ASK课程设计
ASK

二进制振幅键控(ASK)调制与解调设计一、ASK 调制解调系统的原理1、ASK调制原理及其方法数字幅度调制又称幅度键控(ASK),二进制幅度键控记作 2ASK。
2ASK 是利用代表数字信息“0”或“1”的基带矩形脉冲去键控一个连续的载波,使载波时断时续地输出。
有载波输出时表示发送“1”,无载波输出时表示发送“0”。
借助于第3 章幅度调制的原理,2ASK 信号可表示为e0 = s(t) cos ωc t式中,c 为载波角频率, s(t ) 为单极性 NRZ 矩形脉冲序列s(t) = ∑ a n g (t - nT b )其中, g(t) 是持续时间为 Tb 、高度为 1 的矩形脉冲,常称为门函数,an 为二进制数字。
2、ASK实现有两种方法;A、乘法器实现法. a、乘法器实现法的输入是随机信息序列,经过基带信号形成器,产生波形序列,乘法器用来进行频谱搬移,相乘后的信号通过带通滤波器滤除高频谐波和低频干扰。
b、带通滤波器的输出是振幅键控信号。
c、乘法器常采用环形调制器。
B、键控法键控法是产生ASK信号的另一种方法。
二元制ASK又称为通断控制(OOK)。
典型的实现方法是用一个电键来控制载波振荡器的输出而获得。
示意图如图1所示。
图1 3、ASK 解调原理及设计方法ASK 信号解调的常用方法主要有两种:包络检波法和相干检测法。
包络检波法的原理方框图如图2 所示:带通滤波器(BPF )恰好使 2ASK 信号完整地通过,经包络检测后输出其包络。
低通滤波器(LPF )的作用是滤除高频杂波,使基带信号(包络)通过。
抽样判决器包括抽样、判决及码元形成器。
定时抽样脉冲(位同步信号)是很窄的脉冲,通常位于每个码元的中央位置,其重复周期等于码元的宽度。
不计噪声影响时,带通滤波器输出为 2ASK 信号。
经抽样、判决后将码元再生,即可恢复出数字序列{an}。
相干检测法原理方框图如图3 所示相干检测就是同步解调,要求接收机产生一个与发送载波同频同相的本地载波信号,称其为同步载波或相干载波。
ask调制与解调实验报告

ask调制与解调实验报告ASK调制与解调实验报告一、引言调制与解调是通信领域中非常重要的技术手段之一。
本实验旨在通过实际操作,探索并理解ASK调制与解调的原理和实现方法。
二、实验目的1. 理解ASK调制与解调的基本原理;2. 掌握ASK调制与解调的实验操作方法;3. 分析ASK调制与解调的优缺点及应用领域。
三、实验原理ASK(Amplitude Shift Keying)调制是一种基于信号幅度变化的数字调制技术。
在ASK调制中,将数字信号的高低电平分别对应于载波信号的高低幅度,从而实现数字信息的传输。
解调过程则是将调制信号恢复为原始的数字信号。
四、实验步骤1. 搭建ASK调制电路:将数字信号源与载波信号源连接至调制器,调制器输出ASK调制信号。
2. 搭建ASK解调电路:将ASK调制信号与载波信号输入解调器,解调器输出解调信号。
3. 连接示波器:将ASK调制信号和解调信号分别连接至示波器,观察波形变化。
4. 调整参数:根据实验要求,调整数字信号源的频率和幅度,观察ASK调制信号和解调信号的变化。
五、实验结果与分析1. 观察ASK调制信号的波形:通过示波器显示的波形图,我们可以清晰地看到数字信号的高低电平对应于载波信号的高低幅度。
这种幅度变化的方式可以有效地传输数字信息。
2. 观察ASK解调信号的波形:解调器将ASK调制信号恢复为原始的数字信号,解调信号的波形应与数字信号源的波形一致。
通过比较两者的波形图,可以验证解调的准确性。
3. 分析ASK调制与解调的优缺点:ASK调制与解调的优点是实现简单,传输效率高。
然而,由于ASK调制信号的幅度变化较大,容易受到噪声的干扰,因此抗干扰性较差。
4. 应用领域:ASK调制与解调广泛应用于短距离通信系统中,如遥控器、无线门铃等。
在这些应用中,传输距离相对较短,抗干扰性要求不高,因此ASK调制与解调是一种经济实用的选择。
六、实验总结通过本次实验,我们深入了解了ASK调制与解调的原理和实现方法。
基于MATLAB的ASK调制解调实验

基于MATLAB的ASK调制解调实验基于MATLAB 的ASK 调制解调实验1.实验⽬的(1) 熟悉MATLAB 中M ⽂件的使⽤⽅法,并在掌握ASK 调制解调原理的基础上,编写出ASK 调制解调程序。
(2) 绘制出ASK 信号解调前后在时域和频域中的波形,并观察解调前后频谱有何变化以加深对ASK 信号解调原理的理解。
(3) 对信号叠加噪声,并进⾏解调,绘制出解调前后信号的时频波形,改变噪声功率进⾏解调,分析噪声对信号传输造成的影响。
2.实验原理(1)ASK 调制原理ASK 指的是振幅键控⽅式。
这种调制⽅式是根据信号的不同,调节正弦波的幅度。
幅度键控可以通过乘法器和开关电路来实现。
载波在数字信号1或0的控制下通或断,在信号为1的状态载波接通,此时传输信道上有载波出现;在信号为0的状态下,载波被关断,此时传输信道上⽆载波传送。
那么在接收端我们就可以根据载波的有⽆还原出数字信号的1和0。
对于⼆进制幅度键控信号的频带宽度为⼆进制基带信号宽度的两倍。
幅移键控法(ASK )的载波幅度是随着调制信号⽽变化的,其最简单的形式是,载波在⼆进制调制信号控制下通断,此时⼜可称作开关键控法(OOK )。
⼆进制幅度键控记作2ASK 。
2ASK 是利⽤代表数字信息“0”或“1”的基带矩形脉冲去键控⼀个连续的载波,使载波时断时续地输出。
有载波输出时表⽰发送“1”,⽆载波输出时表⽰发送“0”。
2ASK 信号可表⽰为tw t s t e c cos )()(0=式中,cw 为载波⾓频率,s(t)为单极性NRZ 矩形脉冲序列)()(b nn nT t g a t s -=∑其中,g(t)是持续时间b T 、⾼度为1的矩形脉冲,常称为门函数;n a 为⼆进制数字-=P P a n 101,出现概率为,出现概率为2ASK/OOK 信号的产⽣⽅法通常有两种:模拟调制(相乘器法)和键控法。
本模拟幅度调制的⽅法⽤乘法器实现。
相应的调制如图5-1和图5-2:图5-1模拟相乘法图5-2键控/开关法(2)ASK 解调原理2ASK/OOK 信号有两种基本的解调⽅法:⾮相⼲解调(包络检波法)和相⼲解调(同步检测法)。
实验七 振幅键控(ASK)调制与解调实验

实验七振幅键控(ASK)调制与解调实验一、实验目的1、掌握用键控法产生ASK 信号的方法。
2、掌握ASK 非相干解调的原理。
二、实验内容1、观察ASK 调制信号波形2、观察ASK 解调信号波形。
三、实验器材1、信号源模块一块2、③号模块一块3、④号模块一块4、⑦号模块一块5、20M 双踪示波器一台6、连接线若干四、基本原理调制信号为二进制序列时的数字频带调制称为二进制数字调制。
由于被调载波有幅度、频率、相位三个独立的可控参量,当用二进制信号分别调制这三种参量时,就形成了二进制振幅键控(2ASK)、二进制移频键控(2FSK)、二进制移相键控(2PSK)三种最基本的数字频带调制信号,而每种调制信号的受控参量只有两种离散变换状态。
1、2ASK 调制原理。
在振幅键控中载波幅度是随着基带信号的变化而变化的。
使载波在二进制基带信号1 或0 的控制下通或断,即用载波幅度的有或无来代表信号中的“1”或“0”,这样就可以得到2ASK 信号,这种二进制振幅键控方式称为通—断键控(OOK)。
2ASK 信号典型的时域波形如图9-1 所示,其时域数学表达式为:S2 ASK (t) = a n ⋅ A cosωc t(9-1)式中,A 为未调载波幅度, c 为载波角频率,a n 为符合下列关系的二进制序列的第n 个码元。
图9-1 2ASK 信号的典型时域波形2ASK 信号的产生方法比较简单。
首先,因2ASK 信号的特征是对载波的“通-断键控”,用一个模拟开关作为调制载波的输出通/断控制门,由二进制序列S(t) 控制门的通断,S (t) =1 时开关导通;S(t) =0 时开关截止,这种调制方式称为通-断键控法。
其次,2ASK 信号可视为S(t)与载波的乘积,故用模拟乘法器实现2ASK 调制也是很容易想到的另一种方式,称其为乘积法。
2、2ASK 解调原理。
2ASK 解调有非相干解调(包络检波法)和相干解调(同步检测法)两种方法。
ask调制实验报告(一)

ask调制实验报告(一)实验报告-ask调制引言•介绍实验的背景和目的•简要解释ask调制的原理实验步骤1.准备实验所需材料和设备2.搭建ask调制电路–列出所需元器件–给出电路连接图3.调试电路–检查电路连接是否正确–确保电源稳定–测试信号发生器输出4.进行实验–设置信号发生器产生调制信号–连接示波器观察输出信号–记录相关数据5.结果分析–分析调制信号和输出信号的波形–计算调制深度和带宽等参数6.讨论–总结实验结果–比较ask调制与其他调制方式的优缺点–探讨应用领域和未来发展方向结论•简要总结实验结果的重要发现•提出对未来实验和研究的建议参考文献•引用相关的书籍、论文或资料,遵守学术规范。
实验报告-ask调制引言在通信和无线电领域,调制是一项关键的技术,它能将信息信号转换成适合传输的信号。
其中一种常见的调制方式是amplitude shiftkeying (ASK)调制。
本实验旨在通过搭建ASK调制电路,观察和分析调制信号和输出信号的波形,进一步了解ASK调制的原理和应用。
实验步骤1.准备实验所需材料和设备–信号发生器–示波器–频谱分析仪–电阻、电容、二极管等电子元器件2.搭建ASK调制电路–使用所需的电子元器件搭建ASK调制电路–按照电路连接图进行连接3.调试电路–检查电路连接是否正确,确保没有接错或短路的情况–确保电源稳定,准备好信号发生器和示波器4.进行实验–设置信号发生器产生调制信号,可以尝试不同频率和幅度的信号–连接示波器观察输出信号的波形,记录相关数据–还可以使用频谱分析仪观察频域特性5.结果分析–分析调制信号和输出信号的波形,观察其时域和幅度变化–计算调制深度、调制度和带宽等参数,进一步理解ASK调制的特性6.讨论–总结实验结果,概括重要发现和观察到的规律–比较ASK调制与其他调制方式的优缺点,探讨适用的应用领域和未来发展方向结论经过实验观察和数据分析,我们得出以下结论: - ASK调制是一种将数字或模拟信号转换为调幅信号的常用方法。
课程设计matlab2ask

课程设计matlab2ask一、课程目标知识目标:1. 理解Matlab中ask函数的基本原理和应用方法,掌握其在信号处理中的重要性。
2. 学会使用Matlab进行数字幅度调制(Amplitude Shift Keying, ASK)的仿真,理解其调制与解调过程。
3. 掌握相关理论知识,包括调制指数、信号带宽、功率谱等概念,并将其与Matlab仿真结果相联系。
技能目标:1. 能够独立操作Matlab软件,编写程序实现2ASK信号的调制与解调。
2. 通过实际操作,培养解决复杂工程问题的能力,例如参数设置、信号分析等。
3. 培养数据分析能力,能从仿真结果中提取关键信息,对调制效果进行评价。
情感态度价值观目标:1. 培养学生对信号处理领域的兴趣,激发探索精神和创新意识。
2. 通过小组讨论和协作,培养学生的团队合作意识和沟通能力。
3. 强化学生的工程伦理观念,理解技术在现实生活中的应用及其对社会的影响。
课程性质分析:本课程为电子信息工程及相关专业高年级学生设计,旨在通过Matlab软件的应用,加深对数字通信原理的理解,尤其是2ASK调制技术的实现。
学生特点分析:高年级学生对通信原理已有一定基础,对Matlab操作也有一定经验。
学生具备一定的独立思考和学习能力,能够接受挑战性任务。
教学要求:1. 结合实际案例,引导学生理论联系实际,提高学生的实际操作能力。
2. 教学过程中注重启发式教学,鼓励学生提问和讨论,提高解决问题的能力。
3. 通过课程目标的实现,为后续的专业课程打下坚实基础,同时培养学生的综合素养。
二、教学内容1. 理论知识回顾:复习数字通信基本原理,重点介绍幅度调制(ASK)的概念、数学表达和基本特性。
- 相关教材章节:数字通信原理第三章,幅度调制与解调。
2. Matlab基础操作:回顾Matlab基本命令和编程技巧,为后续的2ASK仿真打下基础。
- 相关教材章节:Matlab基础教程第五章,Matlab编程基础。
差分码ASK信号抽样仿真课件
长沙理工大学《通信原理》课程设计报告李秉坤学 院 城南学院 专 业 通信工程 班 级 通信1104 学 号 201185250429 学生姓名 李秉坤 指导教师 黄红兵 课程成绩完成日期 2014年1月9日课程设计成绩评定学院城南学院专业通信工程班级通信1104 学号20118525042学生姓名李秉坤指导教师黄红兵课程成绩完成日期2014年1月9日指导教师对学生在课程设计中的评价指导教师对课程设计的评定意见课程设计任务书城南学院通信工程专业差分码ASK信号PAM调制仿真学生姓名:李秉坤指导老师:黄红兵摘要本课程设计主要用matlab/Simulink平台仿真一个差分码ASK信号抽样仿真系统,利用图形输入法设计相关电路,用示波器和频谱模块分析系统性能。
首先根据原理画出图形,构建调制解调电路,在Simulink中调出各模块组成电路,设置调制解调电路各模块的参数值并运行,把运行仿真结果输入显示器,根据显示结果分析所设计的系统性能。
通过波形分析,达到仿真的目的。
关键词抽样仿真;差分码;Matlab/Simulink1 引言MATLAB的名称源自Matrix Laboratory,它是一种科学计算软件,专门以矩阵的形式处理数据[1]。
MATLAB将高性能的数值计算和可视化集成在一起,并提供了大量的内置函数,从而被广泛地应用于科学计算、控制系统、信息处理等领域的分析、仿真和设计工作。
本课程设计主要用matlab中的Simulink平台仿真一个差分码ASK信号抽样仿真系统分别在理想信道和非理想信道中运行,并把运行仿真结果输入显示器,根据显示结果分析所设计的系统性能。
1.1 课程设计目的通信原理课程设计是《通信原理》理论课程的辅助实践环节。
着重体现学生对通信原理教学知识的应用,培养学生理论与实际工程相结合的能力。
以小课题的方式来加深、扩展通信原理知识[3]。
通过设计差分码ASK信号抽样仿真系统,并使其在不同的噪声信道中运行,让学生进一步理解通信系统的基本组成、模拟通信和数字通信的基础理论、通信系统发射端信号的形成原理、通信系统信号传输质量的检测等方面的相关知识,并学会运用这些知识。
4ASK载波调制信号的调制解调与性能分析(1)
******************实践教学*******************兰州理工大学计算机与通信学院2014年春季学期通信系统仿真训练课程设计题目: 4ASK载波调制信号的调制解调与性能分析专业班级:通信工程四班姓名:赵天宏学号: 11250414指导教师:彭清斌成绩:摘要实际通信中的许多信道都不能直接传送基带信号,必须用基带信号对载波波形的某些参量进行控制,使得载波的这些参量随基带信号的变化而变化,即正弦载波调制。
通过MATLAB软件平台,设计并实现了多进制幅移键控(M-ary Amplitude-Shift Keying,MASK)中的四电平调制(4-ary Amplitude ShiftKeying,4ASK)的调制系统和解调系统。
本文首先介绍了四电平调制和解调的原理,随后介绍载波产生、振幅调制、振幅判别等功能模块的设计,最后给出了整体调制解调的模块图和仿真波形。
关键词:载波调制、数字通信、四电平调制和解调目录一、设计目的和要求 11.1设计目的 11.2设计要求 1二、设计内容及原理 22.1 四进制ASK信号的表示式 22.2产生方法 32.3 4ASK调制解调原理 3三、运行环境及MATLAB简介 63.1运行环境 63.2 MATLAB简介 6四、详细设计 74.1载波信号的调制 74.2调制信号的解调 74.3编程语言 84.4测试结果 9五、调试分析 10六、参考文献 11总结 12一、设计目的和要求1.1设计目的:本次课程设计的任务是四进制振幅键控(4ASK)数字调制系统仿真和分析。
主要内容是对二进制数字信源进行四进制振幅键控(4ASK)数字调制,画出信号波形及功率谱。
并分析其性能。
课程设计主要目的是深入理解和掌握振幅通信系统的各个关键环节,包括调制、解调、滤波、传输、噪声对通信质量的影响等。
在数字信号处理实验课的基础上更加深入的掌握数字滤波器的设计原理及实现方法。
实验8、ASK调制解调(修改)
实验8、A S K调制解调(修改)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN实验 8 ASK 调制解调一、实验目的1.掌握 ASK 调制器的工作原理及性能测试;2.掌握 ASK 包络检波法解调原理;3.学习基于软件无线电技术实现 ASK 调制、解调的实现方法。
二、实验原理1.调制与解调数字信号的传输方式分为基带传输和带通传输。
然而,实际中的大多数信道(如无线信道)因具有带通特性而不能直接传送基带信号,这是因为数字基带信号往往具有丰富的低频分量。
为了使数字信号在带通信道中传输,必须用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。
这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号(已调信号)的过程称为数字调制(digital modulation)。
在接收端通过解调器把带通信号还原成数字基带信号的过程称为数字解调(digital demodulation)。
通常把包括调制和解调过程的数字传输系统叫做数字频带传输系统。
数字信息有二进制和多进制之分,因此,数字调制可分为二进制调制和多进制调制。
在二进制调制中,信号参量只有两种可能的取值;而在多进制调制中,信号参量可能有M(M>2)种取值。
本章主要讨论二进制数字调制系统的原理。
2.2ASK 调制振幅键控(Amplitude Shift Keying,ASK)是利用载波的幅度变化来传递数字信号,而其频率和初始相位保持不变。
在2ASK 中,载波的幅度只有两种变换状态,分别对应二进制信息“0”或“1”。
2ASK 信号的产生方法通常有两种:数字键控法和模拟相乘法。
实验中采用了数字键控法,并且采用了最新的软件无线电技术。
结合可编程逻辑器件和 D/A 转换器件的软件无线电结构模式,由于调制算法采用了可编程的逻辑器件完成,因此该模块不仅可以完成 ASK,FSK 调制,还可以完成 PSK,DPSK,QPSK,OQPSK 等调制方式。
ASK调制与解调电路设计及仿真
ASK调制与解调电路设计及仿真在通信系统中,调制和解调电路是至关重要的组成部分。
调制是将信息信号转换成适合在通信信道中传输的信号的过程,而解调则是将传输过来的信号恢复成原始信号的过程。
下面将详细介绍调制与解调电路的设计及仿真。
1.调制电路设计和仿真:调制电路的设计目标是将原始信息信号转换成适合在通信信道中传输的信号。
常见的调制方式包括频率调制(FM)、相位调制(PM)和振幅调制(AM)。
调制电路的设计应考虑如下因素:(1)信号源:需确定原始信息信号的频率范围、幅度以及波形特征。
(2)载波信号源:选择适合的载波频率和波形。
(3)调制电路:根据调制方式选取合适的调制电路,如较简单的RC电路或相移电路等。
(4)调制参数调整:通过改变调制电路的参数,可以对调制信号的频率、相位和幅度进行调节。
(5) 仿真验证:利用电路仿真软件(如Multisim、LTspice等)对设计的调制电路进行仿真、调试和验证。
2.解调电路设计和仿真:解调电路的设计目标是将经过调制的信号恢复成原始信息信号。
解调电路的设计应考虑如下因素:(1)调制方式和参数:了解调制信号的调制方式和参数,确定解调电路的工作方式。
(2)解调电路选型:选择合适的解调电路,如包络检波电路、鉴频器等。
(3)解调参数调整:通过调整解调电路的参数,对解调信号的频率、相位和幅度进行调节。
(4)仿真验证:利用电路仿真软件对设计的解调电路进行仿真、调试和验证。
(5)信号恢复质量评估:通过仿真结果评估解调电路对原始信息信号的恢复质量,包括信噪比、失真度等。
3.综合设计和仿真:在设计调制和解调电路时,需要充分考虑信号传输的特性、噪声干扰、抗干扰性能等因素。
通过电路仿真软件,可以进行综合设计和仿真,优化调制和解调电路的性能。
此外,还可考虑以下因素:(1)双向通信:在调制和解调电路设计中,需要考虑双向通信的情况,即在同一通信链路上实现信号的传输和接收。
(2)多路复用:有时需要将多个信号在同一通信信道中传输,此时需要设计相应的多路复用电路,实现信号的分离和恢复。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电力系统自动化》 课程设计任务书
题 目 ASK调制与解调电路设计及仿真实现 学生姓名 学号 专业班级
设 计 内 容 与 要 求
一、设计内容 1. 对电力系统远动信息传输系统的主要环节进行理论分析和研究。 2. 熟悉数字调幅技术的有关原理和实现方法。 3. 设计ASK调制解调电路。 4. 熟悉ORCAD软件的应用,学习元件库使用、原理图的建立以及应用原理图进行仿真的基本方法。 5. 撰写设计报告,报告要求有以下内容: 1) 画出所设计电路的原理图。 2) 对电路中各功能环节的工作原理进行分析。 3) 针对所设计的电路,说明各种器件参数选择的理由。 4) 画出各个环节的波形图,并对仿真结果进行分析,验证设计的正确性。 5) 总结电路调试过程所遇到的问题及解决方法。 6) 课程设计的结论。 二、设计要求 1. 掌握电力系统远动信息传输的基本过程。 2. 掌握电力系统远动信息过程中ASK数字调幅与解调的基本原理。 3. 学习使用ORCAD进行仿真的基本方法。 4. 设计ASK调制解调的仿真电路,并在PSPICE环境进行仿真验证,观察各环节的波形,并能做出正确分析。
起止时间 2009 年 12 月 21日 至 2009 年 12 月 25 日 指导教师签名 年 月 日 系(教研室)主任签名 年 月 日 学生签名 年 月 日 目录 一. 背景描述„„„„„„„„„„ 二. 设计内容„„„„„„„„„„ 三. 工作原理„„„„„„„„„„ 四. 电路设计及参数设置„„„„„ 五. 仿真及波形分析„„„„„„„ 六. 总结„„„„„„„„„„„„ 七. 参考文献„„„„„„„„„„ 一. 背景描述: 电力系统远动技术是为电力系统调度服务的远距离监测、控制技术。由于电能生产的特点,能源中心和负荷中心一般相距甚远,电力系统分布在很广的地域,其中发电厂、变电所、电力调度中心和用户之间的距离近则几十公里,远则几百公里甚至数千公里。要管理和监控分布甚广的众多厂、所、站和设备、元器件的运行工况,已不能用通常的机械联系或电联系来传递控制信息或反馈的数据,必须借助于一种技术手段,这就是远动技术。它将各个厂、所、站的运行工况(包括开关状态、设备的运行参数等)转换成便于传输的信号形式,加上保护措施以防止传输过程中的外界干扰,经过调制后,由专门的信息通道传送到调度所。在调度所的中心站经过反调制,还原为原来对应于厂、所、站工况的一些信号再显示出来,供给调度人员监控之用。调度人员的一些控制命令也可以通过类似过程传送到远方厂、所、站,驱动被控对象。这一过程实际上涉及遥测、遥信、遥调、遥控,所以,远动技术是四遥的结合。 二.设计内容: 1. 对电力系统远动信息传输系统的主要环节进行理论分析和研究。 2. 熟悉数字调幅技术的有关原理和实现方法。 3. 设计ASK调制解调电路。 4. 熟悉ORCAD软件的应用,学习元件库使用、原理图的建立以及应用原理图进行仿真的基本方法。 三. 工作原理: 1. 数字调幅技术的原理和实现方法 (1)数字调制的概念 用二进制(多进制)数字信号作为调制信号,去控制载波某些参量的变化,这种把基带数字信号变换成频带数字信号的过程称为数字调制,反之,称为数字解调。 (2)数字调制的分类 在二进制时分为:振幅键控(ASK)、频移键控(FSK)、相移键控(PSK)。其中,ASK 属于线性调制,FSK、PSK 属于非线性调制。 (3)数字调制系统的基本结构
(4)ASK调制波形与方框图: 2.二进制幅移键控(ASK) (1)ASK 信号的产生
图为 ASK 信号的产生原理 一个二进制的ASK 信号可视为一个单极性脉冲序列与一个高频载波的乘积,即ASK 的时域表达式为: 也可写成: (2)ASK 信号的功率谱特性 ASK 信号的自相关函数为:
(3)ASK 信号的功率谱密度为: 式中, ps ( f )为基带信号S(t)的功率谱密度 当0、1 等概出现时,单极性基带信号功率谱密度为:
则2ASK 信号的功率谱密度为: ASK 信号谱,形状为 ps ( f ),双边带加载频谱线 pE ( f )
ASK 信号传输带宽 (取主瓣宽度)
带宽利用率 (4)ASK 信号的解调方式 解调也可以分成相干解调与非相干解调两类。其中相干解调要求接收端提供相干载波。非相干解调,就是在接收端不需要相干载波,而根据已调信号本身的特点来解调 a. 非相干解调的原理框图和波形图(包络检波法)
b.相干解调的原理框图和波形图(同步检测法) 四.ASK 调制解调的仿真电路的设计及参数设置 1.ASK 信号产生电路设计 本次设计中采用模拟法,其中V1,V2都采用方波作为数字基带信号. V1设置其低电平V2=0V,高电平V1=2V,延迟时间TD=0ms,上升时间TR=O.0001ms,下降时间TF=O.0001ms,脉冲宽度PW=1ms,脉冲周期PER=2ms . V2设置其低电平V2=0V,高电平V1=1V,延迟时间TD=0us,上升 时间TR=O.00001us,下降时间TF=O.00001us,脉冲宽度PW=5us,脉冲周期PER=10us . 此过程为信号的调制过程,调制是将某种低频信号(如音频信号)“加载”到为了便于传输的高频信号的过程。本设计采用模拟乘法器实现对信号的调制。 用模拟乘法器实现幅度调制的原理框图如下图:
音频信号 单边带信号输出 载波信号
以调幅广播信号为例,将音频信 =t 与高频载波信号=t分别接入模拟乘法器的两个输入端,则输出电压为 =2Ktt =K[t+t] 由于被调制的低频信号并非单一频率而是某一频段的信号,如音频信号的频率为20Hz~20KHz。所以乘法器的输出电压是以调制频率为中心的两段频段,简称便带。()为上边带;()为下边带。在乘法器的输出端接一个带通滤波器可滤除其中的一个边带,而 保留另一个边带发送。 =Kt 2.ASK 信号解调电路设计
带通滤波器 本次设计中采用相干解调法,由常规双边带调幅(AM )信号的频谱可知,如果将已调信号的频谱搬回到原点位置,即可得到原始的调制信号频谱,从而恢复出原始信号。解调中的频谱搬移同样可用调制时的相乘运算来实现。因此 V1、V2 相乘后所得 2ASK 信号再与 V3方波信号相乘即可实现 ASK 信号的解调。电路如左图所示: 其中V3采用方波信号,设置其低电平V2=0V,高电平V1=1V,延迟时间TD=0us,上升时间TR=O.00001us,下降时间TF=O.00001us,脉冲宽度PW=5us,脉冲周期PER=10us .
此过程为信号的解调过程,解调是调制的逆变换,即从调制过程的高频信号中提取原低频信号的过程。本设计采用模拟乘法器实现对信号的解调。 用模拟乘法器实现幅度解调的原理框图如下图:
载波信号 音频信号 调幅信号
解调是调制的逆过程,同样是利用乘法器来实现将音频信号从调幅波中分离出来。乘法器的两个输入端分别接入调幅波(下边带) = 及与调制时的载波信号同频同相的载波信号=t,则可以得到输出信号为 =K[t+t] 通过低通滤波器滤除其中的高频分量,则可以得到输出电压幅值与
低通滤波器 原信号(=t)略有不同,但频率都为的低频信号。 3.滤波电路环节设计
本设计采用一阶滤波电路,由于采用了脉冲周期:PER=10us(f=1/10us=100kHz) 的高频方波载波信号,故此处所用滤波器的时间常数=1/f=10us ,因此先选定电阻 R1=5k ,与之对应选择电容 C1=0.002uF,即可满足此时间常数要求。 4.比较电路环节设计 其中 LM324 与 R2、R3 构成一个反向器,LM324 工作的正端电压设置为5Vdc。其电路如下图所示 5.电压判决电路环节设计 该处电压抽样判决器中负端工作电压由 V6 处的 5Vdc 经 R4、R5构成的电压取样电路取得 1Vdc 与 LM324 的正端输入电压信号比较,当输入信号大于 1Vdc 时,LM324 输出为高电平,否则为低电平。从而将原低频调制信号解调还原出来。电路如下图所示 6.ASK 调制解调仿真电路综合设计 综合上述各个电路环节,最后得 ASK 调制解调的仿真电路如下图所示:
五.PSPICE 环境下仿真波形及波形分析 1.电路图标记各点在pspice环境下的仿真波形:
Time0s1.0ms2.0ms3.0ms4.0ms5.0ms6.0msV(MULT1:OUT)
0V
1.0V2.0V
上图为01处波形(图1)
R6 3k
2
1
R5 1k 2 1 R4 4k 2 1 V6 5Vdc VCC 0 0 0 U9A LM324 + 3 - 2 V+ 4 V- 11 OUT 1 V2 TD = 0us TF = 0.00001us PW = 5us PER = 10us V1 = 1V TR = 0.00001us V2 = 0V V3 TD = 0us TF = 0.00001us PW = 5us PER = 10us V1 = 1V TR = 0.00001us V2 = 0V V V V V V V1 TD = 0ms TF = 0.0001ms PW = 1ms PER = 2ms V1 = 2V TR = 0.0001ms V2 = 0V 0 0 0 R1 5k 2 1 U7 - 2 + 3 OUT 6 V+ 7 V- 4 R2 1k 2 1 R3 1k 2 1 C1 0.002u 1 2 V4 0Vdc V5 5Vdc
0 0 0 0 01 02 03
04
05