第五课 径向基函数网络(RBFN) 人工神经网络理论及应用 教学课件

合集下载

人工神经网络理论与应用 第6章 RBF神经网络

人工神经网络理论与应用 第6章 RBF神经网络


,int(x)表示对x进行取整运 算。因此经过S1个样本之后,学习速率逐渐减至零。
• (4)判断聚类质量。
• 当满足
• 时,聚类结束,否则转到第(2)步。
14
2. 有监督学习阶段
• 确定好隐含层的参数后,利用最小二乘法原则求出隐含 层到输出层的连接权wki。
• 当ci确定以后,训练隐含层至输出层之间的连接权值, 由于输出层传递函数使用的是线性函数,则求连接权值
2
• RBF神经网络的结构与多层前向网络类似,是一种具有 单隐层的三层前向神经网络。输入层由信号源节点组成, 隐含层是单神经元层,但神经元数可视所描述问题的需 要而定,输出层对输入的作用作出响应。从输入层空间 到隐含层空间的变换是非线性的,而从隐含层空间到输 出层空间的变换是线性的。隐含层神经元的变换函数是 RBF,它是一种局部分布的中心径向对称衰减的非负非 线性函数。
• 输出层传递函数采用线性函数,隐含层到输出层的信号
传递实现了y1(x)→y2的线性映射,即




y
i
1


i个

节点的



y
2 i

第k个隐


的输


w
k
2 i













,Байду номын сангаас
b
2 k





阈值。
11
6.3 RBF神经网络算法
• 假设RBF神经网络有N个训练样本,则系统对所有N个 训练样本的总误差函数为

课件:6.第7章 径向基函数网络

课件:6.第7章  径向基函数网络

由三层构成的前向网络 。
➢径向基网络
➢ 第一层为输入层,节点个数等于输入的维数;
➢概率神经网络
➢ 第二层为隐含层,节点个数视问题的复杂度而定; ➢广义回归网络模式分类 ➢ 第三层为输出层,节点个数等于输出数据的维数。 和函数逼近
隐含层是非线性的,采用径向基函数作为基函数,从而将
输入向量空间转换到隐含层空间,使原来线性不可分的问题 变得线性可分,输出层则是线性的。
2.给定一个未知的非线性函数f,总可以选择一组系数,使得网络 对f的逼近是最优的。
1.径向基神经网络的两种结构
正则化网络的一个特点就是:隐含节点的个数等于输入训 练样本的个数。因此如果训练样本的个数N过大,网络的计算 量将是惊人的,从而导致过低的效率甚至根本不可实现。
解决的方案是用Galerkin方法来减少隐含层神经单元的个
4.概率神经网络
PNN网络的优点 ➢训练容易,收敛速度快,从而非常适用于实时处理。
➢ 可以实现任意的非线性逼近,用PNN网络所形成的判决曲面 与贝叶斯最优准则下的曲面非常接近。
➢ 只要有充足的样本数据,概率神经网络都能收敛到贝叶斯分 类器,没有BP网络的局部极小值问题
➢ 扩充性能好。网络的学习过程简单,增加或减少类别模式时 不需要重新进行长时间的训练学习
➢ 多层感知器对非线性映射全局逼近 ,径向基函数局部逼近
Ф0=1 Ф0
x1
w0J w01
x2
Ф1 w1J w11
y1
...
...
wi1
wI1
x3
Фi wiJ
...
yJ
wIJ
ФI xM
4.概率神经网络
概率神经网络(Probabilistic Neural Networks,PNN)在模式 分类问题中获得了广泛应用 。

径向基函数神经网络模型及其在预测系统中的应用

径向基函数神经网络模型及其在预测系统中的应用

径向基函数神经网络模型及其在预测系统中的应用传统的神经网络模型在处理非线性问题时存在一定的限制,而径向基函数神经网络(Radial Basis Function Neural Network,RBFNN)模型则能够有效地处理这类问题。

本文将介绍径向基函数神经网络模型的基本原理,并探讨其在预测系统中的应用。

1. 径向基函数神经网络模型的基本原理径向基函数神经网络模型是一种三层前馈神经网络,包含输入层、隐含层和输出层。

该模型通过将输入向量映射到高维特征空间,并利用径向基函数对输入数据进行非线性变换。

其基本原理如下:1.1 输入层:输入层接收原始数据,并将其传递给隐含层。

1.2 隐含层:隐含层中的神经元使用径向基函数对输入数据进行非线性变换。

径向基函数通常采用高斯函数,其形式为:φ(x) = exp(-(x-c)^2/2σ^2)其中,x为输入向量,c为径向基函数的中心,σ为径向基函数的宽度。

隐含层神经元的输出由径向基函数计算得到,表示了输入数据距离每个径向基函数中心的相似度。

1.3 输出层:输出层根据隐含层的输出和相应的权值进行计算,并生成最终的预测结果。

2. 径向基函数神经网络模型在预测系统中的应用径向基函数神经网络模型在各种预测系统中具有广泛的应用,包括金融预测、气象预测、股票价格预测等。

2.1 金融预测径向基函数神经网络模型能够对金融市场进行有效预测,例如股票价格、外汇汇率等。

通过输入历史数据,可以训练神经网络模型,利用其中的非线性变换能力来预测未来的价格走势。

实验表明,基于径向基函数神经网络模型的金融预测系统能够提供较高的准确度和稳定性。

2.2 气象预测径向基函数神经网络模型在气象预测中的应用也取得了良好的效果。

通过输入历史气象数据,神经网络模型可以学习到不同变量之间的关系,并预测未来的天气情况。

与传统的统计模型相比,径向基函数神经网络模型能够更好地捕捉到非线性因素对气象变化的影响,提高了预测的准确性。

《人工神经网络》课件

《人工神经网络》课件
添加项标题
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成

人工智能控制技术课件:神经网络控制

人工智能控制技术课件:神经网络控制
进行的,这种排列往往反映所感受的外部刺激的某些物理特征。
例如,在听觉系统中,神经细胞和纤维是按照其最敏感的频率分
布而排列的。为此,柯赫仑(Kohonen)认为,神经网络在接受外
界输入时,将会分成不同的区域,不同的区域对不同的模式具有
不同的响应特征,即不同的神经元以最佳方式响应不同性质的信
号激励,从而形成一种拓扑意义上的有序图。这种有序图也称之


,

,

,

)
若 输 入 向 量 X= ( 1
, 权 值 向 量
2


W=(1 , 2 , ⋯ , ) ,定义网络神经元期望输出 与
实际输出 的偏差E为:
E= −
PERCEPTRON学习规则
感知器采用符号函数作为转移函数,当实际输出符合期
望时,不对权值进行调整,否则按照下式对其权值进行
单神经元网络
对生物神经元的结构和功能进行抽象和
模拟,从数学角度抽象模拟得到单神经
元模型,其中 是神经元的输入信号,
表示一个神经元同时接收多个外部刺激;
是每个输入所对应的权重,它对应
于每个输入特征,表示其重要程度;
是神经元的内部状态; 是外部输入信
号; 是一个阈值(Threshold)或称为
第三代神经网络:
2006年,辛顿(Geofrey Hinton)提出了一种深层网络模型——深度
置信网络(Deep Belief Networks,DBN),令神经网络进入了深度
学习大发展的时期。深度学习是机器学习研究中的新领域,采用无
监督训练方法达到模仿人脑的机制来处理文本、图像等数据的目的。
控制方式,通过神经元及其相互连接的权值,逼近系统

神经网络专题ppt课件

神经网络专题ppt课件

(4)Connections Science
(5)Neurocomputing
(6)Neural Computation
(7)International Journal of Neural Systems
7
3.2 神经元与网络结构
人脑大约由1012个神经元组成,而其中的每个神经元又与约102~ 104个其他神经元相连接,如此构成一个庞大而复杂的神经元网络。 神经元是大脑处理信息的基本单元,它的结构如图所示。它是以细胞 体为主体,由许多向周围延伸的不规则树枝状纤维构成的神经细胞, 其形状很像一棵枯树的枝干。它主要由细胞体、树突、轴突和突触 (Synapse,又称神经键)组成。
15
4.互连网络
互连网络有局部互连和全互连 两种。 全互连网络中的每个神经元都 与其他神经元相连。 局部互连是指互连只是局部的, 有些神经元之间没有连接关系。 Hopfield 网 络 和 Boltzmann 机 属于互连网络的类型。
16
人工神经网络的学习
学习方法就是网络连接权的调整方法。 人工神经网络连接权的确定通常有两种方法:
4
5. 20世纪70年代 代表人物有Amari, Anderson, Fukushima, Grossberg, Kohonen
经过一段时间的沉寂后,研究继续进行
▪ 1972年,芬兰的T.Kohonen提出了一个与感知机等神经 网络不同的自组织映射理论(SOM)。 ▪ 1975年,福岛提出了一个自组织识别神经网络模型。 ▪ 1976年C.V.Malsburg et al发表了“地形图”的自形成
6
关于神经网络的国际交流
第一届神经网络国际会议于1987年6月21至24日在美国加州圣地亚哥 召开,标志着神经网络研究在世界范围内已形成了新的热点。

RBF神经网络

RBF神经网络

的权向量为:W = [w , w
1
b j为节点的基宽度参数 , 且为大于零的数 。 网络 为节点的基宽度参数, 且为大于零的数。
2
⋯wj ⋯wm ]
k时刻网络的输出为: 时刻网络的输出为:
y m ( k )=wh = w1h1+w 2 h2+ ⋯⋯ +w m hm
设理想输出为y(k), 设理想输出为y(k),则性能指标函数为:
∂y (k ) ∂ym (k ) ≈ = ∂u (k ) ∂u (k )
m
∑w h
j =1
c1 j − x1 b2 j
j j
其中取 x1 = u(k) 。
6 RBF网络逼近仿真实例 RBF网络逼近仿真实例
使用RBF网络逼近下列对象:
y (k ) = u (k ) +
3
y ( k − 1) 1 + y ( k − 1)
Ii
wij
I
j
I1
. . .
R1
. . .
. .u .
u ..
R
j
. . .
1
1
.
V1
C1
. . .
j
j
.
Vj
.
u ..
Cj
i
i
.V
i
Ri
.
Ci
Hopfield网络模型 Hopfield网络模型
RBF神经网络 RBF神经网络
信息工程学院 Alen Fielding
1 RBF神经网络 RBF神经网络
径向基函数(RBF径向基函数(RBF-Radial Basis Function)神经网络 Function)神经网络 是由J Moody和 Darken在80年代末提出的一种神经 是由J.Moody和C.Darken在80年代末提出的一种神经 网络,它是具有单隐层的三层前馈网络。 网络,它是具有单隐层的三层前馈网络。由于它模拟 了人脑中局部调整、相互覆盖接收域(或称感受野了人脑中局部调整、相互覆盖接收域(或称感受野Receptive Field)的神经网络结构,因此,RBF网络 Field)的神经网络结构,因此,RBF网络 是一种局部逼近网络, 是一种局部逼近网络 , 它能够以任意精度逼近任意 连续函数,特别适合于解决分类问题。 连续函数,特别适合于解决分类问题。

径向基(RBF)神经网络的介绍及其案例实现

径向基(RBF)神经网络的介绍及其案例实现

人 脸 识 别

Company Logo
Contents
1 2
什么是神经网络 径向基(RBF)神经网络
3
ቤተ መጻሕፍቲ ባይዱ
Matlab案例实现

Company Logo
RBF 神经网络
几 种 常 见 的 神 经 网 络

Matlab案例实现
%% 清空环境变量 clc clear % 产生训练样本(训练输入,训练输出) % ld为样本例数 ld=100; % 产生2*ld的矩阵 x=rand(2,ld); % 将x转换到[-1.5 1.5]之间 x=(x-0.5)*1.5*2; %% 建立RBF神经网络 % 采用approximate RBF神经网络。spread 为默认值 net=newrb(x,F); % 计算网络输出F值 F=20+x1.^2-10*cos(2*pi*x1)+x2.^210*cos(2*pi*x2); % x的第一列为x1,第二列为x2. x1=x(1,:); x2=x(2,:);
y w1* x1 w2 * x2 w3 * x3 w4 * x4 wi * xi
i 1
Company Logo
n
RBF 神经网络
RBF神经网络概况:
神经网络基础知识

Company Logo
RBF 神经网络
60 50 40 30 20 10 0 2 2 0 0 -2 -2

Company Logo
1000
60 50 40 30 20 10 0 2 2 0 0 -2 -2
60 50 40 30 20 10 0 2 2 0 0 -2 -2
60 50 40 30 20 10 0 2 2 0 0 -2 -2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档