-π12≤x≤kπ+5π12,k∈Z,即f(x)的单调递增区间为[kπ-π12,kπ+5π12],k∈Z,同理由2kπ+π2≤2x-π3≤2kπ+3π2,k∈Z,得f(x)的单调递减区间为[kπ+5π12,kπ+11π12],k∈Z.2、已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝ ⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.【规范解答】(1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6.∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,∴-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ].∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1,∴b =-5,3a +b =1,因此a =2,b =-5.(2)由(1)得,f (x )=-4sin ⎝ ⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝ ⎛⎭⎪⎫2x +7π6-1=4sin ⎝ ⎛⎭⎪⎫2x +π6-1,又由lg g (x )>0,得g (x )>1,∴4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,∴sin ⎝ ⎛⎭⎪⎫2x +π6>12,∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝ ⎛⎦⎥⎤k π,k π+π6,k ∈Z .又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为⎝ ⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z .课程小结1.讨论三角函数性质,应先把函数式化成y=A sin(ωx+φ)(ω>0)的形式.2.函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π|ω|,y=tan(ωx+φ)的最小正周期为π|ω|.3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t=ωx+φ,将其转化为研究y=sin t的性质.4.闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响.5.要注意求函数y=A sin(ωx+φ)的单调区间时ω的符号,尽量化成ω>0时的情况.。

相关文档
最新文档