高中数学人教版必修直线与圆的方程的应用教案(系列四)
人教A版高中数学必修2《四章 圆与方程 第四章 圆与方程(通用)》优质课教案_8

《直线与圆的位置关系》教学设计一、教学目标:1、知识与技能:掌握直线与圆的方程,能判断直线与圆的位置关系;能用直线和圆的方程解决相关问题,熟练运用判定方法分析、解决问题。
2、过程与方法:通过复习、设疑、探究、合作、总结的教学过程,使学生深刻感受解决问题的一般思路。
3、情感、态度与价值观:使学生在探究中培养克服困难的勇气,在分析、解决问题中感受成功的愉悦,在解决问题后体味辩证唯物主义认知观。
二、教学重点:直线与圆的位置关系的判定方法难点:运用直线与圆的位置关系的判定方法解决实际问题三、教学方法:启发式、导学式、讲解式教学过程(一)【预习提问】一、知识回顾、追根求源:1.直线与圆的位置关系有 、 、 .2.已知直线0=++C By Ax 与圆222)()(r b y a x =-+-由⎩⎨⎧=-+-=++222)()(0rb y a x C By Ax 消元,得到的一元二次方程的判别式为∆,则 ⇔直线与圆相交; ⇔直线与圆相切; ⇔直线与圆相离3.已知直线0=++C By Ax 与圆222)()(r b y a x =-+-,圆心),(b a 到直线0=++C By Ax 的距离为d ,则 ⇔直线与圆相交; ⇔直线与圆相切; ⇔直线与圆相离4.直线与圆相交时,圆心到直线的距离为d ,圆的半径为r ,则直线被圆截得的弦长为直线b kx y +=与圆222)()(r b y a x =-+-相交于点),(),,(2211y x B y x A ,则=AB二、预习练习、自我检测:1.直线04:=-+y x l 与圆02:22=++x y x C 的位置关系是2.直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长是[我的疑问](二)【讨论解问】考点(一):切线问题(1)过点(3,4)P 作圆2225x y +=的切线,求切线的方程;(2)过点(5,3)P 作圆2225x y +=的切线,求切线的方程.考点(二):弦长问题已知圆5)1(:22=-+y x C ,直线01:=-+-m y mx l .(1)求证:对m ∈R ,直线l 与圆C 总有两个交点;(2)设直线l 与圆C 交于点A ,B ,若17=AB ,求直线l 的倾斜角;(三)【变式训练】若直线l 过)23,3(--P ,且被圆2522=+y x 所截得的弦长为8,则直线l 的方程是 。
圆与直线方程高中数学教案

圆与直线方程高中数学教案
教学内容:圆与直线的方程
一、教学目标:
1. 理解圆的标准方程和一般方程的概念;
2. 能够根据给定的圆心和半径,写出圆的标准方程;
3. 能够通过圆心和过圆上一点的坐标,写出圆的一般方程;
4. 理解直线的点斜式和一般式方程的概念;
5. 能够根据给定的直线上两点的坐标或直线的斜率和截距,写出直线的方程。
二、教学内容:
1. 圆的标准方程和一般方程;
2. 直线的点斜式和一般式方程。
三、教学重点与难点:
重点:理解圆的标准方程和一般方程的概念,能够根据给定的条件写出圆的方程。
难点:理解直线的点斜式和一般式方程的概念,能够准确地写出直线的方程。
四、教学方法:
1. 讲解结合示例:通过解题示例帮助学生理解圆与直线的方程;
2. 课堂练习:让学生进行相关练习,巩固所学知识;
3. 课堂讨论:鼓励学生展示自己的解题思路,促进学生之间的交流。
五、教学步骤:
1. 导入:通过一个实际生活中的问题引入圆与直线的方程的概念;
2. 讲解圆的方程:分别介绍圆的标准方程和一般方程的概念,并通过示例进行讲解;
3. 讲解直线的方程:介绍直线的点斜式和一般式方程的概念,并通过示例进行讲解;
4. 练习:让学生进行相关练习,巩固所学知识;
5. 总结:总结本节课所学内容,强调重点知识点。
六、课后作业:
1. 练习册相关练习题;
2. 查找生活中的例子,分析其中圆与直线方程的应用。
七、教学反馈:
根据学生在课堂上的表现和课后作业的完成情况,及时给予反馈,并对学生的错误进行纠正和指导。
同时,根据学生的学习情况做出相应调整,帮助学生掌握课程内容。
人教版高中数学教案圆的标准方程

人教版高中数学教案圆的标准方程教学目标:1. 理解圆的标准方程的概念和意义。
2. 学会利用圆的标准方程解决实际问题。
3. 掌握圆的标准方程的推导和应用方法。
教学内容:1. 圆的标准方程的定义和意义。
2. 圆的标准方程的推导过程。
3. 圆的标准方程的应用实例。
教学步骤:第一章:圆的标准方程的概念和意义1.1 引入圆的概念:引导学生回顾初中阶段学习的圆的概念,复习圆的性质和特点。
1.2 圆的标准方程的定义:介绍圆的标准方程的定义,解释圆的标准方程的意义。
1.3 圆的标准方程的意义:引导学生理解圆的标准方程在数学中的重要作用,以及它在实际问题中的应用。
第二章:圆的标准方程的推导过程2.1 圆的参数方程:介绍圆的参数方程的概念,引导学生理解参数方程与圆的标准方程的关系。
2.2 圆的标准方程的推导:引导学生通过转化思想,将圆的参数方程转化为标准方程。
2.3 圆的标准方程的简化:引导学生学会简化圆的标准方程,理解圆的标准方程的不同形式。
第三章:圆的标准方程的应用实例3.1 圆的方程与圆的性质:引导学生利用圆的标准方程研究圆的性质,如半径、直径等。
3.2 圆的方程与圆的位置关系:引导学生利用圆的标准方程研究圆与圆的位置关系,如相离、相切等。
3.3 圆的方程与圆的面积:引导学生利用圆的标准方程计算圆的面积,理解圆的面积与半径的关系。
教学评价:1. 通过课堂讲解和练习,评价学生对圆的标准方程的概念和意义的理解程度。
2. 通过课后作业和练习题,评价学生对圆的标准方程的推导和应用能力。
3. 通过小组讨论和问题解答,评价学生对圆的标准方程的实际应用和创新能力。
教学资源:1. 教学PPT:制作精美的教学PPT,展示圆的标准方程的概念和意义,以及推导和应用过程。
2. 练习题库:准备丰富的练习题库,包括不同难度和类型的题目,以供学生课后练习和巩固知识。
3. 教学案例:提供一些与圆的标准方程相关的实际案例,引导学生将理论知识应用于实际问题中。
新人教A版必修2高中数学学案教案: §4.2.3 直线与圆的方程的应用

§4.2.3 直线与圆的方程的应用一、教材分析直线与圆的方程在生产、生活实践以及数学中有着广泛的应用.本小节设置了一些例题,分别说明直线与圆的方程在实际生活中的应用,以及用坐标法研究几何问题的基本思想及其解题过程.二、教学目标1.知识与技能(1)理解掌握,直线与圆的方程在实际生活中的应用.(2)会用“数形结合”的数学思想解决问题.2.过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论.3.情态与价值观让学生通过观察图形,理解并掌握直线与圆的方程的应用,培养学生分析问题与解决问题的能力.三、教学重点与难点教学重点:求圆的应用性问题.教学难点:直线与圆的方程的应用.四、课时安排1课时五、教学设计(一)导入新课思路1.如图1,某城市中的高空观览车的高度是100 m,图1在离观览车约150 m处有一建筑物,某人在离建筑物100 m的地方刚好可以看到观览车,你根据上述数据,如何求出该建筑物的高度?要解决这个问题,我们继续研究直线与圆的方程的应用,教师板书课题:直线与圆的方程的应用.思路2.同学们,前面我们学习了圆的方程、直线与圆的位置关系、圆和圆的位置关系,那么如何利用这些关系来解决一些问题,怎样解决?带着这些问题我们学习直线与圆的方程的应用.教师板书课题:直线与圆的方程的应用.(二)推进新课、新知探究、提出问题①你能说出直线与圆的位置关系吗?②解决直线与圆的位置关系,你将采用什么方法?③阅读并思考教科书上的例4,你将选择什么方法解决例4的问题?④你能分析一下确定一个圆的方程的要点吗?⑤你能利用“坐标法”解决例5吗?活动:学生回忆,教师引导,教师提问,学生回答,学生之间可以相互交流讨论,学生有困难教师点拨.教师引导学生考虑解决问题的思路,要全面考虑,发散思维.①学生回顾学习的直线与圆的位置关系的种类;②解决直线与圆的位置关系,可以采取两种方法;③首先考虑问题的实际意义,如果本题出在初中,我们没有考虑的余地,只有几何法,在这里当然可以考虑用坐标法,两种方法比较可知哪个简单;④回顾圆的定义可知确定一个圆的方程的条件;⑤利用“坐标法”解决问题的关键是建立适当的坐标系,再利用代数与几何元素的相互转化得到结论.讨论结果:①直线与圆的位置关系有三类:相交、相切、相离.②解决直线与圆的位置关系,将采用代数和几何两种方法,多数情况下采用圆心到直线的距离与半径的关系来解决.③阅读并思考教科书上的例4,先用代数方法及坐标法,再用几何法,作一比较. ④你能分析一下确定一个圆的方程的要点,圆心坐标和半径,有时关于D 、E 、F 的三个独立的条件也可. ⑤建立适当的坐标系,具体解法我们在例题中展开.(三)应用示例思路1例1 讲解课本4.2节例4,解法一见课本.图2解法二:如图2,过P 2作P 2H⊥OP.由已知,|OP|=4,|OA|=10.在Rt△AOC 中,有|CA|2=|CO|2+|OA|2设拱圆所在的圆的半径为r,则有r 2=(r-4)2+102. 解得r=14.5.在Rt△CP 2H 中,有|CP 2|2=|CH|2+|P 2H|2.因为|P 2H|=|OA 2|=2,于是有|CH|2=r 2-|OA 2|2=14.52-4=206.25.又|OC|=14.5-4=10.5,于是有|OH|=|CH|-|CO|=25.206-10.5≈14.36-10.5=3.86.所以支柱A 2P 2的长度约为3.86 cm.点评:通过课本解法我们总结利用坐标法解决几何问题的步骤是:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论.把两种解法比较可以看出坐标法通俗易懂,几何法较难想,繁琐,因此解题时要有所选择. 变式训练已知圆内接四边形的对角线互相垂直,求证:圆心到一边的距离等于这条边所对边长的一半.图3解:如图3,以四边形ABCD 互相垂直的对角线CA 、DB 所在直线分别为x 轴、y 轴,建立适当的平面直角坐标系,设A(a,0),B(0,b),C(c,0),D(0,d).过四边形ABCD 的外接圆的圆心O 1分别作AC 、BD 、AD 的垂线,垂足分别为M 、N 、E,则M 、N 、E 分别为线段AC 、BD 、AD 的中点,由线段的中点坐标公式,得1O x =x m =2c a +,1O y =y n =2d b +,x E =2a ,y E =2d.所以|O 1E|=222221)222()222(c bd d b a c a +=-++-+. 又|BC|=22c b +,所以|O 1E|=21|BC|. 点评:用坐标法解决几何问题时,先用坐标和方程表示相应的几何元素、点、直线、圆.将几何问题转化为代数问题,然后通过代数运算解决代数问题,最后解释代数运算结果的几何意义,得到几何问题的结论.例2 有一种大型商品,A 、B 两地都有出售,且价格相同,某地居民从两地之一购得商品后回运的运费是:每单位距离A 地的运费是B 地运费的3倍,已知A 、B 两地相距10 km,居民选择A 或B 地购买这种商品的标准是:包括运费和价格的总费用较低.求A 、B 两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民应如何选择购货地点.活动:学生先审题,然后思考或讨论,学生有困难教师可以提示引导,建立适当的坐标系,这里以AB 所在直线为x 轴,线段AB 的中点为原点建立直角坐标系较简单,假设一点距A 地近,且费用低,列方程或不等式.解:以AB 所在直线为x 轴,线段AB 的中点为原点建立直角坐标系,则A(-5,0),B(5,0).设某地P 的坐标为(x,y),且P 地居民选择A 地购买商品的费用较低,并设A 地的运费为3a 元/km,则B 地运费为a 元/km.由于P 地居民购买商品的总费用满足条件:价格+A 地运费≤价格+B 地运费, 即3a 22)5(y x ++≤a 22)5(y x +-,整理得(x+425)2+y 2≤(415)2. 所以以点C(-425,0)为圆心,415为半径的圆就是两地居民购货的分界线.圆内的居民从A 地购货费用较低,圆外的居民从B 地购货费用较低,圆上的居民从A 、B 两地购货的总费用相等,因此可以随意从A 、B两地之一购货.点评:在学习中要注意联系实际,重视数学在生产、生活和相关学科中的应用,解决有关实际问题时,关键要明确题意,掌握建立数学模型的基本方法.思路2例1 求通过直线2x-y+3=0与圆x 2+y 2+2x-4y+1=0的交点,且面积最小的圆的方程.活动:学生思考或交流,教师提示引导,求圆的方程无非有两种方法:代数法和几何法. 解法一:利用过两曲线交点的曲线系,设圆的方程为x 2+y 2+2x-4y+1+λ(2x-y+3)=0,配方得标准式(x+1+λ)2+(y-2-2λ)2=(1+λ)2+(2+2λ)2-3λ-1, ∵r 2=45λ2+λ+4=45(λ+52)2+519,∴当λ=-52时,半径r=519最小. ∴所求面积最小的圆的方程为5x 2+5y 2+6x-18y-1=0.解法二:利用平面几何知识,以直线与圆的交点A(x 1,y 1),B(x 2,y 2)连线为直径的圆符合要求. 由⎩⎨⎧=+-++=+-,0142,03222y x y x y x 消去y,得5x 2+6x-2=0.∴判别式Δ>0,AB 中点横坐标x 0=221x x +=-53,纵坐标y 0=2x 0+3=59, 即圆心O′(-53,59). 又半径r=21|x 1-x 2|·221+=519, ∴所求面积最小的圆的方程是(x+53)2+(y-59)2=519. 点评:要熟练地进行圆的一般式与标准式之间的互化,这里配方法十分重要,方法二用到求弦长的公式|AB|=|x 1-x 2|·21k +;对于圆的弦长,还可以利用勾股定理求得,即|AB|=22d r -,其中r 为圆半径,d 为圆心到弦的距离.变式训练设圆满足①截y 轴所得弦长为2,②被x 轴分成两段弧,弧长之比为3∶1,在满足条件①②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.图4解:关键确定圆心坐标和半径.如图4. 设圆心A(a,b),则半径r=2|b|. 由截y 轴的弦长为2,知a 2+1=r 2=2b 2, 又圆心A 到l 的距离d=51|a-2b|,∴5d 2=a 2+4b 2-4ab≥a 2+4b 2-2(a 2+b 2)=2b 2-a 2=1,当且仅当a=b 时等号成立.这里由⎪⎩⎪⎨⎧==+=,2,1,2222r b r a b a 解得⎪⎩⎪⎨⎧=-=-=⎪⎩⎪⎨⎧===.2,1,12,1,1r b a r b a 或∴圆的方程为(x-1)2+(y-1)2=2或(x+1)2+(y+1)2=2.例2 已知x,y 是实数,且x 2+y 2-4x-6y+12=0,求(1)xy 的最值;(2)x 2+y 2的最值;(3)x+y 的最值;(4)x-y 的最值.活动:学生思考或交流,教师引导,数形结合,将代数式或方程赋予几何意义.解:(x-2)2+(y-3)2=1表示以点C(2,3)为圆心,1为半径的圆. (1)xy表示圆C 上的点P(x,y)与坐标原点O(0,0)连线的斜率k, 故当y=kx 为圆C 的切线时,k 得最值. ∵21|32|kk +-=1,∴k=2±323.∴xy 的最大值为2+323,最小值为2-323.(2)设x 2+y 2表示圆C 上的点P(x,y)与坐标原点O(0,0)连结的线段长的平方,故由平面几何知识,知当P为直线OC 与圆C 的两交点P 1、P 2时,OP 12与OP 22分别为OP 2的最大值、最小值.∴x 2+y 2的最大值为(2232++1)2=14+213,最小值为(2232+-1)2=14-213.(3)令x+y=m,当直线l:x+y=m 与圆C 相切时,l 在y 轴上截距m 取得最值. ∵2|32|m -+=1,∴m=5±2.∴x+y 的最大值为5+2,最小值为5-2.(4)令x-y=n,当直线l′:x -y=n 与圆C 相切时,l′在y 轴上截距的相反数n 取得最值. ∵2|32|n --=1,∴n=-1±2.∴x -y 的最大值为-1+2,最小值为-1-2.点评:从“数”中认识“形”,从“形”中认识“数”,数形结合相互转化是数学思维的基本方法之一.“数学是一个有机的统一体,它的生命力的一个必要条件是所有的各个部分不可分离地结合.”(希尔伯特)数形结合的思维能力不仅是中学生的数学能力、数学素养的主要标志之一,而且也是学习高等数学和现代数学的基本能力.本题是利用直线和圆的知识求最值的典型题目.例3 已知圆O 的方程为x 2+y 2=9,求过点A(1,2)所作的弦的中点的轨迹.活动:学生回想求轨迹方程的方法与步骤,思考讨论,教师适时点拨提示,本题可利用平面几何的知识. 解法一:参数法(常规方法)设过A 的弦所在的直线方程为y-2=k(x-1)(k 存在时),P(x,y),则⎩⎨⎧-+==+),2(,922k kx y y x 消y,得(1+k 2)x 2+2k(2-k)x+k 2-4k-5=0.∴x 1+x 2=1)2(22+-k k k .利用中点坐标公式及中点在直线上,得⎪⎪⎩⎪⎪⎨⎧++-=+-=12,1)2(22k k y k k k x (k 为参数).∴消去k 得P 点的轨迹方程为x 2+y 2-x-2y=0,当k 不存在时,中点P(1,0)的坐标也适合方程. ∴P 的轨迹是以点(21,1)为圆心,25为半径的圆.解法二:代点法(涉及中点问题可考虑此法)设过点A 的弦MN,M(x 1,y 1),N(x 2,y 2).∵M、N 在圆O 上,∴⎪⎩⎪⎨⎧=+=+.9,922222121y x y x .∴相减得(x 1+x 2)+2121x x y y --·(y 1+y 2)=0(x 1≠x 2).设P(x,y),则x=221x x +,y=221y y +. ∴M、N 、P 、A 四点共线,2121x x y y --=12--x y (x≠1).∴2x+12--x y ·2y=0. ∴中点P 的轨迹方程是x 2+y 2-x-2y=0(x=1时亦正确). ∴点P 的轨迹是以点(21,1)为圆心,25为半径的圆.解法三:数形结合(利用平面几何知识)由垂径定理知OP⊥PA,故P 点的轨迹是以AO 为直径的圆.(下略)点评:本题涉及求轨迹方程的三种间接方法.思路一,代表了解析几何的基本思路和基本方法,即⎩⎨⎧==,0),(,0),(y x g y x f 消y(或x)得关于x(或y)的一元二次方程Ax 2+Bx+C=0,再利用求根公式、判别式、韦达定理等得解.思路二,又叫平方差法,要求弦的中点的轨迹方程时,用此法比较简便.基本思路是利用弦的两个端点M(x 1,y 1)、N(x 2,y 2)在已知曲线上,将点的坐标代入已知方程然后相减,利用平方差公式可得x 1+x 2、y 1+y 2、x 1-x 2、y 1-y 2等.再由弦MN 的中点P(x,y)的坐标满足x=221x x +,y=221y y +,以及直线MN 的斜率k=2121x x y y --(x 1≠x 2)等,设法消去x 1、x 2、y 1、y 2,即可得弦MN 的中点P 的轨迹方程.用此法对斜率不存在的情况,要单独讨论.思路三,数形结合,利用平面几何知识等,有时能使求解过程变得非常简洁.学好解析几何,要掌握特点,注意四个结合:①数形结合:形不离数,数不离形,依形判断,就数论形;②动静结合:动中有静,静中有动,几何条件——曲线方程——图形性质;③特殊与一般结合:一般性寓于特殊性之中,特殊化与一般化是重要的数学思维方法; ④理论与实际结合:学以致用,创造开拓.(四)知能训练课本本节练习1、2、3、4.(五)拓展提升某种体育比赛的规则是:进攻队员与防守队员均在安全线l 的垂线AC 上(C 为垂足),且距C 分别为2a 和a(a >0)的点A 和B,进攻队员沿直线AD 向安全线跑动,防守队员沿直线方向向前拦截,设AD 和BM 交于M,若在M 点,防守队员比进攻队员先到或同时到,则进攻队员失败,已知进攻队员的速度是防守队员速度的两倍,且他们双方速度不变,问进攻队员的路线AD 应为什么方向才能取胜?图5解:如图5,以l 为x 轴,C 为原点建立直角坐标系,设防守队员速度为v,则进攻队员速度为2v,设点M 坐标为(x,y),进攻队员与防守队员跑到点M 所需时间分别为t 1=v AM 2||,t 2=vBM ||. 若t 1<t 2,则|AM|<2|BM|,即2222)(2)2(a y x a y x -+<-+. 整理,得x 2+(y-32a)2>(32a)2,这说明点M 应在圆E:x 2+(y-32a)2=(32a)2以外,进攻队员方能取胜.设AN 为圆E 的切线,N 为切点,在Rt△AEN 中,容易求出∠EAN=30°,所以进攻队员的路线AD 与AC 所成角大于30°即可.(六)课堂小结1.用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论.2.对于直线和圆,熟记各种定义、基本公式、法则固然重要,但要做到迅速、准确地解题,还必须掌握一些方法和技巧.常用的有:(1)利用可再化简、对称、直交、平行等特点适当地选择坐标系;(2)善于根据图形的已知条件和论证的目标,恰当地使用曲线的方程;(3)掌握直线和圆的基本定义、基本概念、基本性质,有效运用它们来解题;(4)注意“平几”知识在简洁、直观表达问题中的作用;(5)借助数形结合进行等价转化,减少思维量、运算量;(6)灵活使用曲线系方程,方便快捷地解题;(7)根据背景的特点,巧用字母的替换法则;(8)充分运用韦达定理进行转化与化归;(9)留心引参消参、设而不求等在优化解题思路方面上的作用.3.直线和圆在现实生活中有着十分广泛的应用,主要包括两大块:一是直线与圆的直接应用,它涉及到质量、重心、气象预报、购物选址、光的折射、直线型经验公式的选用等问题,这部分涉及的知识内容比较简单,要熟练掌握直线和圆的方程形式;可以使我们更好地了解近代数学的发展,从而有利于学生应用数学意识的培养.(七)作业习题4.2 B 组2、3、5.。
人教版数学高一-直线与圆的方程的应用 同步教案

§4.2.3直线与圆的方程的应用1.理解直线与圆的位置关系的几何性质;2.利用平面直角坐标系解决直线与圆的位置关系;3.会用“数形结合”的数学思想解决问题.一、课前准备(预习教材P138~ P140,找出疑惑之处)1.圆与圆的位置关系有.2.圆224450+-+x y x y++--=和圆2284x y x y+=的位置关系为.703.过两圆22640++-x y yx y x+--=和22628=的交点的直线方程.二、新课导学※学习探究1.直线方程有几种形式? 分别是?2.圆的方程有几种形式?分别是哪些?3.求圆的方程时,什么条件下,用标准方程?什么条件下用一般方程?4.直线与圆的方程在生产.生活实践中有广泛的应用.想想身边有哪些呢?※典型例题例1 已知某圆拱形桥.这个圆拱跨度20=,建造时每间隔4m需要用一根OP m=,拱高4AB m支柱支撑,求支柱A B的高度(精确0.01m)22变式:赵州桥的跨度是37.4m.圆拱高约为7.2m.求这座圆拱桥的拱圆的方程例2 已知内接于圆的四边形的对角线互相垂直,求证圆心到一边距离等于这条边所对这条边长的一半.※ 动手试试练1. 求出以曲线2225x y +=与213y x =-的交点为顶点的多边形的面积.练2. 讨论直线2y x =+与曲线y =.三、总结提升※ 学习小结1.用坐标法解决几何问题时,先用坐标和方程表示相应的几何元素:点、直线、圆,然后通过对坐标和方程的代数运算,把代数结果“翻译”成几何关系,得到几何问题的结论,这就是用坐标法解决几何问题的“三部曲”.2.用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论. .※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 一动点到(4,0)A -的距离是到(2,0)B 的距离的2倍,则动点的轨迹方程( ).A .()2244x y -+=B .()22416x y -+=C .22(4)4x y +-=D .22(4)16x y +-=2. 如果实数,x y 满足22410x y x +-+=,则y x的最大值为( )A .13. 圆222430x y x y +++-=上到直线10x y ++= ).A .1个B .2个C .3个D .4个4. 圆()()22114x y -+-=关于直线:220l x y --=对称的圆的方程 .5. 求圆()()22114x y -++=关于点()2,2对称的圆的方程 .1. 坐标法证明:三角形的三条高线交于一点.2. 机械加工后的产品是否合格,要经过测量检验某车间的质量检测员利用三个同样的量球以及两块不同的长方体形状的块规检测一个圆弧形零件的半径.已知量球的直径为2厘米,并测出三个不同高度和三个相应的水平距离,求圆弧零件的半径.。
高中数学 第四章 圆与方程 4.2 4.2.2 圆与圆的位置关系 4.2.3 直线与圆的方程的应用学

4.2.2 圆与圆的位置关系4.2.3 直线与圆的方程的应用目标定位 1.掌握圆与圆的位置关系及判定方法.2.能利用直线与圆的位置关系解决简单的实际问题.3.理解坐标法解决几何问题的一般步骤.自主预习1.圆与圆位置关系的判定(1)几何法:若两圆的半径分别为r1、r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1、r2的关系d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2| d<|r1-r2|(2)代数法:通过两圆方程组成方程组的公共解的个数进行判断.⎭⎪⎬⎪⎫圆C 1方程圆C 2方程――→消元一元二次方程⎩⎪⎨⎪⎧Δ>0⇒相交Δ=0⇒内切或外切Δ<0⇒外离或内含2.用坐标方法解决平面几何问题的“三步曲”:即 时 自 测1.判断题(1)两圆无公共点,则两圆外离.( ×)(2)两圆有且只有一个公共点,则两圆内切和外切.(√)(3)设两圆的圆心距为l ,两圆半径长分别为r 1,r 2,则当|r 1-r 2|<l <r 1+r 2时,两圆相交.(√)(4)两圆外切时,有三条公切线:两条外公切线,一条内公切线.(√) 提示 (1)两圆无公共点,则两圆外离和内含.2.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系为( ) A.相离B.相交C.外切D.内切解析 圆O 1的圆心坐标为(1,0),半径长r 1=1;圆O 2的圆心坐标为(0,2),半径长r 2=2;1=r 2-r 1<|O 1O 2|=5<r 1+r 2=3,即两圆相交. 答案 B3.圆x 2+y 2+4x -4y +7=0与圆x 2+y 2-4x +10y +13=0的公切线的条数是( ) A.1B.2C.3D.4解析 两圆的圆心坐标和半径分别为(-2,2),(2,-5),1,4,圆心距d =(-2-2)2+(2+5)2>8,1+4=5<8,∴两圆相离,公切线有4条. 答案 D4.两圆x 2+y 2=r 2与(x -3)2+(y +1)2=r 2(r >0)外切,则r 的值是________.解析 由题意可知(3-0)2+(-1-0)2=2r ,∴r =102. 答案102类型一 与两圆相切有关的问题【例1】 求与圆x 2+y 2-2x =0外切且与直线x +3y =0相切于点M (3,-3)的圆的方程. 解 设所求圆的方程为(x -a )2+(y -b )2=r 2(r >0), 则(a -1)2+b 2=r +1,①b +3a -3=3,② |a +3b |2=r .③ 联立①②③解得a =4,b =0,r =2,或a =0,b =-43,r =6,即所求圆的方程为(x -4)2+y 2=4或x 2+(y +43)2=36. 规律方法 两圆相切时常用的性质有:(1)设两圆的圆心分别为O 1、O 2,半径分别为r 1、r 2,则两圆相切⎩⎪⎨⎪⎧内切⇔|O 1O 2|=|r 1-r 2|外切⇔|O 1O 2|=r 1+r 2(2)两圆相切时,两圆圆心的连线过切点(两圆若相交时,两圆圆心的连线垂直平分公共弦). 【训练1】 求与圆(x -2)2+(y +1)2=4相切于点A (4,-1)且半径为1的圆的方程. 解 设所求圆的圆心为P (a ,b ),则 (a -4)2+(b +1)2=1.①(1)若两圆外切,则有(a -2)2+(b +1)2=1+2=3,②联立①②,解得a =5,b =-1,所以,所求圆的方程为(x -5)2+(y +1)2=1; (2)若两圆内切,则有(a -2)2+(b +1)2=|2-1|=1,③联立①③,解得a =3,b =-1,所以,所求圆的方程为(x -3)2+(y +1)2=1. 综上所述,所求圆的方程为(x -5)2+(y +1)2=1或(x -3)2+(y +1)2=1. 类型二 与两圆相交有关的问题(互动探究)【例2】 已知两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0.(1)判断两圆的位置关系; (2)求公共弦所在的直线方程; (3)求公共弦的长度. [思路探究]探究点一 当两圆相交时,其公共弦所在直线的方程是什么? 提示 两圆的方程相减即可得公共弦所在直线的方程. 探究点二 如何求公共弦长?提示 (1)代数法:将两圆的方程联立,求出两交点的坐标,利用两点间的距离公式求弦长. (2)几何法:求出公共弦所在的直线方程,半径、弦心距、半弦长构成直角三角形的三边长,利用勾股定理求弦长.解 (1)将两圆方程配方化为标准方程,C 1:(x -1)2+(y +5)2=50, C 2:(x +1)2+(y +1)2=10,则圆C 1的圆心为(1,-5),半径r 1=52, 圆C 2的圆心为(-1,-1),半径r 2=10.又∵|C 1C 2|=25,r 1+r 2=52+10,r 1-r 2=52-10, ∴r 1-r 2<|C 1C 2|<r 1+r 2,∴两圆相交.(2)将两圆方程相减,得公共弦所在直线方程为x -2y +4=0. (3)法一 由(2)知圆C 1的圆心(1,-5)到直线x -2y +4=0的距离d =|1-2×(-5)+4|1+(-2)2=35, ∴公共弦长l =2r 21-d 2=250-45=2 5.法二 设两圆相交于点A ,B ,则A ,B 两点满足方程组⎩⎪⎨⎪⎧x -2y +4=0,x 2+y 2+2x +2y -8=0, 解得⎩⎪⎨⎪⎧x =-4,y =0,或⎩⎪⎨⎪⎧x =0,y =2.即A (-4,0),B (0,2).所以|AB |=(-4-0)2+(0-2)2=25, 即公共弦长为2 5.规律方法 1.两圆相交时,公共弦所在的直线方程若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在直线的方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0.2.公共弦长的求法(1)代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长. (2)几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.【训练2】 已知圆C 1:x 2+y 2+2x -6y +1=0,圆C 2:x 2+y 2-4x +2y -11=0,求两圆的公共弦所在的直线方程及公共弦长.解 设两圆交点为A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标是方程组⎩⎪⎨⎪⎧x 2+y 2+2x -6y +1=0, ①x 2+y 2-4x +2y -11=0 ②的解, ①-②得:3x -4y +6=0. ∵A ,B 两点坐标都满足此方程,∴3x -4y +6=0即为两圆公共弦所在的直线方程. 易知圆C 1的圆心(-1,3),半径r 1=3. 又C 1到直线AB 的距离为d =|-1×3-4×3+6|32+(-4)2=95. ∴|AB |=2r 21-d 2=232-⎝ ⎛⎭⎪⎫952=245.即两圆的公共弦长为245.类型三 直线与圆的方程的应用【例3】 一艘轮船沿直线返回港口的途中,接到气象台的台风预报,台风中心位于轮船正西70 km 处,受影响的范围是半径为30 km 的圆形区域,已知港口位于台风中心正北40 km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?解 以台风中心为坐标原点,以东西方向为x 轴建立直角坐标系(如图),其中取10 km 为单位长度,则受台风影响的圆形区域所对应的圆的方程为x 2+y 2=9, 港口所对应的点的坐标为(0,4),轮船的初始位置所对应的点的坐标为(7,0), 则轮船航线所在直线l 的方程为x 7+y4=1, 即4x +7y -28=0.圆心(0,0)到航线4x+7y-28=0的距离d=|28|42+72=2865,而半径r=3,∴d>r,∴直线与圆相离,所以轮船不会受到台风的影响.规律方法解决直线与圆的方程的实际应用题时应注意以下几个方面:【训练3】台风中心从A地以20千米/时的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,B城市处于危险区内的时间为( )A.0.5小时B.1小时C.1.5小时D.2小时解析以台风中心A为坐标原点建立平面直角坐标系,如图,则台风中心在直线y=x上移动,又B(40,0)到y=x的距离为d=202,由|BE|=|BF|=30知|EF|=20,即台风中心从E到F时,B城市处于危险区内,时间为t=20千米20千米/时=1小时.故选B.答案 B[课堂小结]1.判断圆与圆位置关系的方式通常有代数法和几何法两种,其中几何法较简便易行、便于操作.2.直线与圆的方程在生产、生活实践以及数学中有着广泛的应用,要善于利用其解决一些实际问题,关键是把实际问题转化为数学问题;要有意识用坐标法解决几何问题,用坐标法解决平面几何问题的思维过程:1.圆x 2+y 2=1与圆x 2+y 2+2x +2y +1=0的交点坐标为( ) A.(1,0)和(0,1) B.(1,0)和(0,-1) C.(-1,0)和(0,-1)D.(-1,0)和(0,1)解析 由⎩⎪⎨⎪⎧x 2+y 2=1,x 2+y 2+2x +2y +1=0;解得⎩⎪⎨⎪⎧x =0,y =-1或⎩⎪⎨⎪⎧x =-1,y =0. 答案 C2.圆x 2+y 2-2x -5=0和圆x 2+y 2+2x -4y -4=0的交点为A 、B ,则线段AB 的垂直平分线方程为( ) A.x +y -1=0 B.2x -y +1=0 C.x -2y +1=0D.x -y +1=0解析 直线AB 的方程为:4x -4y +1=0,因此它的垂直平分线斜率为-1,过圆心(1,0),方程为y =-(x -1),即两圆连心线. 答案 A3.已知两圆x 2+y 2=10和(x -1)2+(y -3)2=20相交于A 、B 两点,则直线AB 的方程是________.解析 ⎩⎪⎨⎪⎧x 2+y 2=10,x 2+y 2-2x -6y =10⇒2x +6y =0,即x +3y =0. 答案 x +3y =04.已知圆C 1:x 2+y 2-2mx +4y +m 2-5=0,圆C 2:x 2+y 2+2x -2my +m 2-3=0,当m 的取值满足什么条件时,圆C 1与圆C 2相切?解 对于圆C 1与圆C 2的方程,化为标准方程得C 1:(x -m )2+(y +2)2=9,C 2:(x +1)2+(y -m )2=4,所以两圆的圆心分别为C 1(m ,-2),C 2(-1,m ),半径分别为r 1=3,r 2=2,且|C 1C 2|=(m +1)2+(m +2)2.当圆C 1与圆C 2相外切时,则|C 1C 2|=r 1+r 2,即(m +1)2+(m +2)2=3+2,解得m =-5或m =2.当圆C 1与圆C 2相内切时,则|C 1C 2|=|r 1-r 2|,即(m +1)2+(m +2)2=|3-2|,解得m =-1或m =-2.综上可知,当m =-5或m =2或m =-1或m =-2时,两圆相切.基 础 过 关1.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A.内切B.相交C.外切D.相离解析 两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交. 答案 B2.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m 等于( ) A.21B.19C.9D.-11解析 圆C 2的标准方程为(x -3)2+(y -4)2=25-m . 又圆C 1:x 2+y 2=1,∴|C 1C 2|=5.又∵两圆外切,∴5=1+25-m ,解得m =9. 答案 C3.一辆卡车宽1.6米,要经过一个半径为3.6米的半圆形隧道,则这辆卡车的平顶车蓬蓬顶距地面的高度不得超过( ) A.1.4米B.3.5米C.3.6米D.2米解析 建立如图所示的平面直角坐标系.如图设蓬顶距地面高度为h ,则A (0.8,h -3.6)半圆所在圆的方程为:x 2+(y +3.6)2=3.62把A (0.8,h -3.6)代入得0.82+h 2=3.62.∴h =40.77≈3.5(米).答案 B4.两圆x 2+y 2-x +y -2=0和x 2+y 2=5的公共弦长为________.解析 由⎩⎪⎨⎪⎧x 2+y 2-x +y -2=0,x 2+y 2=5,①②②-①得两圆的公共弦所在的直线方程为x -y -3=0, ∴圆x 2+y 2=5的圆心到该直线的距离为d =|-3|1+(-1)2=32,设公共弦长为l ,∴l =25-⎝ ⎛⎭⎪⎫322= 2. 答案25.已知圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x -4y +4=0关于直线l 对称,则直线l 的方程为________.解析 圆C 2可化为(x +2)2+(y -2)2=4,则圆C 1,C 2的圆心为C 1(0,0),C 2(-2,2),所以C 1C 2的中点为(-1,1),kC 1C 2=2-0-2-0=-1,所以所求直线的斜率为1,所以直线l 的方程为y -1=x +1,即x -y +2=0. 答案 x -y +2=06.求与圆O :x 2+y 2=1外切,切点为P ⎝ ⎛⎭⎪⎫-12,-22,半径为2的圆的方程.解 设所求圆的圆心为C (a ,b ),则所求圆的方程为 (x -a )2+(y -b )2=4.∵两圆外切,切点为P ⎝ ⎛⎭⎪⎫-12,-22,∴|OC |=1+2=3,|CP |=2.∴⎩⎨⎧a 2+b 2=9,⎝ ⎛⎭⎪⎫a +122+⎝ ⎛⎭⎪⎫b +322=4,解得⎩⎪⎨⎪⎧a =-32,b =-332. ∴圆心C 的坐标为⎝ ⎛⎭⎪⎫-32,-332,故所求圆的方程为⎝ ⎛⎭⎪⎫x +322+⎝ ⎛⎭⎪⎫y +3322=4.7.已知圆C 1:x 2+y 2-10x -10y =0和圆C 2:x 2+y 2+6x -2y -40=0.求: (1)它们的公共弦所在直线的方程; (2)公共弦长.解 (1)由⎩⎪⎨⎪⎧x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,两方程相减,得公共弦所在直线方程为2x +y -5=0. (2)圆x 2+y 2-10x -10y =0的圆心C 1的坐标为(5,5),半径r =52,又点C 1到相交弦的距离d =|2×5+5-5|22+12=2 5. ∴公共弦长为2(52)2-(25)2=230.能 力 提 升8.设两圆C 1,C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|等于( ) A.4B.4 2C.8D.8 2解析 ∵两圆与两坐标轴都相切,且都经过点(4,1), ∴两圆圆心均在第一象限且横、纵坐标相等. 设两圆的圆心分别为(a ,a ),(b ,b ),则有(4-a )2+(1-a )2=a 2,(4-b )2+(1-b )2=b 2, 即a ,b 为方程(4-x )2+(1-x )2=x 2的两个根, 整理得x 2-10x +17=0,∴a +b =10,ab =17. ∴(a -b )2=(a +b )2-4ab =100-4×17=32, ∴|C 1C 2|=(a -b )2+(a -b )2=32×2=8. 答案 C9.以圆C 1:x 2+y 2+4x +1=0与圆C 2:x 2+y 2+2x +2y +1=0相交的公共弦为直径的圆的方程为( )A.(x -1)2+(y -1)2=1 B.(x +1)2+(y +1)2=1C.⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45D.⎝ ⎛⎭⎪⎫x -352+⎝ ⎛⎭⎪⎫y -652=45解析 两圆方程相减得公共弦所在直线的方程为x -y =0,因此所求圆的圆心的横、纵坐标相等,排除C ,D 选项,画图(图略)可知所求圆的圆心在第三象限,排除A.故选B. 答案 B10.与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是________.解析 曲线化为(x -6)2+(y -6)2=18,其圆心C 1(6,6)到直线x +y -2=0的距离为d =|6+6-2|2=5 2.过点C 1且垂直于x +y -2=0的直线为y -6=x -6,即y =x ,所以所求的最小圆的圆心C 2在直线y =x 上,如图所示,圆心C 2到直线x +y -2=0的距离为52-322=2,则圆C 2的半径长为 2.设C 2的坐标为(x 0,x 0),则|x 0+x 0-2|2=2, 解得x 0=2(x 0=0舍去),所以圆心坐标为(2,2),所以所求圆的标准方程为(x -2)2+(y -2)2=2.答案 (x -2)2+(y -2)2=211.已知隧道的截面是半径为4 m 的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7 m ,高为3 m 的货车能不能驶入这个隧道?假设货车的最大宽度为a m ,那么要正常驶入该隧道,货车的限高为多少?解 以某一截面半圆的圆心为坐标原点,半圆的直径AB 所在直线为x 轴,建立如图所示的平面直角坐标系,那么半圆的方程为x 2+y 2=16(y ≥0).将x =2.7代入,得y =16-2.72=8.71<3,所以,在离中心线2.7 m 处,隧道的高度低于货车的高度.因此,货车不能驶入这个隧道.将x =a 代入x 2+y 2=16(y ≥0)得y =16-a 2.所以,货车要正常驶入这个隧道,最大高度(即限高)为16-a 2m.探 究 创 新12.已知圆C 1:x 2+y 2-4x -2y -5=0与圆C 2:x 2+y 2-6x -y -9=0.(1)求证:两圆相交;(2)求两圆公共弦所在的直线方程;(3)在平面上找一点P ,过点P 引两圆的切线并使它们的长都等于6 2.(1)证明 圆C 1:(x -2)2+(y -1)2=10, 圆C 2:(x -3)2+⎝ ⎛⎭⎪⎫y -122=734. ∵|C 1C 2|=(2-3)2+⎝ ⎛⎭⎪⎫1-122=52.且732-10<52<732+10, ∴圆C 1与圆C 2相交.(2)解 联立两圆方程,得⎩⎪⎨⎪⎧x 2+y 2-4x -2y -5=0,x 2+y 2-6x -y -9=0, ∴两圆公共弦所在的直线方程为2x -y +4=0.(3)解 设P (x ,y ),由题意,得⎩⎨⎧2x -y +4=0,x 2+y 2-6x -y -9=(62)2,解方程组,得点P 的坐标为(3,10)或⎝ ⎛⎭⎪⎫-233,-265.。
最新人教版高中数学必修2第四章《直线与圆的方程的应用》教案
《直线与圆的方程的应用》教案教学目标1.理解直线与圆的位置关系的几何性质,掌握直线与圆的方程在实际生活中的应用;2.能够利用坐标法解决一些直线与圆的位置关系问题;会用“数形结合”的数学思想解决问题.3.让学生通过观察图形,理解并掌握直线与圆的方程的应用,培养学生分析问题与解决问题的能力.教学重点难点1.重点:掌握直线与圆的方程在实际生活中的应用.2.难点:掌握直线与圆的方程在实际生活中的应用.教法与学法1.教法选择:启发式教学法 .2.学法指导:复习旧知,积极参与,主动提问,动手操作,归纳小结.教学过程一、复习巩固突出主题例1:某圆拱形桥一孔圆拱的示意图(如图),这个圆的圆拱跨度AB=20m,拱高OP=4m,建造时每间隔4m需要用一根支柱支撑,求支柱A2P2的高度(精确到0.01m).在教学中,教师可以利用计算机演示一下显示的拱形桥的样貌,有利于学生的抽象思维的发展.本题的关键是建立平面直角坐标系.分析:首先建立直角坐标系,把一个实际问题转化为数学问题,然后解决这个数学问题,只需求出P2的纵坐标,就可得出支柱A2P2的高度.解:建立如图所示的直角坐标系,使圆心用坐标法解决实际问题.在y 轴上,设圆心的坐标是(0,b ),圆的半径为r ,那么圆的方程为:x 2+(y -b )2=r 2因为点P (0,4),B (10,0)在圆上,所以,有2222220(4)10b rb r ⎧+-=⎪⎨+=⎪⎩,解得:2210.514.5b r =-⎧⎨=⎩ 所以,圆的方程为:222(10.5)14.5x y ++=把P 2的横坐标x =-2代入圆的方程,得222(2)(10.5)14.5y -++=,由题可知y >0, 解得:y =3.86答:支柱A 2P 2的高度约为3.86米.思考:如果不建立坐标系,你能解决这个问题吗?(可以采用用综合法解决此问题.可以让学生比较“综合法”与“坐标法”,目的在于为了说明坐标法解决问题的优越性.)例2、已知内接于圆的四边形的对角线互相垂直,求证:圆心到一边的距离等于这条边所对边长的一半.分析:如图,选择互相垂直的两条对角线所在的直线为坐标轴.析”中,指出建立直角坐标系时应该注意选择图形中互相垂直的两条直线作为轴与可能使得所设计的点位于坐标轴上,因为这样做可以使问题简化,利于解题.三、拓展提升,课堂交流某种体育比赛的规则是:进攻队员与防守队员均在安全线l 的垂线AC 上(C 为垂足),且距C 分别为2a 和a (a >0)的点A 和B ,进攻队员沿直线AD 向安全线跑动,防守队员沿直线方向向前拦截,设AD 和BM 交于M ,若在M 点,防守队员比进攻队员先到或同时到,则进攻队员失败,已知进攻队员的速度是防守队员速度的两倍,且他们双方速度不变,问进攻队员的路线AD 应为什么方向才能取胜?学生先审题,然后思考或讨论,学生有困难教师可以提示引导,建立适当的坐标系.解:如题图,以l 为x 轴,C 为原点建立直角坐标系,设防守队员速度为v ,则进攻队员速度为2v ,设点M 坐标为(x,y),进攻队员与防守队员跑到点M 所需时间分别为t 1=||2AM v ,t 2=||BM v. 若t 1<t 2,则|AM |<2|BM |,即2222(2)2()x y a x y a +-<+-.注意联系实际重视数学在生产、生活和相关学科中的应用解决有关实际问题时确题意立数学模型的基本方法.四、归纳小结,课堂延展1.教材地位分析:《直线与圆的方程的应用》是《直线、圆的位置关系》最后一课,是在学习了《直线与圆的位置关系》、《圆与圆的位置关系》之后学习的.学习知识的目的在应用,本节课的内容是利用坐标法研究直线与圆的方程在实际生活中的应用,充分体现出学习数学价值所在,因为其思想方法已经在前面讲过,因此,本节课在教材中起到了巩固和总结的作用.2.学生现实状况分析:学生已经知道了《直线、圆的位置关系》的相关基础知识和思想方法,本节课是这些知识和思想方法的应用.数学应用对于学生来说是一个薄弱的地方,往往是因为不能将问题抽象成数学模型或学生信心不足所导致,所以在教学过程中,要及时发现,及时引导,做好解题的引导.3.本节课是在教师的引导下,对已学知识进行归纳、总结,以形成更系统、更完整的体系;对已学知识进一步加深理解,强化记忆,是一个再认识,再学习的过程,对已掌握的技能、规律、方法进行深化和进一步熟悉,从而提高学生分析、理解问题的能力.。
直线与圆的方程教案
直线与圆的方程教案教案标题:直线与圆的方程教案教案目标:1. 学生能够理解直线和圆的基本概念。
2. 学生能够掌握直线和圆的方程表示方法。
3. 学生能够应用直线和圆的方程解决相关问题。
教案大纲:一、引入(5分钟)1. 引导学生回顾直线和圆的定义,并提问相关问题激发学生思考。
2. 展示一些直线和圆的图形,让学生观察并描述它们的特点。
二、直线的方程(15分钟)1. 介绍直线的一般方程形式:Ax + By + C = 0,并解释各项的含义。
2. 借助实例,演示如何由给定条件确定直线的方程。
3. 给学生一些练习题,让他们通过观察图形、计算斜率等方法确定直线的方程。
三、圆的方程(15分钟)1. 介绍圆的标准方程形式:(x - a)² + (y - b)² = r²,并解释各项的含义。
2. 借助实例,演示如何由给定条件确定圆的方程。
3. 给学生一些练习题,让他们通过观察图形、计算半径等方法确定圆的方程。
四、直线与圆的关系(15分钟)1. 讲解直线与圆的位置关系:相离、相切、相交。
2. 介绍直线与圆的方程联立求解的方法。
3. 给学生一些练习题,让他们通过联立方程解决直线与圆的位置关系问题。
五、综合应用(15分钟)1. 给学生一些综合性的问题,让他们综合运用直线和圆的方程解决问题。
2. 引导学生思考,让他们举一反三,将所学知识应用到实际生活中。
六、总结与拓展(5分钟)1. 总结直线和圆的方程表示方法及应用。
2. 提出一些拓展问题,鼓励学生深入思考和探索。
教案评估:1. 课堂练习题,检查学生对直线和圆的方程的掌握情况。
2. 综合应用问题,评估学生将所学知识应用到实际问题解决的能力。
教学资源:1. 直线和圆的示意图。
2. 相关练习题和答案。
3. 拓展问题的参考资料。
教学方法:1. 提问与讨论:激发学生思考,培养他们的观察能力和分析能力。
2. 演示与实例:通过具体的实例演示方程的确定过程,帮助学生理解和掌握知识。
直线和圆的方程教案
直线和圆的方程教案一、教学目标1. 知识与技能:(1)理解直线和圆的方程的基本概念;(2)掌握直线的斜截式、截距式和一般式方程的求法;(3)掌握圆的标准方程和一般方程的求法。
2. 过程与方法:(1)通过实例引导学生认识直线和圆的方程;(2)利用数形结合的方法,理解直线和圆的方程之间的关系;(3)培养学生的运算能力和解决问题的能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣和好奇心;(2)培养学生克服困难的意志和合作精神;(3)引导学生认识到数学在实际生活中的应用。
二、教学内容1. 直线的方程(1)直线方程的基本概念;(2)直线的斜截式方程;(3)直线的截距式方程;(4)直线的一般式方程。
2. 圆的方程(1)圆的方程的基本概念;(2)圆的标准方程;(3)圆的一般方程。
三、教学重点与难点1. 教学重点:(1)直线和圆的方程的基本概念;(2)直线的斜截式、截距式和一般式方程的求法;(3)圆的标准方程和一般方程的求法。
2. 教学难点:(1)直线和圆的方程的求法;(2)直线和圆的位置关系的理解。
四、教学过程1. 导入:通过实例引导学生认识直线和圆的方程,激发学生的兴趣和好奇心。
2. 教学新课:(1)讲解直线方程的基本概念,引导学生理解直线的斜截式、截距式和一般式方程的求法;(2)讲解圆的方程的基本概念,引导学生掌握圆的标准方程和一般方程的求法。
3. 巩固练习:布置一些有关直线和圆的方程的练习题,帮助学生巩固所学知识。
4. 课堂小结:五、课后作业1. 完成教材上的相关练习题;2. 查找生活中与直线和圆相关的实例,分析其方程的应用。
教学评价:通过课后作业的完成情况、课堂练习和学生的参与程度,评价学生对直线和圆的方程的理解和应用能力。
六、教学策略1. 数形结合:通过图形展示直线和圆的方程,使学生更直观地理解方程的含义和应用。
2. 实例分析:通过生活中的实例,引导学生认识直线和圆的方程,提高学生的学习兴趣。
人教版高中数学《直线和圆的方程》教案全套
人教版高中数学《直线和圆的方程》教案全套题目:人教版高中数学《直线和圆的方程》教案全套导语:数学是一门精密细致的学科,它以其独特的思维方式和精确的推理方法在人类文明发展中起到了重要的作用。
而高中数学作为数学学科中的一部分,是培养学生分析和解决问题的能力的重要途径之一。
其中《直线和圆的方程》这一部分,是高中数学中的一个重要内容。
本文将为大家介绍人教版高中数学《直线和圆的方程》教案全套。
一、教学目标:1. 了解直线和圆的基本概念;2. 掌握直线和圆的方程的求解方法;3. 能够应用所学的知识解决实际问题。
二、教学重点:1. 直线和圆的方程的推导和求解;2. 直线和圆的方程在实际问题中的应用。
三、教学难点:直线和圆的方程的综合应用。
四、教学准备:1. 教材:人教版高中数学教材《直线和圆的方程》;2. 视频教学资料:相关的教学视频;3. 课件:用于辅助教学的课件。
五、教学过程:本套教案共分为两个单元:直线的方程和圆的方程。
1. 直线的方程第一课时:(1)引入问题:通过观察直线和平面上的点,让学生自己总结直线的特点;(2)介绍直线的斜率和截距的概念,让学生理解斜率和截距的含义;(3)讲解直线的一般式方程和斜截式方程,通过具体的例子进行解析;(4)让学生完成练习,巩固所学的内容。
第二课时:(1)复习上一节课所学的内容,回答学生提出的问题;(2)通过实例讲解直线的点斜式方程和两点式方程;(3)让学生进行练习,巩固所学的内容。
第三课时:(1)通过总结前面所学的内容,让学生分析直线的方程和直线的性质之间的关系;(2)通过实例引导学生理解直线的方向角和倾斜角的概念;(3)讲解直线的参数方程,通过具体的例子进行解析;(4)通过练习检查学生对直线方程的掌握程度。
2. 圆的方程第四课时:(1)引入问题:通过观察圆和平面上的点,让学生自己总结圆的特点;(2)介绍圆的标准方程和一般方程的概念,让学生理解圆的方程的推导过程;(3)通过具体的例子进行解析,讲解如何求解圆的方程;(4)让学生进行练习,巩固所学的内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备课人授间
课题
课标要求利用平面直角坐标系解决直线与圆的位置关系
教学目标
知识目标理解直线与圆的位置关系的几何性质
技能目标会用“数形结合”的数学思想解决问题.
情感态度价值观
让学生通过观察图形,理解并掌握直线与圆的方程的应
用,培养学生分析问题与解决问题的能力.
重点直线与圆的方程的应用.难点直线与圆的方程的应用.
教学过程及方法
问题与情境及教师活动学生活动一、复习提问
圆的标准方程是什么?一般方程是什么?点到直线的距离公
式是什么?
直线与圆的方程在生产、生活实践以及数学中有着广泛的应
用,本节通过几个例子说明直线与圆的方程在实际生活以及平面
几何中的应用。
二、新课
例4、某圆拱形桥一孔圆拱的示意图(如图这个圆的圆拱跨度
AB=20m,拱高OP=4m,建造时每间隔4m需要用一根支柱支撑,
求支柱A2P2的高度(精确到0.01m)。
分析:建立如图所示的直角坐标系,只需求出P2的纵坐标,就
可得出支柱A2P2的高度。
教学过程及方法
问题与情境及教师活动学生活动解:建立如图所示的直角坐标系,使圆心在y轴上,
设圆心的坐标是(0,b圆的半径为r,那么圆的方程为:
x2+(y-b)2=r2
因为点P(0,4B(10,0)在圆上,所以,有
⎪⎩
⎪
⎨
⎧
=
+
=
-
+
2
2
2
2
2
2
10
)
4(
r
b
r
b
,解得:
⎩
⎨
⎧
=
-
=
2
25.
14
5.
10
r
b
所以,圆的方程为:
2
2
25.
14
)5.
10
(=
+
+y
x
把P2的横坐标x =-2代入圆的方程,得
2
2
25.
14
)5.
10
(
)2
(=
+
+
-y,
由题可知y>0,
解得:y=3.86
答:支柱A2P2的高度约为3.86米。
例5、已知内接于圆的四边形的对角线互相垂直,求证:圆心到一
边的距离等于这条边所对边长的一半。
分析:如图,选择互相垂直的两条
对角线所在的直线为坐标轴。
本题关键
是求出圆心'O的坐标。
过'O作AC的
垂线,垂足为M,M是AC的中点,垂
足M的横坐标与'O的横坐标一致。
同法可求出'O的纵坐标。
证明:以四边形ABCD互相垂直的
对角线CA、BD所在直线分别为x轴、y轴,建立如所图所示的直角坐
标系,设A(a,0B(0,bC(c,0D(0,d
过四边形外接圆的圆心O’分别作AC、BD、AD的垂线,垂足为M、
N、E,则M、N、E分别为AC、BD、AD的中点,由中点坐标公式,
有:
2
'
c
a
x
x
M
O
+
=
=,
2
'
d
b
y
y
N
O
+
=
=
2
a
x
E
=,
2
d
y
E
=,
由两点间的距离公式,有:
E
O'=2
2)
2
2
(
)
2
2
(
c
a
a
d
b
d+
-
+
+
-=2
2
2
1
c
b+。