初中九年级上册数学 《二次函数》优质课件PPT
合集下载
22.1.1 二次函数 课件(共15张PPT)

新课导入
你 观 察 过 公 园 的 拱 桥 吗?
篮球入框,公 园里的喷泉, 雨后的彩虹都 会形成一条曲 线.这些曲线 能否用函数关 系式表示?
知识讲解
1.二次函数的定义
探究归纳
1 1
1
3
此式表示了种植面积y与边长x之间的关系,对于x的每一个值,y都有唯一 确定的一个对应值,即y是x的函数.
知识讲解
第 二十二章 二次函数
第二十二章 二次函数
22.1 二次函数的图象和性质 22.1.1 二次函数
温故知新
1. 函数的定义 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确 定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
2. 一次函数与正比例函数
3.一元二次方程的一般形式
30(1+x)2
30(1+x)2
30(1+x)
此式表示了两年后的产量y与计划增产的倍数x之间的关系,对于x的每一个值,y 都有唯一确定的一个对应值,即y是x的函数.
知识讲解
上述三个问题中的函数解析式具有哪些共同特征呢?
知识讲解
归纳总结
二次函数的定义:
注意
知识讲解
2.二次函数的应用 例1
不一定是,缺少 a≠0的条件
中y=0时得到的。
与前面我们学过的一元二 有什么联系和区别?
且a≠0; 可以看成是函数
区别:前者是函数,后者是方程;等式另一边前者是y,后 者是0。
随堂训练
B C
随堂训练
4.矩形的周长为16 cm,它的一边长为x(cm),面积为y(cm2). (1)求y与x之间的函数解析式及自变量x的取值范围; (2)求当x=3时矩形的面积.
人教版九年级上册数学二次函数课件

当a=0时,这个函数不是 二次函数,有可能是一次函数.
自主探究
问题: (3)b或c能为0吗?
当b≠0时,是一次函数, 当b=0时, 是常数函数关于x的函数 y m 1 xm2m
是二次函数,求m的值.
分析:若 y m 1 xm2m 是二次函数,须满
足的条件是 m2 m 2, m 1 0.
自主探究
1.问题探究 (1)正方体的六个面是全等的正方形,如果 正方体的棱长为x,表面积为y,那么y与x的关 系可以怎样表示?
y 6x2
(2) n边形的对角线条数d与边数n之间有怎
样的关系?
d 1 n2 3 n
2
2
自主探究
(3)某工厂一种产品现在的年产量是20件, 计划今后两年增加产量,如果每年都比上一 年的产量增加x倍,那么两年后这种产品的产 量y将随计划所定的x的值而定,y与x之间的关 系应怎样表示?
第二十二章 二次函数 22.1 二次函数的图象和性质
22.1.1 二次函数
情境引入
欣赏下面两幅图片:
姚明一次精彩的投球
情境引入
广场前喷水池喷出的水珠
情境引入
篮球和水珠在空中走过一条曲线, 在曲线的各个位置上,篮球(水珠)的 竖直高度h与它距离投出位置(喷头)的 水平距离x之间有什么关系?上面问题中 变量之间的关系可以用二次函数来表示.
y 20x2 40x 20.
自主探究
2.视察思考
请视察下面三个式子,它们的变量对应规律可
用怎样的函数表示?这些函数有什么共同特点?请
你结合学习一次函数概念的经验,给它下个定义.
(1) y 6 x2 ;
(2)d
1 2
n2
3 2
n;
具有
自主探究
问题: (3)b或c能为0吗?
当b≠0时,是一次函数, 当b=0时, 是常数函数关于x的函数 y m 1 xm2m
是二次函数,求m的值.
分析:若 y m 1 xm2m 是二次函数,须满
足的条件是 m2 m 2, m 1 0.
自主探究
1.问题探究 (1)正方体的六个面是全等的正方形,如果 正方体的棱长为x,表面积为y,那么y与x的关 系可以怎样表示?
y 6x2
(2) n边形的对角线条数d与边数n之间有怎
样的关系?
d 1 n2 3 n
2
2
自主探究
(3)某工厂一种产品现在的年产量是20件, 计划今后两年增加产量,如果每年都比上一 年的产量增加x倍,那么两年后这种产品的产 量y将随计划所定的x的值而定,y与x之间的关 系应怎样表示?
第二十二章 二次函数 22.1 二次函数的图象和性质
22.1.1 二次函数
情境引入
欣赏下面两幅图片:
姚明一次精彩的投球
情境引入
广场前喷水池喷出的水珠
情境引入
篮球和水珠在空中走过一条曲线, 在曲线的各个位置上,篮球(水珠)的 竖直高度h与它距离投出位置(喷头)的 水平距离x之间有什么关系?上面问题中 变量之间的关系可以用二次函数来表示.
y 20x2 40x 20.
自主探究
2.视察思考
请视察下面三个式子,它们的变量对应规律可
用怎样的函数表示?这些函数有什么共同特点?请
你结合学习一次函数概念的经验,给它下个定义.
(1) y 6 x2 ;
(2)d
1 2
n2
3 2
n;
具有
人教版九年级初中数学上册第二十二章二次函数-二次函数与一元二次方程PPT课件

新知探究
二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的
根有什么关系?
抛物线y=ax2+bx+c(a≠0)
一元二次方程ax2+bx+c=0
与x轴的公共点的个数
(a≠0)的根的情况
b2-4ac>0
有两个
有两个不相等的实数根
b2-4ac=0
有一个
有两个相等的实数根
P(2,-2)
重复上述过程,不断缩小根的范围,根所在两端的值就越来越
接近根的值.因而可以作为根的近似值。
尝试求出方程y = 2 − 2 − 2两个根的近似值?
课堂练习
1. 抛物线 = 2 + 2 − 3与轴的交点个数有(
. 0个
. 1个
C.2个
C ).
D.3个
【分析】解二次函数 = 2 + 2 − 3得1 =
第二十二章 二次函数
2 2 . 2 二次函数与一元二次方程
人教版九年级(初中)数学上册
授课老师:XX
前 言
学习目标
1.二次函数与一元二次方程之间的联系。
2.二次函数的图象与x轴交点的三种位置关系。
3.利用二次函数图象求它的实数根。
重点难点
重点:让学生理解二次函数与一元二次方程之间的联系。
难点:让学生理解函数图象交点问题与对应方程间的相互转化,及用图象求方程
x1=x2 =-
x
2
与x轴没有
交点
一元二次方程
ax2+bx+c=0
(a≠0)的根
x
没有实数根
新知探究
《二次函数》优质PPT课件(共65页ppt)

抛物线
y 2x 32 1
2
y 1 x 12 5
3
y 2x 32 5
y 0.5x 12
y 3 x2 1 4
y 2x 22 5
y 0.5x 42 2 y 3 x 32
4
开口方向
向上 向下 向上 向下 向下 向上 向上 向下
对称轴
直线x=-3 直线x=-1 直线x=3 直线x=-1 直线x=0 直线x=2 直线x=-4 直线x=3
__10_0___x棵橙子树,这时平均每棵树结_______个橙6子00。 5x
(3)如果果园橙子的总产量为y个,那么y与x
之间的关系式为_____y____6_0_0__5_x_。100 x
y 5x2 100 x 60000
y 5x2 100 x 60000 在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?
-2
-1
2
4
6
-2
y x2
-3
-4
-5
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系 数。
有研究表明,晴天在某段公路上行驶时,速度为v(km/h)的 汽车的刹车距离s(m)可以由公
x
1 2 3 4 5 6 7 8 9 10 11 12 13 14
棵
y 个
60095
60180
60255
60320
60375
60420
60455
60480
60495
60500
人教版数学九年级上册第二十二章《二次函数》课件(共22张)

解:因为第1档次的产品一天能生产 95 件,每件利润 6 元,每 提高一个档次,每件利润增加 2 元,但一天产量减少 5 件, 所以第 x 档次,提高了(x−1)档,利润增加了 2(x−1)元. 所以 y=[6+2(x−1)][95−5(x−1)], 即 y=−10x2+180x+400(其中 x 是正整数,且1≤x≤10).
2.一个圆柱的高等于底面半径,写出它的表面积 S 与底面半径 r 之间的关系式.
解:由圆柱的表面积=2×圆柱的底面积+圆柱的侧面积, 得 S=2πr2+2πr•r=4πr2.
3.如图,矩形绿地的长、宽各增加 x m,写出扩充后的绿地的面 积 y 与 x 的关系式.
解:由图可得,扩充后的绿地的面积y(m2)与 x(m) 之间的函数关系式是y=(30+x)(20+x)=x2+50x+600, 即 y=x2+50x+600.
这个函数与我们学过的函数不同,其中自变量x的最高次数是2. 这类函数具有哪些性质呢?这就是本章要学习的二次函数.
合作探究
n 个球队参加比赛,每两队之间进行一场比赛,比赛的场次数 m 与球队数 n 有什么关系?
分析:每个球队要与其他 (n-1) 个球队各比赛一场,甲队对乙队的比赛与乙
队对甲队的比赛是同一场比赛,所以比赛的场次数为
形如 y=ax²+bx+c (a,b,c是常数,a≠ 0)的函数叫做二次函数.其中 x 是自变量,a,b,c 分别是二次项系数、一次项系数和常数项.
(1)等号左边是变量y,右边是关于自变量x的整式; (2)a,b,c为常数,且a≠ 0; (3)等式的右边最高次数为 2,可以没有一次项和常数项,但 不能没有二次项.
2.一个圆柱的高等于底面半径,写出它的表面积 S 与底面半径 r 之间的关系式.
解:由圆柱的表面积=2×圆柱的底面积+圆柱的侧面积, 得 S=2πr2+2πr•r=4πr2.
3.如图,矩形绿地的长、宽各增加 x m,写出扩充后的绿地的面 积 y 与 x 的关系式.
解:由图可得,扩充后的绿地的面积y(m2)与 x(m) 之间的函数关系式是y=(30+x)(20+x)=x2+50x+600, 即 y=x2+50x+600.
这个函数与我们学过的函数不同,其中自变量x的最高次数是2. 这类函数具有哪些性质呢?这就是本章要学习的二次函数.
合作探究
n 个球队参加比赛,每两队之间进行一场比赛,比赛的场次数 m 与球队数 n 有什么关系?
分析:每个球队要与其他 (n-1) 个球队各比赛一场,甲队对乙队的比赛与乙
队对甲队的比赛是同一场比赛,所以比赛的场次数为
形如 y=ax²+bx+c (a,b,c是常数,a≠ 0)的函数叫做二次函数.其中 x 是自变量,a,b,c 分别是二次项系数、一次项系数和常数项.
(1)等号左边是变量y,右边是关于自变量x的整式; (2)a,b,c为常数,且a≠ 0; (3)等式的右边最高次数为 2,可以没有一次项和常数项,但 不能没有二次项.
初三二次函数ppt课件ppt课件

轴是$x = - \frac{b}{2,利用描点法可以 绘制出二次函数的图像。
与x轴交点
当$\Delta > 0$时,二次函数的 图像与x轴有两个交点;当
$\Delta = 0$时,二次函数的图 像与x轴只有一个交点;当
$\Delta < 0$时,二次函数的图 像与x轴没有交点。
理解二次函数的基本 概念和图像表示。
能够运用二次函数解 决实际问题。
掌握二次函数的性质 ,包括开口方向、顶 点坐标和对称轴。
课程计划
通过PPT演示,引导学生了解 二次函数的概念和图像表示。
通过例题讲解,帮助学生掌握 二次函数的性质和应用。
组织课堂练习和讨论,加深学 生对二次函数的理解和应用能 力。
二次函数的表达式
01
02
03
表达式
二次函数的表达式为$y = ax^{2} + bx + c$,其中 $a \neq 0$。
各项的意义
$a$是二次项系数,$b$ 是一次项系数,$c$是常 数项。
如何确定表达式
通过已知条件,利用待定 系数法可以确定二次函数 的表达式。
二次函数的图像
图像特点
二次函数的图像是一个抛物线, 其顶点坐标是$( - \frac{b}{2a}, \frac{4ac - b^{2}}{4a})$,对称
06
参考资料
初三二次函数ppt课件
初三二次函数的概念
介绍二次函数的基本定义、表达式和 图像特征。
初三二次函数的图像和性质
详细描述了如何绘制二次函数的图像 ,并分析了图像的开口方向、顶点坐 标、对称轴和增减性等性质。
初三二次函数的实际应用
通过实例和练习题,展示了二次函数 在解决实际问题中的应用,如最值问 题、行程问题等。
与x轴交点
当$\Delta > 0$时,二次函数的 图像与x轴有两个交点;当
$\Delta = 0$时,二次函数的图 像与x轴只有一个交点;当
$\Delta < 0$时,二次函数的图 像与x轴没有交点。
理解二次函数的基本 概念和图像表示。
能够运用二次函数解 决实际问题。
掌握二次函数的性质 ,包括开口方向、顶 点坐标和对称轴。
课程计划
通过PPT演示,引导学生了解 二次函数的概念和图像表示。
通过例题讲解,帮助学生掌握 二次函数的性质和应用。
组织课堂练习和讨论,加深学 生对二次函数的理解和应用能 力。
二次函数的表达式
01
02
03
表达式
二次函数的表达式为$y = ax^{2} + bx + c$,其中 $a \neq 0$。
各项的意义
$a$是二次项系数,$b$ 是一次项系数,$c$是常 数项。
如何确定表达式
通过已知条件,利用待定 系数法可以确定二次函数 的表达式。
二次函数的图像
图像特点
二次函数的图像是一个抛物线, 其顶点坐标是$( - \frac{b}{2a}, \frac{4ac - b^{2}}{4a})$,对称
06
参考资料
初三二次函数ppt课件
初三二次函数的概念
介绍二次函数的基本定义、表达式和 图像特征。
初三二次函数的图像和性质
详细描述了如何绘制二次函数的图像 ,并分析了图像的开口方向、顶点坐 标、对称轴和增减性等性质。
初三二次函数的实际应用
通过实例和练习题,展示了二次函数 在解决实际问题中的应用,如最值问 题、行程问题等。
人教版九年级初中数学上册第二十二章二次函数-二次函数的图像和性质PPT课件全文

你还记得如何画出一次函数的图像吗?
描点法画函数图像的一般步骤如下:
描点法
第一步,列表—表中给出一些自变量的值及其对应的函数值;
第二步,描点—在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,
描出表格中数值对应的各点;
第三步,连线—按照横坐标由小到大顺序,把所描出的各点用平滑的曲线连接起来。
抛物线y=ax2的图象性质:
(1)抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物线的最高点.
(3)|a|越大,抛物线的开口越小.
课堂练习
1.填表:
抛物线
y = ax2(a>0)
y = ax2(a<0)
顶点坐标
你能通过这种方法画出二次函数的图像吗?
新知探究
二次函数=^2 的图像
通过描点法画出 = 的图像?
【列表】
在 = 中,自变量可以取任意实数,列表取几组对应值:
…
-2
-1
0
1
2
…
…
4
1
0
1
2
…
新知探究
二次函数=^2 的图像
y
通过描点法画出 = 的图像?
9
【描点】
事实上,二次函数的图象都是抛物线,它们的开口或者
3
向上或者向下.一般地,二次函数 y =ax2+bx +c(a≠0)
的图象叫做抛物线y=ax2+bx+c.
-3
O
3
x
新知探究
二次函数=^2 的性质
观察 = 2 的图像,它有对称轴在哪里?图像与y轴的交点在哪里?
描点法画函数图像的一般步骤如下:
描点法
第一步,列表—表中给出一些自变量的值及其对应的函数值;
第二步,描点—在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,
描出表格中数值对应的各点;
第三步,连线—按照横坐标由小到大顺序,把所描出的各点用平滑的曲线连接起来。
抛物线y=ax2的图象性质:
(1)抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物线的最高点.
(3)|a|越大,抛物线的开口越小.
课堂练习
1.填表:
抛物线
y = ax2(a>0)
y = ax2(a<0)
顶点坐标
你能通过这种方法画出二次函数的图像吗?
新知探究
二次函数=^2 的图像
通过描点法画出 = 的图像?
【列表】
在 = 中,自变量可以取任意实数,列表取几组对应值:
…
-2
-1
0
1
2
…
…
4
1
0
1
2
…
新知探究
二次函数=^2 的图像
y
通过描点法画出 = 的图像?
9
【描点】
事实上,二次函数的图象都是抛物线,它们的开口或者
3
向上或者向下.一般地,二次函数 y =ax2+bx +c(a≠0)
的图象叫做抛物线y=ax2+bx+c.
-3
O
3
x
新知探究
二次函数=^2 的性质
观察 = 2 的图像,它有对称轴在哪里?图像与y轴的交点在哪里?
二次函数ppt课件

22.1.1 二次函数
年 级:九年级 学 科:数学(人教版)
1.函数的定义:
3.一元二次方程的一般形式是什么?
2.一次函数的定义是什么?
知识回顾
观察图片,这些曲线能否用函数关系式来表示?它们的形状是怎样画出来的?
实际问题
归纳、抽象
数学模型
(1) 写出 <m></m> 与 <m></m> 的函数关系式;
(2) 当 <m></m> 时,求 <m></m> 的值.
解:(1)其中一直角边长为 <m></m> ,则另一直角边长为 <m></m> ,依题意得 <m>
(2)当 <m></m> 时, <m></m> .
引入新课
观察这三个函数关系式有什么共同特点?
1.都有两个变量2.整式3.自变量最高次数是2次
讲授新课
二次函数的概念
二次
一元二次方程?
一次?
总结
二次函数的概念
陋室铭
例1:判断下列函数中,哪些是二次函数?若是二次函数,请指出二次项系数、一次项系数、常数项。
×
×
×
×
√
×
√
√
例题讲解
函数
二次项系数
布置作业
3、如图,在 <m></m> 中, <m></m> , <m></m> , <m></m> .动点 <m></m> 从点 <m></m> 开始沿边 <m></m> 向点 <m></m> 以 <m></m> 的速度移动;动点 <m></m> 从点 <m></m> 开始沿边 <m></m> 向点 <m></m> 以 <m></m> 的速度移动.如果 <m></m> , <m></m> 两点同时出发,那么 <m></m> 的面积 <m></m> 随出发时间 <m></m> 如何变化?写出函数关系式.
年 级:九年级 学 科:数学(人教版)
1.函数的定义:
3.一元二次方程的一般形式是什么?
2.一次函数的定义是什么?
知识回顾
观察图片,这些曲线能否用函数关系式来表示?它们的形状是怎样画出来的?
实际问题
归纳、抽象
数学模型
(1) 写出 <m></m> 与 <m></m> 的函数关系式;
(2) 当 <m></m> 时,求 <m></m> 的值.
解:(1)其中一直角边长为 <m></m> ,则另一直角边长为 <m></m> ,依题意得 <m>
(2)当 <m></m> 时, <m></m> .
引入新课
观察这三个函数关系式有什么共同特点?
1.都有两个变量2.整式3.自变量最高次数是2次
讲授新课
二次函数的概念
二次
一元二次方程?
一次?
总结
二次函数的概念
陋室铭
例1:判断下列函数中,哪些是二次函数?若是二次函数,请指出二次项系数、一次项系数、常数项。
×
×
×
×
√
×
√
√
例题讲解
函数
二次项系数
布置作业
3、如图,在 <m></m> 中, <m></m> , <m></m> , <m></m> .动点 <m></m> 从点 <m></m> 开始沿边 <m></m> 向点 <m></m> 以 <m></m> 的速度移动;动点 <m></m> 从点 <m></m> 开始沿边 <m></m> 向点 <m></m> 以 <m></m> 的速度移动.如果 <m></m> , <m></m> 两点同时出发,那么 <m></m> 的面积 <m></m> 随出发时间 <m></m> 如何变化?写出函数关系式.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的特殊形式: 当b=0时, y=ax2+c 当c=0时, y=ax2+bx 当b=0,c=0时, y=ax2
当a、b、c为何值时函数y=ax2+bx+c是一正次比函例数函?数?
思考: 二次函数的一般式y=ax2
+bx+c(a≠0)与一元二次方程 ax2+bx+c=0(a≠0)有什么联 系和区别?
例1、下列函数中,哪些是二次函数?若是, 分别指出二次项系数,一次项系数,常数项.
(1)y=3(x-1)²+1 (2)y=x+3
(3)s=3-2t²
(5)y=
_1_ x²
(4)y=(x+3)²-x²
(6)v=10 r²
二次函数的一般形式: y=ax2+bx+c (其中a、b、c是常数,a≠0)
1、下列函数中,(x是自变量),哪些是二次 函数?为什么?
A y=ax2+bx+c
B y2=x2-4x+1
C y=x2
D y=2+ √x2+1
2.函数 y=(m-n)x2+ mx+n 是二次函数的条件是( C ) A m,n是常数,且m≠0 B m,n是常数,且n≠0 C m,n是常数,且m≠n D m,n为任何实数
例3.某小区要修建一块矩形绿地,设矩形的长为x米,
宽为y米,面积为S平方米,(x﹥y).
(1)如果用18米的建筑材料来修建绿地的边框(即周 长),求S与x的函数关系,并求出x的取值范围。
(2)现根据小区的规划要求,所修建的绿地面积必 须是18平方米,在满足(1)的条件下,矩形的长 和宽各为多少米?
问题4:某工厂一种产品现在的年产量是20件,计划今后两年 增加产量。如果每年都比上一年的产量增加x倍,那么两年后 这种产品的产量y将随计划所定的x的值而确定,y与x之间的 关系怎样表示?
这种产品的原产量是20件, 一年后的产量是
20(1+x)件,再经过一年后的产量是 20(1+x)2件,即两
年后的产量y=_2_0__(1_+__x_)2__
y= (m+1)x
+(m-3)x+m 是二次函数?
2、一农民用40m长的篱笆围成一个一边靠墙的长 方形菜园,和墙垂直的一边长为Xm,菜园的面积为 Ym2,求y与x之间的函数关系式,并说出自变量的取 值范围。当x=12m时,计算菜园的面积。
解答过程
2、一农民用40m长的篱笆围成一个一边靠墙的长方 形菜园,和墙垂直的一边长为Xm,菜园的面积为 Ym2,求y与x之间的函数关系式,并说出自变量的取 值范围。当x=12m时,计算菜园的面积。
2、定义:一般地,形y=ax²+bx+c(a,b,c 是常数,a≠ 0)的函数叫做x的二次函数。
注意: (1)等号左边是变量y,右边是关于自变量 x的 整式
(2)a,b,c为常数,且 a≠0.
(3 )等式的右边最高次数为 2 ,可以没有
一次项和常数项,但不能没有二次项。
(4)x的取值范围是 任意实数 。
联系(1)等式一边都是ax2+bx+c且 a ≠0 (2)方程ax2+bx+c=0可以看成是 函数y= ax2+bx+c中y=0时得到的.
区别:前者是函数.后者是方程.等式另一 边前者是y,后者是0
例2、 y = (m+3)xm2-7 (1)m取什么值时,此函数是正比例函数?
(2) m取什么值时,此函数是二次函数?
描述变量间
关系的数学工 具
正比例函数
y kx (k 0)
一次函数
y kx b (k 0)
反比例函数
九年级下册 第26章
问题1:正方体六个面是全等的正方形,设正方
体棱长为 x,表面积为 y,则 y 关于x 的关系式
为 y=6.x2
此式表示了正
方体表面积y与正 方体棱长x之间的 关系,对于y的每 一个值,x都有唯 一的一个对应值, 即y是x的函数。
问题2:n个球队参加比赛,每两个队之间进行一场
比赛,比赛的场次数m与球队数n有什么关系?
每个球队n要与其他(n-1)个球队各比赛一场,甲队
对乙队的比赛与乙队对甲队的比赛时同一场比赛,所
以比赛的场次数
m 1 n n 1
2
即
m
1 2
n2
1 2
n
此式表示了比赛的
场次数m与球队数n之 间的关系,对于n的每 一个值,m都有唯一的 一个对应值,即m是n 的函数。
解:设所求的为 二 ya次x2函 bx数 c,由题意得:
{abc 10 abc 4
4a 2bc 7
待定系数法
解得 a2 ,b , 3 ,c5
所求的二次函 y数 2x2是 3x5
对自己说,你有什么收获? 对老师说,你有什么疑惑? 对同学说,你有什么温馨提示?
知识运用
1、m取何值时,函数
m22m1
基础回顾 什么叫函数? 在某变化过程中的两个变量x、y,当变量x 在某个范围内取一个确定的值,另一个变量y 总有唯一的值与它对应。
这样的两个变量之间的关系我们把它叫 做函数关系。
对于上述变量x 、y,我们把y叫x的函数。 x叫自变量, y叫因变量。
目前,我们已经学习了那几种类型的函数?
二次函数
函数
此式表示了两年后的产
即
y 20x2 40x 20
量y与计划增产的倍数x 之间的关系,对于x的 每一个值,y都有唯一 的一个对应值,即y是x
的函数。
式子①②③④有什么共同点?
y=6x2
d
1 2
n2
1 2
n
d
0x2 40x 20
函数都是用自 变量的二次整
式表示的
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的 函数叫做二次函数。其中a为二次项系数,b 为一次项系数,c为常数项。
问题3:多边形的对角线数d与边数n有什么关系?
由图可以想出,如果多边形有n
条边,那么它有 n 个顶点,从一
个顶点出发,连接与这点不相邻
M
N 的各顶点,可以作(n-3)条对角线.
d 1 n n 3
此式表示了多边形 的对角线数d与边
2
数n之间的关系,对
即
d
1 2
n
2
3n 2
于n的每一值,d都 有唯一的对应值, 即d是n的函数。
练习 1. n支球队参加比赛,每两队之间进行 一场比赛,写出比赛的场次数 m与球队 数 n 之间的关系式.
2. 圆的半径是1cm,假设半径增加xcm时,圆的面积增加 ycm². (1)写出y与x之间的函数关系表达式; (2)当圆的半径分别增加2cm时,圆的面积增加多少?
3.已知关于x的二次函数,当x=-1时,函数值为10, 当x=1时,函数值为4,当x=2时,函数值为7,求这个 二次函数的解析试.
当a、b、c为何值时函数y=ax2+bx+c是一正次比函例数函?数?
思考: 二次函数的一般式y=ax2
+bx+c(a≠0)与一元二次方程 ax2+bx+c=0(a≠0)有什么联 系和区别?
例1、下列函数中,哪些是二次函数?若是, 分别指出二次项系数,一次项系数,常数项.
(1)y=3(x-1)²+1 (2)y=x+3
(3)s=3-2t²
(5)y=
_1_ x²
(4)y=(x+3)²-x²
(6)v=10 r²
二次函数的一般形式: y=ax2+bx+c (其中a、b、c是常数,a≠0)
1、下列函数中,(x是自变量),哪些是二次 函数?为什么?
A y=ax2+bx+c
B y2=x2-4x+1
C y=x2
D y=2+ √x2+1
2.函数 y=(m-n)x2+ mx+n 是二次函数的条件是( C ) A m,n是常数,且m≠0 B m,n是常数,且n≠0 C m,n是常数,且m≠n D m,n为任何实数
例3.某小区要修建一块矩形绿地,设矩形的长为x米,
宽为y米,面积为S平方米,(x﹥y).
(1)如果用18米的建筑材料来修建绿地的边框(即周 长),求S与x的函数关系,并求出x的取值范围。
(2)现根据小区的规划要求,所修建的绿地面积必 须是18平方米,在满足(1)的条件下,矩形的长 和宽各为多少米?
问题4:某工厂一种产品现在的年产量是20件,计划今后两年 增加产量。如果每年都比上一年的产量增加x倍,那么两年后 这种产品的产量y将随计划所定的x的值而确定,y与x之间的 关系怎样表示?
这种产品的原产量是20件, 一年后的产量是
20(1+x)件,再经过一年后的产量是 20(1+x)2件,即两
年后的产量y=_2_0__(1_+__x_)2__
y= (m+1)x
+(m-3)x+m 是二次函数?
2、一农民用40m长的篱笆围成一个一边靠墙的长 方形菜园,和墙垂直的一边长为Xm,菜园的面积为 Ym2,求y与x之间的函数关系式,并说出自变量的取 值范围。当x=12m时,计算菜园的面积。
解答过程
2、一农民用40m长的篱笆围成一个一边靠墙的长方 形菜园,和墙垂直的一边长为Xm,菜园的面积为 Ym2,求y与x之间的函数关系式,并说出自变量的取 值范围。当x=12m时,计算菜园的面积。
2、定义:一般地,形y=ax²+bx+c(a,b,c 是常数,a≠ 0)的函数叫做x的二次函数。
注意: (1)等号左边是变量y,右边是关于自变量 x的 整式
(2)a,b,c为常数,且 a≠0.
(3 )等式的右边最高次数为 2 ,可以没有
一次项和常数项,但不能没有二次项。
(4)x的取值范围是 任意实数 。
联系(1)等式一边都是ax2+bx+c且 a ≠0 (2)方程ax2+bx+c=0可以看成是 函数y= ax2+bx+c中y=0时得到的.
区别:前者是函数.后者是方程.等式另一 边前者是y,后者是0
例2、 y = (m+3)xm2-7 (1)m取什么值时,此函数是正比例函数?
(2) m取什么值时,此函数是二次函数?
描述变量间
关系的数学工 具
正比例函数
y kx (k 0)
一次函数
y kx b (k 0)
反比例函数
九年级下册 第26章
问题1:正方体六个面是全等的正方形,设正方
体棱长为 x,表面积为 y,则 y 关于x 的关系式
为 y=6.x2
此式表示了正
方体表面积y与正 方体棱长x之间的 关系,对于y的每 一个值,x都有唯 一的一个对应值, 即y是x的函数。
问题2:n个球队参加比赛,每两个队之间进行一场
比赛,比赛的场次数m与球队数n有什么关系?
每个球队n要与其他(n-1)个球队各比赛一场,甲队
对乙队的比赛与乙队对甲队的比赛时同一场比赛,所
以比赛的场次数
m 1 n n 1
2
即
m
1 2
n2
1 2
n
此式表示了比赛的
场次数m与球队数n之 间的关系,对于n的每 一个值,m都有唯一的 一个对应值,即m是n 的函数。
解:设所求的为 二 ya次x2函 bx数 c,由题意得:
{abc 10 abc 4
4a 2bc 7
待定系数法
解得 a2 ,b , 3 ,c5
所求的二次函 y数 2x2是 3x5
对自己说,你有什么收获? 对老师说,你有什么疑惑? 对同学说,你有什么温馨提示?
知识运用
1、m取何值时,函数
m22m1
基础回顾 什么叫函数? 在某变化过程中的两个变量x、y,当变量x 在某个范围内取一个确定的值,另一个变量y 总有唯一的值与它对应。
这样的两个变量之间的关系我们把它叫 做函数关系。
对于上述变量x 、y,我们把y叫x的函数。 x叫自变量, y叫因变量。
目前,我们已经学习了那几种类型的函数?
二次函数
函数
此式表示了两年后的产
即
y 20x2 40x 20
量y与计划增产的倍数x 之间的关系,对于x的 每一个值,y都有唯一 的一个对应值,即y是x
的函数。
式子①②③④有什么共同点?
y=6x2
d
1 2
n2
1 2
n
d
0x2 40x 20
函数都是用自 变量的二次整
式表示的
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的 函数叫做二次函数。其中a为二次项系数,b 为一次项系数,c为常数项。
问题3:多边形的对角线数d与边数n有什么关系?
由图可以想出,如果多边形有n
条边,那么它有 n 个顶点,从一
个顶点出发,连接与这点不相邻
M
N 的各顶点,可以作(n-3)条对角线.
d 1 n n 3
此式表示了多边形 的对角线数d与边
2
数n之间的关系,对
即
d
1 2
n
2
3n 2
于n的每一值,d都 有唯一的对应值, 即d是n的函数。
练习 1. n支球队参加比赛,每两队之间进行 一场比赛,写出比赛的场次数 m与球队 数 n 之间的关系式.
2. 圆的半径是1cm,假设半径增加xcm时,圆的面积增加 ycm². (1)写出y与x之间的函数关系表达式; (2)当圆的半径分别增加2cm时,圆的面积增加多少?
3.已知关于x的二次函数,当x=-1时,函数值为10, 当x=1时,函数值为4,当x=2时,函数值为7,求这个 二次函数的解析试.