现有坐标转换2000坐标讲解

合集下载

从地方坐标系到2000国家大地坐标系的转换方法

从地方坐标系到2000国家大地坐标系的转换方法

从地方坐标系到2000国家大地坐标系的转换方法1.引言我国曾经采用过1954北京坐标系和1980西安坐标系作为国家大地坐标系, 但是随着科技的进步,特别是GPS技术和新的大地测量技术的发展, 原有两种坐标系都不是基于以地球质量中心为原点的坐标系统, 不能适应新时期国民经济和科学发展的需要。

因此, 需要建立以地球质量中心为原点的新型坐标系统, 即地心坐标系统, 以满足我国建设地理空间信息框架以及各个行业的需求。

经过我国科学家多年的努力, 建立了国家地心大地坐标系, 即CGCS2000。

2008 年6月,国家测绘局宣布,自2008年7月1日起,中国正式启用2000国家大地坐标系, 并将我国全面启用新坐标系的过渡期定为8~10年。

原有基础地理信息4D数据, 采用的坐标框架包括1954北京坐标系、1980西安坐标系, 同时各个地方还采用地方坐标系作为基础地理信息数据的坐标框架。

要实现各种成果坐标框架统一到CGCS2000坐标框架下, 需要将原有成果进行坐标转换, 即将原有成果坐标系转换到CGCS2000。

2.CGCS2000坐标系定义方法地心坐标系是以地球质心为原点建立的空间直角坐标系, 或以球心与地球质心重合的地球椭球面为基准面所建立的大地坐标系。

以地球质心(总椭球的几何中心)为原点的大地坐标系, 通常分为地心空间直角坐标系(以x、y、z 为其坐标元素)和地心大地坐标系(以B、L、H 为其坐标元素)。

其中地心坐标系是在大地体内建立的O-X YZ 坐标系。

原点O 设在大地体的质量中心, 用相互垂直的X、Y、Z 三个轴来表示, X 轴与首子午面与赤道面的交线重合,向东为正; Z 轴与地球旋转轴重合, 向北为正; Y 轴与XZ 平面垂直构成右手系。

CGCS2000国家大地坐标系, 是一种采用地球质量中心作为原点的地心坐标系, 2000 国家大地坐标系的原点为包括海洋和大气的整个地球的质量中心。

该坐标系定义除原点外, 还包括3个坐标轴指向、尺度以及地球椭球的4 个基本常数定义。

2000大地坐标系转换技术指南

2000大地坐标系转换技术指南

CGCS2000 –China Geodetic Coordinate System 2000 附件:现有测绘成果转换到2000国家大地坐标系技术指南一、2000国家大地坐标系的定义国家大地坐标系的定义包括坐标系的原点、三个坐标轴的指向、尺度以及地球椭球的4个基本参数的定义。

2000国家大地坐标系的原点为包括海洋和大气的整个地球的质量中心;2000国家大地坐标系的Z轴由原点指向历元2000.0的地球参考极的方向,该历元的指向由国际时间局给定的历元为1984.0的初始指向推算,定向的时间演化保证相对于地壳不产生残余的全球旋转,X轴由原点指向格林尼治参考子午线与地球赤道面(历元2000.0)的交点,Y轴与Z轴、X轴构成右手正交坐标系。

采用广义相对论意义下的尺度。

2000国家大地坐标系采用的地球椭球参数的数值为:长半轴a=6378137m扁率f=1/298.257222101地心引力常数GM=3.986004418×1014m3s-2自转角速度ω=7.292l15×10-5rad s-1其它参数见下表:采用2000国家大地坐标系后仍采用无潮汐系统。

二、点位坐标转换方法(一)模型选择全国及省级范围的坐标转换选择二维七参数转换模型;省级以下的坐标转换可选择三维四参数模型或平面四参数模型。

对于相对独立的平面坐标系统与2000国家大地坐标系的联系可采用平面四参数模型或多项式回归模型。

坐标转换模型详见本指南第六部分。

(二)重合点选取坐标重合点可采用在两个坐标系下均有坐标成果的点。

但最终重合点还需根据所确定的转换参数,计算重合点坐标残差,根据其残差值的大小来确定,若残差大于3倍中误差则剔除,重新计算坐标转换参数,直到满足精度要求为止;用于计算转换参数的重合点数量与转换区域的大小有关,但不得少于5个。

(三)模型参数计算用所确定的重合点坐标,根据坐标转换模型利用最小二乘法计算模型参数。

(四)精度评估与检核用上述模型进行坐标转换时必须满足相应的精度指标,具体精度评估指标及评估方法见附件中相关内容。

2000国家大地坐标系转换的指南

2000国家大地坐标系转换的指南

2000国家大地坐标系转换的指南2000国家大地坐标系是中国大陆地区的统一坐标系统,用于测量和定位地理空间信息。

在进行地理空间数据处理、制图、测绘等工作中,常常需要将其他坐标系的数据转换为2000国家大地坐标系。

本文将为大家介绍2000国家大地坐标系转换的指南。

首先,要进行2000国家大地坐标系转换,需要了解基本的理论知识。

2000国家大地坐标系采用了CGCS2000(China Geodetic Coordinate System 2000)参考椭球面模型,采用Lambert投影。

对于需要进行坐标系转换的数据,我们要了解原始坐标系的参数,包括椭球长半轴、扁率、投影中央子午线经度等。

其次,要转换坐标系,需要使用专业的坐标转换软件。

目前市面上有许多专业测绘软件、地理信息系统(GIS)软件能够进行坐标系转换,例如SuperMap、ArcGIS等。

这些软件提供了丰富的转换算法和工具,能够满足不同数据源的转换需求。

常见的2000国家大地坐标系转换方法包括参数法和格网法。

参数法是根据原始坐标系的参数设置进行转换,通过坐标点的位移、旋转和缩放来完成转换。

参数法适用于少量坐标点的转换,可以保证转换的准确性。

格网法是基于已经建立好的2000国家大地坐标系格网,通过查表或插值等方式进行转换。

格网法适用于大量的坐标点的转换,效率较高。

在进行坐标系转换时,还需要注意一些常见的问题。

首先,要注意转换结果的精度损失问题。

由于不同坐标系的误差和精度不同,转换过程中可能会引入一定的误差。

因此,在进行精确测量和定位时,需要考虑坐标系转换引入的误差。

其次,要注意数据投影带的选择。

2000国家大地坐标系采用了Lambert投影,根据不同区域选择不同的投影带可以提高数据的精度和准确性。

最后,要进行坐标系转换后,还需要进行后续的数据处理和分析工作。

转换为2000国家大地坐标系后的数据可以与其他地理数据进行叠加、分析和可视化。

通过使用专业的地理信息系统软件,可以进行空间查询、地图制图、空间分析等各种功能操作,以满足不同领域的需求。

如何将经纬度坐标转为2000国家大地坐标系

如何将经纬度坐标转为2000国家大地坐标系

1、首先将经纬度坐标中度分秒,转为以度显示的坐标(注意度分秒为60进位,转换坐标显示后,经度作为X坐标,纬度作为Y坐标)
如(119°12'40.720"E,33°18'15.542"N)转为(119.2113,33.3043)
2、将批量转换显示后的坐标统一在Excel中显示,注意前加ID码,并从1开始排序
3、在ArcMap中Tools菜单中选择填XY坐标数据(Add XY Data)
4、在弹出的对话框中分别选择放置XY坐标信息的Excel表,并将经纬度分别对应X坐标和Y坐标
5、坐标对应完成后,点击下方Edit,选择与导入与原始坐标点信息相同的经纬度坐标系
6、坐标信息导入完成后,点位信息即可显示,并通过点击右键将点导出为矢量数据层
7、通过工具Projec工具,将导出的矢量点图层通过投影变换为所需的2000国家大地坐标系,即可得到2000国家大地坐标系的点图层。

2000国家大地坐标系转换指南

2000国家大地坐标系转换指南

现有测绘成果转换到2000国家大地坐标系技术指南一、2000国家大地坐标系的定义国家大地坐标系的定义包括坐标系的原点、三个坐标轴的指向、尺度以及地球椭球的4个基本参数的定义。

2000国家大地坐标系的原点为包括海洋和大气的整个地球的质量中心;2000国家大地坐标系的Z轴由原点指向历元2000.0的地球参考极的方向,该历元的指向由国际时间局给定的历元为1984.0的初始指向推算,定向的时间演化保证相对于地壳不产生残余的全球旋转,X轴由原点指向格林尼治参考子午线与地球赤道面(历元2000.0)的交点,Y轴与Z轴、X轴构成右手正交坐标系。

采用广义相对论意义下的尺度。

2000国家大地坐标系采用的地球椭球参数的数值为:长半轴a=6378137m扁率f=1/298.257222101地心引力常数GM=3.986004418×1014m3s-2自转角速度ω=7.292l15×10-5rad s-1其它参数见下表:采用2000国家大地坐标系后仍采用无潮汐系统。

二、点位坐标转换方法(一)模型选择全国及省级范围的坐标转换选择二维七参数转换模型;省级以下的坐标转换可选择三维四参数模型或平面四参数模型。

对于相对独立的平面坐标系统与2000国家大地坐标系的联系可采用平面四参数模型或多项式回归模型。

坐标转换模型详见本指南第六部分。

(二)重合点选取坐标重合点可采用在两个坐标系下均有坐标成果的点。

但最终重合点还需根据所确定的转换参数,计算重合点坐标残差,根据其残差值的大小来确定,若残差大于3倍中误差则剔除,重新计算坐标转换参数,直到满足精度要求为止;用于计算转换参数的重合点数量与转换区域的大小有关,但不得少于5个。

(三)模型参数计算用所确定的重合点坐标,根据坐标转换模型利用最小二乘法计算模型参数。

(四)精度评估与检核用上述模型进行坐标转换时必须满足相应的精度指标,具体精度评估指标及评估方法见附件中相关内容。

选择部分重合点作为外部检核点,不参与转换参数计算,用转换参数计算这些点的转换坐标与已知坐标进行比较进行外部检核。

成都坐标与2000坐标转换关系(二)

成都坐标与2000坐标转换关系(二)

成都坐标与2000坐标转换关系(二)成都坐标与2000坐标转换关系1. 背景介绍在地理信息系统(GIS)领域,坐标转换是一项关键任务。

在中国,成都坐标和2000坐标是两种常用的坐标系统。

本文将探讨这两种坐标之间的转换关系,并对其进行解释说明。

2. 成都坐标系统简介成都坐标系统属于地理坐标系统,以东经104°04’“、北纬30°39’”的一个特定地点为原点。

这个坐标系统主要用于成都市及其周边地区的地图绘制和测量。

3. 2000坐标系统简介2000坐标系统是全球统一的地心坐标系统,采用WGS 84椭球体模型。

它是由美国国防部和国家地理空间情报局联合开发的一种坐标系统,被广泛应用于全球各种地图和地理信息系统。

4. 成都坐标与2000坐标的转换关系成都坐标与2000坐标之间存在一种转换关系,可以通过数学模型将一个坐标点从成都坐标系统转换到2000坐标系统,或者从2000坐标系统转换到成都坐标系统。

该转换关系可以通过坐标转换算法来实现。

在坐标转换算法中,会使用到成都坐标系统与2000坐标系统之间的转换参数,这些参数可以通过大地基准点和相关的地质调查数据来确定。

5. 转换关系的应用成都坐标与2000坐标转换关系的应用非常广泛。

在地图制作、测绘工程、地理信息系统等领域,常常需要将成都坐标和2000坐标相互转换,以确保地图的准确性和一致性。

另外,由于2000坐标系统是全球统一的坐标系统,很多国际标准和协议也采用该坐标系统。

通过将成都坐标转换为2000坐标,使得成都地区的地理数据可以与国际标准进行对接和共享。

6. 结论成都坐标与2000坐标存在一种转换关系,可以通过坐标转换算法实现相互转换。

该转换关系在地理信息系统领域有广泛的应用,对于地图制作和测绘工作至关重要。

同时,通过将成都坐标转换为2000坐标,成都地区的地理数据可以与国际标准对接,实现数据的共享和交流。

2000国家大地坐标系转换的指南

2000国家大地坐标系转换的指南

现有测绘成果转换到2000国家大地坐标系技术指南一、2000国家大地坐标系的定义国家大地坐标系的定义包括坐标系的原点、三个坐标轴的指向、尺度以及地球椭球的4个基本参数的定义。

2000国家大地坐标系的原点为包括海洋和大气的整个地球的质量中心;2000国家大地坐标系的Z轴由原点指向历元2000.0的地球参考极的方向.该历元的指向由国际时间局给定的历元为1984.0的初始指向推算.定向的时间演化保证相对于地壳不产生残余的全球旋转.X轴由原点指向格林尼治参考子午线与地球赤道面(历元2000.0)的交点.Y轴与Z轴、X轴构成右手正交坐标系。

采用广义相对论意义下的尺度。

2000国家大地坐标系采用的地球椭球参数的数值为:长半轴 a=6378137m扁率f=1/298.257222101地心引力常数 GM=3.986004418×1014m3s-2自转角速度ω=7.292l15×10-5rad s-1其它参数见下表:采用2000国家大地坐标系后仍采用无潮汐系统。

二、点位坐标转换方法(一)模型选择全国及省级范围的坐标转换选择二维七参数转换模型;省级以下的坐标转换可选择三维四参数模型或平面四参数模型。

对于相对独立的平面坐标系统与2000国家大地坐标系的联系可采用平面四参数模型或多项式回归模型。

坐标转换模型详见本指南第六部分。

(二)重合点选取坐标重合点可采用在两个坐标系下均有坐标成果的点。

但最终重合点还需根据所确定的转换参数.计算重合点坐标残差.根据其残差值的大小来确定.若残差大于3倍中误差则剔除.重新计算坐标转换参数.直到满足精度要求为止;用于计算转换参数的重合点数量与转换区域的大小有关.但不得少于5个。

(三)模型参数计算用所确定的重合点坐标.根据坐标转换模型利用最小二乘法计算模型参数。

(四)精度评估与检核用上述模型进行坐标转换时必须满足相应的精度指标.具体精度评估指标及评估方法见附件中相关内容。

浅谈2000国家大地坐标系向地方独立坐标系的转换

浅谈2000国家大地坐标系向地方独立坐标系的转换

浅谈2000国家大地坐标系向地方独立坐标系的转换摘要:大约在十年前,我国的国家级和省级的基础地理信息数据已经初步通过2000国家大地坐标系,然而通过国家坐标系统,在一些离中央子午线较远或者海拔较高的地区无法达到相关要求,这就需要将地方独立坐标系建立起来。

本文对2000国家大地坐标系向地方独立坐标系的转化进行分析和研究,以供参考。

关键词:2000国家大地坐标系;地方独立坐标系;转换1 2000国家大地坐标系与地方独立坐标系的建立1.1 2000国家大地坐标系的建立2000国家大地坐标系是全球地心坐标系在我国进行实践的具体体现,其原点主要是大地和海洋的质量中心,z轴是根据相关规定协议地级方向,x轴表示的是相关规定当中定义的协议赤道和子午面的交点,y轴是依照右手坐标系而建立起来的,通过2000国家大地坐标系能够加强定位系统的精确性,广泛应用于各个领域。

1.2地方独立坐标系的建立在工程测量及城市测绘过程中如果通过国家坐标系来进行控制网的建设,往往会出现地面长度投影变形量较大等问题,无法达到工程的实际操作需求,所以一定要建立起与实际情况相适应的地方独立坐标系。

地方独立坐标系的建立,主要是为了让高程归化和投影形变的情况造成的误差缩小,通过地方独立坐标系的建设可以保证达到所需要的精度,不会由于精度无法达到要求,而对工程建设产生影响。

2 2000国家大地坐标系与地方独立坐标系转换的理论基础某市在建设的过程中选取四参数转换模型,对坐标转换参数进行控制,把2000国家大地坐标系的成果向地方独立坐标系的成果进行转化。

2.1重合点选取在坐标系选用的过程中,两个坐标系都有坐标成果控制点,在选择的过程中,主要原则是覆盖整个转换区域,要求精度较高,而且具有较高的等级,分布均匀。

2.2转换参数计算首先通过转换模型和重合点的选择,对转换参数进行计算,将残差大于三倍的误差重合点剔除,对坐标转换参数进行重新计算,直到符合精度要求为止,通过最小二乘法来对参数进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现有测绘成果转换到2000国家大地坐标系技术指南一、2000国家大地坐标系的定义国家大地坐标系的定义包括坐标系的原点、三个坐标轴的指向、尺度以及地球椭球的4个基本参数的定义。

2000国家大地坐标系的原点为包括海洋和大气的整个地球的质量中心;2000国家大地坐标系的Z轴由原点指向历元2000.0的地球参考极的方向,该历元的指向由国际时间局给定的历元为1984.0的初始指向推算,定向的时间演化保证相对于地壳不产生残余的全球旋转,X轴由原点指向格林尼治参考子午线与地球赤道面(历元2000.0)的交点,Y轴与Z轴、X轴构成右手正交坐标系。

采用广义相对论意义下的尺度。

2000国家大地坐标系采用的地球椭球参数的数值为:长半轴a=6378137m扁率f=1/298.257222101地心引力常数GM=3.986004418×1014m3s-2自转角速度ω=7.292l15×10-5rad s-1其它参数见下表:采用2000国家大地坐标系后仍采用无潮汐系统。

二、点位坐标转换方法(一)模型选择全国及省级范围的坐标转换选择二维七参数转换模型;省级以下的坐标转换可选择三维四参数模型或平面四参数模型。

对于相对独立的平面坐标系统与2000国家大地坐标系的联系可采用平面四参数模型或多项式回归模型。

坐标转换模型详见本指南第六部分。

(二)重合点选取坐标重合点可采用在两个坐标系下均有坐标成果的点。

但最终重合点还需根据所确定的转换参数,计算重合点坐标残差,根据其残差值的大小来确定,若残差大于3倍中误差则剔除,重新计算坐标转换参数,直到满足精度要求为止;用于计算转换参数的重合点数量与转换区域的大小有关,但不得少于5个。

(三)模型参数计算用所确定的重合点坐标,根据坐标转换模型利用最小二乘法计算模型参数。

(四)精度评估与检核用上述模型进行坐标转换时必须满足相应的精度指标,具体精度评估指标及评估方法见附件中相关内容。

选择部分重合点作为外部检核点,不参与转换参数计算,用转换参数计算这些点的转换坐标与已知坐标进行比较进行外部检核。

应选定至少6个均匀分布的重合点对坐标转换精度进行检核。

(五)数据库中点位坐标转换模型参数计算的区域选取对于1980西安坐标系下的数据库,采用全国数据计算的一套模型参数可满足1:5万及1:25万比例尺数据库转换的精度要求;采用全国数据计算的六个分区的模型参数可满足1:1万比例尺数据库转换的精度要求。

对于1954年北京坐标系下的数据库的转换,采用全国数据计算的六个分区的模型参数可满足1:5万及1:25万比例尺数据库转换的精度要求;按(2°×3°)进行分区计算模型参数可满足1:1万比例尺数据库转换的精度要求。

三、1:2.5-1:25万数据库的转换(一)按国家基本比例尺地形图分幅组织的数据库按国家基本比例尺地形图分幅组织的图形数据(DLG、DEM、DRG),依据以下方案进行转换。

1、1:2.5-1:10万DLG数据库转换(1)1954年北京坐标系下1:2.5-1:10万DLG数据库转换a、依据相应比例尺分幅进行区域划分,分两步完成坐标转换。

首先进行椭球体变换,再利用对应的比例尺图幅区域的X、Y坐标平移量进行坐标平移;b、依据2000国家大地坐标系下对应的比例尺标准分幅图廓进行数据裁切,区域边缘图幅中的数据空白区利用相邻图幅数据进行补充;c、添加2000国家大地坐标系下的方里格网层,删除原方里格网数据层;d、完成图廓更改、数据编辑、数据接边、拓扑重建、数据入库等数据后处理及建库工作;e、图幅换带接边:采用右图(1954年北京坐标系)接左图(2000国家大地坐标系)时,先进行右图的椭球体与换带转换,在左带中利用左图的平移量进行右图的坐标平移,完成接边后保存在左带中的右图(备份)成果。

返回右图取消先前换带接边加入的平移量,并进行投影变换,最后利用右带自身的平移量完成平移后,方可与其相邻的右图接边;f、对基础地理信息数据库元数据相关条目进行更改。

(2)1980西安坐标系下1:2.5-1:10万DLG数据库转换依据相应比例尺分幅进行区域划分,不考虑椭球体变换,直接利用对应的比例尺图幅区域的X、Y坐标平移量进行坐标平移;然后按照1954年北京坐标系下DLG数据库转换的b~f 对应步骤进行。

2、1:2.5-1:10万DRG数据库转换原数据为300~500dpi的原版印刷地图经扫描纠正生成的RGB栅格数据,无图幅间要素的接边处理。

(1)1954年北京坐标系下1:2.5-1:10万DRG数据库转换a、考虑椭球变换及对应图廓角点的X、Y坐标平移量,计算1954年北京坐标系分幅图廓角点在2000国家大地坐标系下的坐标,并修改数据头文件中相应的定位坐标;b、在DRG数据上叠加2000国家大地坐标系下新的大地控制基础层(图廓及方里格网等),新图廓中数据空白或数据出图区域不做图纹补充和裁减;c、在图例中添加2000国家大地坐标系下新的控制基准说明条款;d、完成数据合层,并保持DRG数据的原有分辨率;e、更改元数据中相关内容,增加1954年北京坐标系标准分幅的图廓四角点在2000国家大地坐标系下坐标,计算2000国家大地坐标系标准分幅的图廓四角点的坐标。

转换后数据为2000国家大地坐标系坐标、1954年北京坐标系分幅。

(2)1980西安坐标系下1:2.5-1:10万DRG数据库转换获取图幅对应比例尺图幅图廓角点的X、Y坐标平移量,根据平移量计算图幅定位坐标,修改数据头文件;然后按照1954年北京坐标系到2000国家大地坐标系的1:2.5-1:10万DRG数据库转换的b~e步骤进行。

转换后数据为2000国家大地坐标系坐标、1980年西安坐标系分幅。

3、1:2.5-1:10万DEM数据库转换原数据为25米分辨率的灰阶(256个)栅格数据,建库数据图幅间接边处理完好。

此数据转换可有两种方式:一种是依据2000国家大地坐标系下DLG相关图层数据(等高线、高程点)重新生成DEM(见DEM数据生产规范),一种是进行DEM 数据的转换。

以下给出DEM数据转换方法。

(1)1954年北京坐标系下1:2.5-1:10万DEM数据库转换a、按照比例尺对应图幅分块,在需补充内容的邻接边各增加一个相应比例尺图幅;b、考虑椭球变换及相应的比例尺图幅的X、Y坐标平移量,求得X、Y坐标改正值;c、根据坐标改正值进行图幅坐标平移,同时,参考像素分辨率确定起算坐标进行数据重采样;d、按2000国家大地坐标系新的图廓及重叠像素进行图幅裁切,更改数据头文件中定位坐标;e、修改元数据相关条目。

(2)1980西安坐标系下1:2.5-1:10万DEM数据库转换a、按照相应比例尺对应图幅分块,在需补充内容的邻接边各增加一个相应比例尺图幅;b、依据相应的比例尺图幅的X、Y坐标平移量,进行图幅坐标平移,并参考像素分辨率确定起算坐标完成数据重采样;c、d按1954年北京坐标系1:2.5-1:10万DEM数据库转换的d、e步骤进行。

4、1:25万DLG数据库转换(1)将1:25万分幅的平面坐标平移量转换为对应的经、纬度平移量或直接获取对应图幅的经、纬度平移量;(2)根据1:25万分幅的经、纬度平移量,完成1:25万经纬度数据到2000国家大地坐标系经纬度数据的转换(1954年北京坐标系需同时考虑椭球体变化和平移量);(3)依据2000国家大地坐标系下对应的1:25万标准分幅图廓进行数据裁切,区域边缘图幅中的数据空白区利用相邻图幅数据进行补充;(4)数据后处理,包括:图廓更改、新格网层添加、数据编辑、数据接边、拓扑重建、数据入库等;(5)更改元数据文件。

5、1:25万DEM数据库转换(1)利用2000国家大地坐标系对应的DLG数据层,重新内插生成DEM;(2)依据新的DEM更改元数据文件。

(二)按其它方式建立的数据库1、按区域建立的图形数据库按区域(省、地区、流域等)建立的图形数据库(DLG、DEM、DRG),可先分带分块分层完成转换,参照以上相应比例尺基础地理信息数据库的转换方案转换后拼接合成。

1:10万-1:25万数据库,依1:25万数据库转换方案逐块进行转换,再整体拼接合成;按非高斯投影方式组织的,将原数据经纬网30′×30′或15′×15′交点作为坐标转换参考点,计算这些参考点在2000国家大地坐标系下的坐标,利用地理信息软件进行图形纠正,完成数据转换。

2、按线性条带建立的图形数据库按线性条带(境界、河流、交通线、管道线等)建立的图形数据库,可依据条带的方向、长短等分段进行,再拼接合成;也可通过条带中一定密度地物点的两套坐标,通过软件逐点进行纠正。

具体方法:➢分块纠正:对于1:1万分块,按1:1万数据转换方案逐块纠正后接边合成;对于1:5万分块,按1:2.5-1:10万数据转换方案逐块纠正后接边合成;➢逐点纠正:依据数据精度,建立一定密度(1:1万100米格网点、1:5万2000米格网点)的坐标转换参考点,计算这些参考点在新坐标系下的坐标,利用地理信息软件完成数据转换。

3、按无固定分幅分区建立的图形数据库按无固定分幅分区建立的图形数据,根据坐标系、比例尺及数据主体所在的图幅、数据的组织方式、产品类型(DLG、DEM、DRG)等,参照相应比例尺的转换方案,实施数据转换。

4、DOM数据库转换原数据为航空或航天遥感获取的黑白或彩色影像数据,是连续的灰度(全色)或RGB(彩色)栅格数据,分辨率有多种方式(主要包括用于1:5地形图测绘的各种分辨率航空影像,以及用于专题调查的10米、15米、30米等卫星影像)。

影像数据转换可参照下列方式进行。

对于已按数据库组织方式加工与处理的DOM数据,可采用1:2.5-1:10万DEM的数据转换方法,也可采用计算各景影像有效图边的4点在2000国家大地坐标系下的坐标来重新定位的方式。

对于尚未按数据库组织方式加工与处理的DOM数据,可采用1:2.5-1:10万DRG的数据转换方法,不再添加新的控制基础信息。

分辨率5米-30米的数据,需依据其数据主体所在的1:25万图幅区域来选用1:25万对应图幅的综合坐标改正值;对于分辨率在2米到5米间的数据,需依据其数据主体所在的1:5万图幅区域来选用1:5万对应图幅的综合坐标改正值;由此确定各自的X、Y方向平移像素数对应的坐标值(直接取1:25万或1:5万综合坐标改正值,或由像素数×像素分辨率求得)。

按高斯投影、分像对(分景)组织的高分辨率影像数据,参照1:1万DOM 转换技术方案进行转换。

四、1:1万及1:5千基础地理信息数据库的转换(一)1:1万及1:5千格网点坐标转换改正量计算1、1980西安坐标系坐标转换改正量计算1:1万以上大比例尺一般按(2°×3°)进行分区,并对每个分区向外扩充约20′,分别解算出各分区的转换参数后,利用确定的转换方法与转换模型分别计算全国1:1万及1:5千格网点的2000国家大地坐标系坐标B 2000,L 2000,进而求出各点的1980西安坐标系与2000国家大地坐标系的差值DB 802000,DL 802000(B 2000-B 80,L 2000-L 80),形成全国1:1万及1:5千格网点的1980西安坐标系与2000国家大地坐标系的转换改正量DB 802000,DL 802000。

相关文档
最新文档