浙江省杭州市大江东区中考数学一模试卷含解析含答案
【最新资料】浙江省杭州市江干区中考数学一模试卷(含答案解析)

最新资料•中考数学浙江省杭州市江干区中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.G20峰会将于2016年9约4日﹣5日在杭州举行,在“百度”搜索引擎中输入“G20峰会”,能搜索到与之相关的结果约为1680000个,将1680000用科学记数法表示为()A.1.68×104B.1.68×106C.1.68×107D.0.168×1073.下列运算中,计算正确的是()A.a3•a6=a9B.(a2)3=a5C.4a3﹣2a2=2 D.(3a)2=6a24.由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是()A.B.C.D.5.有一箱子装有3张分别标示4、5、6的号码牌,已知小南以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,则组成的二位数为5的倍数的概率为()A.B.C.D.6.一个圆锥的侧面展开图是半径为8,圆心角为120°的扇形,则这个圆锥的高为()A.cm B.cm C.cm D.cm7.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.8.已知二次函数y=a(x﹣h)2+k的图象经过(0,5),(10,8)两点,若a<0,0<h<10,则h 的值可能是()A.7 B.5 C.3 D.19.如果,正方形ABCD的边长为2cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M 作直线分别与AD、BC相交于点P、Q,若PQ=AE,则PD等于()A.cm或cm B.cm C.cm或cm D.cm或cm10.已知抛物线y=ax2+bx+c的顶点为D(﹣1,3),与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2+4ac>0;②c﹣a=3;③a+b+c<0;④方程ax2+bx+c=m(m≥2)一定有实数根,其中正确的结论为()A.②③B.①③C.①②③ D.①②④二、填空题(共6小题,每小题4分,满分24分)11.数据0,3,3,4,5的平均数是,方差是.12.若a2﹣3a=4,则6a﹣2a2+8=.13.如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是58°,则∠ACD的度数为.14.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C >sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为.15.若m、n(m<n)是关于x的方程(x﹣a)(x﹣b)+2=0的两根,且a<b,则a,b,m,n的大小关系用“<”连接的结果是.16.如图,点C在以AB为直径的半圆上,AB=4,∠CBA=30°,点D在AO上运动,点E与点D 关于AC对称:DF⊥DE于点D,并交EC的延长线于点F,下列结论:①CE=CF;②线段EF的最小值为;③当AD=1时,EF与半圆相切;④当点D从点A运动到点O时,线段EF扫过的面积是4.其中正确的序号是.三、解答题(共7小题,满分66分)17.解方程﹣2.18.如图,在平行四边形ABCD中将△ABC沿AC对折,使点B落在B′处,AB′和CD相交于O,求证:OD=OB′.19.某海域有A,B两个岛屿,B岛屿在A岛屿北偏西30°方向上,距A岛120海里,有一艘船从A 岛出发,沿东北方向行驶一段距离后,到达位于B岛屿南偏东75°方向的C处,求出该船与B岛之间的距离CB的长(结果保留根号).20.为了解我市3路公共汽车的运营情况,公交部门随机统计了某天3路公共汽车每个运行班次的载客量,得到如下频数分布直方图.如果以各组的组中值代表各组实际数据,请分析统计数据完成下列问题.(1)找出这天载客量的中位数,说明这个中位数的意义;(2)估计3路公共汽车平均每班的载客量大约是多少?(3)计算这天载客量在平均载客量以上班次占总班次的百分数.(注:一个小组的组中值是指这个小组的两个端点数的平均数)21.如图,一次函数y1=﹣x+2的图象与反比例函数y2=的图象交于A,B两点,与x轴交于点C,已知tan∠BOC=.(1)求反比例函数的解析式.(2)当y1=y2时,求x的取值范围.22.在△ABC中,CE,BD分别是边AB,AC上的高,F是BC边上的中点.(1)指出图中的一个等腰三角形,并说明理由.(2)若∠A=x°,求∠EFD的度数(用含x的代数式表达).(3)猜想∠ABC和∠EDA的数量关系,并证明.23.如图,在平面直角坐标中,△AOB的三个顶点的坐标分别是A(4,4),O(0,0),B(6,0),点M是射线OB上的一动点,过点M作MN∥AB,MN与射线OA交于点N,P是AB边上的任意点,连接AM,PM,PN,BN,设△PMN的面积为S.(1)点M的坐标为(2,0)时,求点N的坐标.(2)当M在边OB上时,S有最大值吗?若有,求出S的最大值;若没有,请说明理由.(3)是否存在点M,使△PMN和△ANB中,其中一个面积是另一个2倍?如果存在,求出点M 的坐标;如果不存在,请说明理由.浙江省杭州市江干区中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念解答即可.【解答】解:A、不是轴对称图形,是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、不是轴对称图形,是中心对称图形.故错误.故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.G20峰会将于2016年9约4日﹣5日在杭州举行,在“百度”搜索引擎中输入“G20峰会”,能搜索到与之相关的结果约为1680000个,将1680000用科学记数法表示为()A.1.68×104B.1.68×106C.1.68×107D.0.168×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1680000=1.68×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列运算中,计算正确的是()A.a3•a6=a9B.(a2)3=a5C.4a3﹣2a2=2 D.(3a)2=6a2【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】分别利用同底数幂的乘法运算法则以及幂的乘方运算法则和积的乘方运算法则化简求出答案.【解答】解:A、a3•a6=a9,正确;B、(a2)3=a6,故此选项错误;C、4a3﹣2a2,无法计算,故此选项错误;D、(3a)2=9a2,故此选项错误;故选:A.【点评】此题主要考查了幂的乘法运算以及积的乘方运算、同底数幂的乘法等知识,正确掌握运算法则是解题关键.4.由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是()A.B.C.D.【考点】由三视图判断几何体;简单组合体的三视图.【专题】常规题型.【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有四列,从左到右分别是1,2,2,1个正方形.【解答】解:由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,2,1个正方形.故选:A.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.5.有一箱子装有3张分别标示4、5、6的号码牌,已知小南以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,则组成的二位数为5的倍数的概率为()A.B.C.D.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图展示所有6种等可能的结果数,再找出组成的二位数为5的倍数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中组成的二位数为5的倍数的结果数为2,所以组成的二位数为5的倍数的概率==.故选C.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.6.一个圆锥的侧面展开图是半径为8,圆心角为120°的扇形,则这个圆锥的高为()A.cm B.cm C.cm D.cm【考点】圆锥的计算.【专题】计算题.【分析】设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2π•r=,然后求出r后利用勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2π•r=,解得r=,所以圆锥的高==.故选A.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.【考点】作图—复杂作图.【分析】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.【解答】解:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选D.【点评】本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.8.已知二次函数y=a(x﹣h)2+k的图象经过(0,5),(10,8)两点,若a<0,0<h<10,则h 的值可能是()A.7 B.5 C.3 D.1【考点】二次函数图象上点的坐标特征.【分析】根据二次函数的对称性确定出对称轴的范围,然后求解即可.【解答】解:∵a<0,∴抛物线开口向下,∵图象经过(0,5)、(10,8)两点,0<h<10,∴对称轴在5到10之间,∴h的值可能是7.故选A.【点评】本题考查了二次函数图象上点的坐标特征,从二次函数的对称性考虑求解是解题的关键.9.如果,正方形ABCD的边长为2cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M 作直线分别与AD、BC相交于点P、Q,若PQ=AE,则PD等于()A.cm或cm B.cm C.cm或cm D.cm或cm【考点】正方形的性质;全等三角形的判定与性质;勾股定理.【专题】分类讨论.【分析】根据题意画出图形,过P作PN⊥BC,交BC于点N,由ABCD为正方形,得到AD=DC=PN,在直角三角形ADE中,利用锐角三角函数定义求出DE的长,进而利用勾股定理求出AE的长,根据M为AE中点求出AM的长,利用HL得到三角形ADE与三角形PQN全等,利用全等三角形对应边,对应角相等得到DE=NQ,∠DAE=∠NPQ=30°,再由PN与DC平行,得到∠PFA=∠DEA=60°,进而得到PM垂直于AE,在直角三角形APM中,根据AM的长,利用锐角三角函数定义求出AP 的长,进而得出DP的长.【解答】解:根据题意画出图形,过P作PN⊥BC,交BC于点N,∵四边形ABCD为正方形,∴AD=DC=PN,在Rt△ADE中,∠DAE=30°,AD=2cm,∴tan30°=,即DE=cm,根据勾股定理得:AE=cm,∵M为AE的中点,∴AM=AE=cm,在Rt△ADE和Rt△PNQ中,,∴Rt△ADE≌Rt△PNQ(HL),∴DE=NQ,∠DAE=∠NPQ=30°,∵PN∥DC,∴∠PFA=∠DEA=60°,∴∠PMF=90°,即PM⊥AF,在Rt△AMP中,∠MAP=30°,cos30°=,∴AP=cm,所以PD=2﹣=或.故选D.【点评】此题考查了全等三角形的判定与性质,正方形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.10.已知抛物线y=ax2+bx+c的顶点为D(﹣1,3),与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2+4ac>0;②c﹣a=3;③a+b+c<0;④方程ax2+bx+c=m(m≥2)一定有实数根,其中正确的结论为()A.②③B.①③C.①②③ D.①②④【考点】二次函数图象与系数的关系.【分析】由抛物线与x轴有两个交点得到b2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=﹣1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(﹣1,3)得a﹣b+c=3,由抛物线的对称轴为直线x=﹣=﹣1得b=2a,所以c﹣a=2;根据二次函数的最大值问题,当x=﹣1时,二次函数有最大值为3,即ax2+bx+c=3,有两个相等的实数根,而当m>3时,方程ax2+bx+c=m没有实数根.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的顶点为D(﹣1,3),∴a﹣b+c=3,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,∴a﹣2a+c=3,即c﹣a=3,所以②正确;∵抛物线的对称轴为直线x=﹣1,∵抛物线与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以③正确;∵抛物线的顶点为D(﹣1,3),∵当x=﹣1时,二次函数有最大值为3,∴方程ax2+bx+c=3有两个相等的实数根,∵m≥2,∴方程ax2+bx+c=m(m>3)没有实数根,所以④错误.故选:C.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.二、填空题(共6小题,每小题4分,满分24分)11.数据0,3,3,4,5的平均数是3,方差是.【考点】方差;算术平均数.【分析】先由平均数的公式计算出平均数,再根据方差的公式计算即可.【解答】解:数据0,3,3,4,5的平均数是,方差为:,故答案为:3【点评】本题考查方差和平均数,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.平均数是所有数据的和除以数据的个数.12.若a2﹣3a=4,则6a﹣2a2+8=0.【考点】代数式求值.【专题】计算题;实数.【分析】原式前两项提取﹣2变形后,将已知等式代入计算即可求出值.【解答】解:∵a2﹣3a=4,∴原式=﹣2(a2﹣3a)+8=﹣8+8=0,故答案为:0【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.13.如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是58°,则∠ACD的度数为61°.【考点】圆周角定理.【专题】压轴题.【分析】首先连接OD,由直角三角板ABC的斜边AB与量角器的直径恰好重合,可得点A,B,C,D共圆,又由点D对应的刻度是58°,利用圆周角定理求解即可求得∠BCD的度数,继而求得答案.【解答】解:连接OD,∵直角三角板ABC的斜边AB与量角器的直径恰好重合,∴点A,B,C,D共圆,∵点D对应的刻度是58°,∴∠BOD=58°,∴∠BCD=∠BOD=29°,∴∠ACD=90°﹣∠BCD=61°.故答案为:61°.【点评】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.14.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C >sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为①③.【考点】圆周角定理;锐角三角函数的增减性.【分析】首先设BD⊙O于点E,连接AE,由圆周角定理,易得∠C>∠D,继而求得答案.【解答】解:设BD⊙O于点E,连接AE,∵∠C=∠AEB,∠AEB>∠D,∴∠C>∠D,∴sin∠C>sin∠D;cos∠C<cos∠D;tan∠C>tan∠D,∴正确的结论有:①③.故答案为:①③.【点评】此题考查了圆周角定理以及三角函数的性质.注意准确作出辅助线是解此题的关键.15.若m、n(m<n)是关于x的方程(x﹣a)(x﹣b)+2=0的两根,且a<b,则a,b,m,n的大小关系用“<”连接的结果是a<m<n<b.【考点】抛物线与x轴的交点.【分析】由于(x﹣a)(x﹣b)=﹣2,于是可m、n看作抛物线y=(x﹣a)(x﹣b)与直线y=﹣2的两交点的横坐标,而抛物线y=(x﹣a)(x﹣b)与x轴的两交点坐标为(a,0),(b,0),然后画出函数图象,再利用函数图象即可得到a,b,m,n的大小关系.【解答】解:∵(x﹣a)(x﹣b)+2=0,∴(x﹣a)(x﹣b)=﹣2,∴m、n可看作抛物线y=(x﹣a)(x﹣b)与直线y=﹣2的两交点的横坐标,∵抛物线y=(x﹣a)(x﹣b)与x轴的两交点坐标为(a,0),(b,0),如图,∴a<m<n<b.故答案为:a<m<n<b.【点评】本题考查了抛物线与x轴的交点、根与系数的关系;根据题意得出m、n可看作抛物线y=(x﹣a)(x﹣b)与直线y=﹣2的两交点的横坐标是解决问题的关键.16.如图,点C在以AB为直径的半圆上,AB=4,∠CBA=30°,点D在AO上运动,点E与点D 关于AC对称:DF⊥DE于点D,并交EC的延长线于点F,下列结论:①CE=CF;②线段EF的最小值为;③当AD=1时,EF与半圆相切;④当点D从点A运动到点O时,线段EF扫过的面积是4.其中正确的序号是①②③④.【考点】圆的综合题.【分析】(1)由点E与点D关于AC对称可得CE=CD,再根据DF⊥DE即可证到CE=CF.(2)根据“点到直线之间,垂线段最短”可得CD⊥AB时CD最小,由于EF=2CD,求出CD的最小值就可求出EF的最小值.(3)连接OC,易证△AOC是等边三角形,AD=OD,根据等腰三角形的“三线合一”可求出∠ACD,进而可求出∠ECO=90°,从而得到EF与半圆相切.(4)首先根据对称性确定线段EF扫过的图形,然后探究出该图形与△ABC的关系,就可求出线段EF扫过的面积.【解答】解:①连接CD,如图1所示.∵点E与点D关于AC对称,∴CE=CD.∴∠E=∠CDE.∵DF⊥DE,∴∠EDF=90°.∴∠E+∠F=90°,∠CDE+∠CDF=90°.∴∠F=∠CDF.∴CD=CF,∴CE=CD=CF.故①正确.②当CD⊥AB时,如图2所示.∵AB是半圆的直径,∴∠ACB=90°.∵AB=4,∠CBA=30°,∴∠CAB=60°,AC=2,BC=2.∵CD⊥AB,∠CBA=30°,∴CD=BC=.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为.∵CE=CD=CF,∴EF=2CD.∴线段EF的最小值为2.故②正确.③当AD=1时,连接OC,如图3所示.∵OA=OC,∠CAB=60°,∴△OAC是等边三角形.∴CA=CO,∠ACO=60°.∵AO=2,AD=1,∴DO=1.∴AD=DO,∴∠ACD=∠OCD=30°,∵点E与点D关于AC对称,∴∠ECA=∠DCA,∴∠ECA=30°,∴∠ECO=90°,∴OC⊥EF,∵EF经过半径OC的外端,且OC⊥EF,∴EF与半圆相切.故③正确.④∵点D与点E关于AC对称,点D与点F关于BC对称,∴当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称.∴EF扫过的图形就是图5中阴影部分.∴S=2S△ABC=2וAC•BC=2×=4.故④正确.阴影故答案为①②③④.【点评】本题考查了等边三角形的判定与性质、平行线的判定与性质、相似三角形的判定与性质、切线的判定、轴对称的性质、含30°角的直角三角形、垂线段最短等知识,综合性强,有一定的难度,第四个问题解题的关键是通过特殊点探究EF的运动轨迹,属于中考压轴题.三、解答题(共7小题,满分66分)17.解方程﹣2.【考点】解分式方程.【分析】观察可得最简公分母是(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣3),得:2﹣x=﹣1﹣2(x﹣3),解得:x=3,检验:把x=3代入(x﹣3)=0,即x=3不是原分式方程的解.则原方程无解.【点评】此题考查了分式方程的求解方法.此题难度不大,注意掌握转化思想的应用,注意解分式方程一定要验根.18.如图,在平行四边形ABCD中将△ABC沿AC对折,使点B落在B′处,AB′和CD相交于O,求证:OD=OB′.【考点】翻折变换(折叠问题);平行四边形的性质.【专题】证明题.【分析】利用翻折不变性以及平行四边形的性质先证明AB′=CD,再证明OA=OC即可.【解答】证明:∵△ACB′是由△AB长翻折,∴∠BAC=∠CAB′,AB=AB′,∵四边形ABCD是平行四边形,∴AB∥BC,AB=DC,∴∠BAC=∠ACO,∴∠OAC=∠OCA,∴OA=OC,∵AB′=CD,∴OD=OB′.【点评】本题考查平行四边形的性质、翻折变换、等腰三角形的判定和性质等知识,解题的关键是利用翻折不变性发现等腰三角形,属于中考常考题型.19.某海域有A,B两个岛屿,B岛屿在A岛屿北偏西30°方向上,距A岛120海里,有一艘船从A 岛出发,沿东北方向行驶一段距离后,到达位于B岛屿南偏东75°方向的C处,求出该船与B岛之间的距离CB的长(结果保留根号).【考点】解直角三角形的应用-方向角问题.【专题】探究型.【分析】要求该船与B岛之间的距离CB的长,可以作辅助线AD⊥BC于点D,然后根据题目中的条件可以分别求得BD、CD的长,从而可以求得BC的长,本题得以解决.【解答】解:作AD⊥BC于点D,如下图所示,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∵∠FBC=75°,∴∠ABD=45°,∵AB=120,∴AD=BD=60,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,∵AD=60,∴CD=,∴BC=BD+CD=()海里.【点评】本题考查解直角三角形的应用﹣方向角问题,解题的关键是明确题意,作出合适的辅助线,找出所求问题需要的条件.20.为了解我市3路公共汽车的运营情况,公交部门随机统计了某天3路公共汽车每个运行班次的载客量,得到如下频数分布直方图.如果以各组的组中值代表各组实际数据,请分析统计数据完成下列问题.(1)找出这天载客量的中位数,说明这个中位数的意义;(2)估计3路公共汽车平均每班的载客量大约是多少?(3)计算这天载客量在平均载客量以上班次占总班次的百分数.(注:一个小组的组中值是指这个小组的两个端点数的平均数)【考点】频数(率)分布直方图;用样本估计总体;中位数.【分析】(1)从图上可看出中位数是80,估计3路公共汽车每天大约有一半的班次的载客量超过80人.(2)求出平均数,可代表3路公共汽车平均每班的载客量大约是多少.(3)找出在平均载客量以上的班次算出这些人数的和然后除以总人数就可以了.【解答】解:(1)80人,估计3路公共汽车每天大约有一半的班次的载客量超过80人;(2)==73(人),因为样本平均数为73,所以可以估计3路公共汽车平均每班的载客量大约是73人;(3)在平均载客量以上的班次占总班次的百分数=.【点评】本题考查频数分布直方图,频数直方图表示每组数据里面的具体数是多少,以及中位数的概念有样本估计总体等知识点.21.如图,一次函数y1=﹣x+2的图象与反比例函数y2=的图象交于A,B两点,与x轴交于点C,已知tan∠BOC=.(1)求反比例函数的解析式.(2)当y1=y2时,求x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据已知得出OD=2BD,设B(﹣2m,m),代入y1=﹣x+2,求出B的坐标,代入y2=,根据待定系数法求出即可;(2)联立方程,解方程即可求得.【解答】解:(1)∵tan∠BOC=,∴OD=2BD,∴设B(﹣2m,m),代入y1=﹣x+2得m=2m+2,解得m=﹣2,∴B(4,﹣2),∴k=﹣2×4=﹣8,∴反比例函数的解析式为y=﹣;(2)解﹣=﹣x+2得x=﹣2或x=4,故当y1=y2时,x的取值为﹣2或4.【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法反比例函数的解析式的应用,主要考查学生的计算能力,题目比较好,难度适中.22.在△ABC中,CE,BD分别是边AB,AC上的高,F是BC边上的中点.(1)指出图中的一个等腰三角形,并说明理由.(2)若∠A=x°,求∠EFD的度数(用含x的代数式表达).(3)猜想∠ABC和∠EDA的数量关系,并证明.【考点】直角三角形斜边上的中线;等腰三角形的判定与性质.【分析】(1)根据直角三角形的性质得到EF=BC,DF=BC,等量代换即可;(2)根据三角形内角和定理和等腰三角形的性质计算;(3)根据圆内接四边形的性质解答.【解答】解:(1)△DEF是等腰三角形.∵CE,BD分别是边AB,AC上的高,F是BC边上的中点,∴EF=BC,DF=BC,∴EF=DF,∴△DEF是等腰三角形;(2)∵FE=FB,FD=FC,∴∠FEB=∠FBE,∠FDC=∠FCD,∴∠FEB+∠FDC=∠FBE+∠FCD=180°﹣∠A=180°﹣x°,∠AED+∠ADE=180°﹣∠A=180°﹣x°,∴∠FED+∠FDE=360°﹣(180°﹣x°)﹣(180°﹣x°)=2x°,∴∠EFD=180°﹣2x°;(3)∠ABC=∠EDA.∵∠BFC=∠BDC=90°,∴B、E、D、C四点共圆,∴∠ABC=∠EDA.【点评】本题考查的是直角三角形的性质、三角形内角和定理、等腰三角形的判定和圆内接四边形的性质,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.23.如图,在平面直角坐标中,△AOB的三个顶点的坐标分别是A(4,4),O(0,0),B(6,0),点M是射线OB上的一动点,过点M作MN∥AB,MN与射线OA交于点N,P是AB边上的任意点,连接AM,PM,PN,BN,设△PMN的面积为S.(1)点M的坐标为(2,0)时,求点N的坐标.(2)当M在边OB上时,S有最大值吗?若有,求出S的最大值;若没有,请说明理由.(3)是否存在点M,使△PMN和△ANB中,其中一个面积是另一个2倍?如果存在,求出点M 的坐标;如果不存在,请说明理由.【考点】相似形综合题.【分析】(1)由相似三角形的性质即可,(2)由两直线平行,得到三角形相似,再由相似得到比例式,表示出NH,从而求出S的函数关系式;(3)利用同高的两个三角形的面积比是底的比,得出MN=2AB,求出OM,得到点M的坐标.【解答】解:(1)∵MN∥AB,∴△OMN∽△OAB,∴,∴NH=,∵点N在直线OA上,直线OA的解析式为y=x,∴N(,);(2)设OM=x,∵MN∥AB,∴S△MNB=S△PMN=S,∵△OMN∽△OAB,∴,NH=x,∴S=MB×BH=(6﹣x)×x=﹣(x﹣3)2+3,∴x=3时,S有最大值为3.(3)假设存在,设MN与AB之间的距离为h,若S△PMN=2S△ANB,∴MH×h=2×AB×h,∴MN=2AB,∵△OMN∽△OAB,∴==2,∴OM=12,∴M(12,0),若S△ANB=2S△PMN,同理可得M(3,0),∴M(12,0)或M(3,0).【点评】本题是相似三角形的综合题,主要考查相似三角形的性质和判定,解本题的关键是由相似得出比例式,.。
浙江省杭州市2020年中考数学一模试卷解析版

A.
B.
C.
D.
9. 关于 x 的二次函数 y=x2+2kx+k-1,下列说法正确的是( )
A. 对任意实数 k,函数图象与 x 轴都没有交点 B. 对任意实数 k,函数图象没有唯一的定点 C. 对任意实数 k,函数图象的顶点在抛物线 y=-x2-x-1 上运动 D. 对任意实数 k,当 x≥-k-1 时,函数 y 的值都随 x 的增大而增大
DE=( )
A. 7.2 B. 6.4 C. 3.6 D. 2.4
7. 如图,BD 是△ABC 的角平分线,AE⊥BD,垂足为 F.若∠ABC=36°,∠C=44°,则∠EAC 的度数为( )
A. 18°
B. 28°
C. 36°
第 1 页,共 17 页
D. 38°
8. 直线 l1:y=kx+b 与直线 l2:y=bx+k 在同一坐标系中的大致位置是( )
第 5 页,共 17 页
1.【答案】B
答案和解析
【解析】解:|-2|=2, 故选:B. 根据绝对值的定义,可直接得出-2 的绝对值. 本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是本题的 关键.
,沿过点 D 的直线折叠,使直角顶点 C 落在斜边 AB 上的点 E 处,当△BDE 是直角 三角形时,则 CD 的长为______. 三、解答题(本大题共 7 小题,共 66.0 分)
17. 先化简再求值:( - )• ,其中 a=1,b=2.
第 2 页,共 17 页
18. 光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各 50 名进行 一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据 ,绘制成统计图(不完整).根据统计图表中的信息,解答下列问题:
杭州市江干区中考一模数学试卷及答案

杭州市江干区中考一模数学试卷及答案2018年杭州市初中毕业升学模拟考试数学试题考生须知: 1.本试卷分试题卷和答题卷两部分,考试时间100分钟,满分120分;2•答题前,在答题纸上写姓名和准考证号; 3. 不能使用计算器;4. 所有答案都必须做在答题卡规定的位置,注意试题序号和答题序号对等试题卷一、仔细选一选(本题有10小题,每小题3分,共30分)1. 如图,直线a 、b 被直线c 所截,/ 1的同位角是() A. / 2B. / 3C. / 4D. / 52. 实数a 、b 、c 、d 在数轴上的对应点的位置如图所示,则正确的结论是(225.将多项式4x 2 1再加上一项,使它能分解因式成 a b 的形式,以下是四位学生所加的项,其中错误的是()6. 如图,圆0是厶ABC 的内切圆,分别切 BA 、BC 、AC 于点E 、F 、D,点P 在弧DE 上,如果/ EPF=70,那么 / B=() A.40 ° B.50°C.60°D.70°7. 如图,△ ABC 的面积为8cm 2 , AP 垂直 的面积为()A.b > -1B. ad>0C. a > dD.b+c > 03.已知扇形的圆心角为 30 °,面积为3 n cm 2,则扇形的半径为() A.6cm B.12cmC.18cmD.36cm4.如图是根据某班 40名同学一周的体育锻炼情况绘制的统计图, 该班40名同学一周参加体育锻炼时间的中位数,众数分别是()A.10.5,16B.8.5,16C.8.5,8D.9,8A.2xB.-4xC.4xD.4x7 H W 10VEY皆料卜/ B 的平分线 BP 于P ,贝U △ PBCBDD )X(2.I)C A B D入数 C A B DIt.2■ ■x-0.1 5A. 3cm 24cm 26cm 228.甲、乙两人从学校到博物馆去,甲每小时走 4km ,乙每小时走5km ,甲先出发0.1h ,结 ., __ 2 210.关于一元二次方程 ax bx c 0 a 0,有以下命题:若① a+b+c=O ,则b -4ac 0 ;②若方程ax bx c 0两根为-1和2,则2a+c=0 :③若方程ax c 0有两个不相等的实根,则方程2 o9ax bx c 0必有两个不相等的实根;④若 ax bx c 0有两个相等的实数根,则ax bx c 1无实数根。
【2020年】浙江省中考数学模拟试卷(含答案)

2020年浙江省中考数学模拟试卷含答案一、选择题(本大题有10小题,每小题3分,共30分) 1.|-2|=( )A. 2B. 2-C. 2±D. 122.下列计算正确的是()A. 325()a a =B.632aa a ÷= C.()222ab a b =D.222()a b a b +=+ 3.支付宝与“滴滴打车”联合推出优惠,“滴滴打车”一夜之间红遍大江南北.据统计,2016年“的的打车”账户流水总金额达到4730000000元,用科学记数法表示数为( ) A.84.7310⨯ B.94.7310⨯ C.104.7310⨯ D.114.7310⨯ 4.如图,△ABC ,∠B=90°,AB=3,BC=4,则cosA 等于() A. 43B. 34C. 45D. 355. 不等式组⎩⎨⎧<-≥-05.0101x x 的最小整数解是( ) A.1 B.2 C.3 D.46. 如图,已知直线AB ∥CD ,∠GEB 的平分线EF 交CD 于点F ,∠1=60°,则∠2等于( )A. 130°B. 140°C. 150°D. 160°7. 如图所示的支架是由两个长方体构成的组合体,则它的主视图是( )8. 在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:成 绩 45 46 47 48 49 50 人 数124251主视方向 A . B . C . D .这此测试成绩的中位数和众数分别为( )A. 47, 49B. 48, 49C. 47.5, 49D. 48, 509. 如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点(点P 不与点B 、C 重合),现将△PCD 沿直线PD 折叠,使点C 落到点C’处;作∠BPC’的角平分线交AB 于点E .设BP =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D . 10. 如图所示,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数ky x =在第一象限的图像经过点B ,与OA 交于点P ,若OA 2-AB 2=18,则点P 的横坐标为( )A .9 B.6 C.3 D.32二、填空题(本大题有6小题,每小题4分,共24分)11.分解因式:x x 43-=_________.12. 二次根式12x -中,x 的取值范围是 . 13. 已知实数x ,y 满足,则以x ,y 的值为两边长的等腰三角形的周长是14.如图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E ,若∠C=22.5°,AB =6 cm ,则阴影部分面积为__________cm 2。
杭州市中考数学全真模拟卷(一)含答案与解析

1 杭州市中考数学全真模拟卷(一) (时间:120分钟,满分:120分) 班级_______________姓名________________学号________________分数____________ 注意事项: 1.答题前,考生务必将自己的学校、班级、姓名、考试号、考场号、座位号,用0.5毫米黑色墨水签字笔填写在答题卷相对应的位置上,并认真核对; 2.答题必须用0.5毫米黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题; 3.考生答题必须答在答题卷上,保持卷面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。 一、选择题(本大题共10小题,每小题3分,共30分) 1.(2020•上城区校级三模)下列分解因式正确的是( ) A.a2﹣4=(a﹣2)2 B.a2+4=(a﹣2)(a+2) C.a2﹣2a+4=(a﹣2)2 D.2a2﹣8=2(a+2)(a﹣2)
2.(2020•西湖区三模)若式子有意义,则实数a的取值范围是( ) A.a≥﹣2 B.a≠1 C.a>1 D.a≥﹣2且a≠1
3.(2020•滨江区模拟)一件夹克衫先按成本提高40%标价,再按9折(标价的90%)出售,结果获利38元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是( ) A.(1+40%)x×90%=x﹣38 B.(1+40%)x×90%=x+38 C.(1+40%x)×90%=x﹣38 D.(1+40%x)×90%=x+38
4.(2020•萧山区一模)阅读下列解方程的过程,此过程从上一步到所给步有的产生了错误,则其中没有错误的是( ) 解方程:. ①; ②2(10x﹣30)﹣5(10x+40)=160; ③20x﹣60﹣50x+200=160; ④﹣30x=300. A.① B.② C.③ D.④ 2
5.(2020•淳安模拟)函数y=中自变量x的取值范围是( ) A.x≠0 B.x≥2或x≠0 C.x≥2 D.x≤﹣2且x≠0
浙江杭州大江东区16-17学年九年级上期中--数学(解析版)

A. B. C. D.
9.抛物线y=﹣x2+2x﹣2经过平移得到抛物线y=﹣x2,平移方法是( )
A.向左平移1个单位,再向下平移1个单位
B.向左平移1个单位,再向上平移1个单位
C.向右平移1个单位,再向上平移1个单位
D.向右平移1个单位,再向下平移1个单位
10.设抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动,抛物线与x轴交于C,D两点(C在D的左侧).若点A,B的坐标分别为(﹣2,3)和(1,3),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB为平行四边形时,a=﹣ .其中正确的是( )
2.若圆内接四边形ABCD的内角满足:∠A:∠B:∠C=2:4:7,则∠D=( )
A.80°B.100°C.120°D.160°
【考点】圆内接四边形的性质.
【分析】根据圆内接四边形的性质列出方程,解方程即可.
【解答】解:∵四边形ABCD是圆内接四边形,
参考答案与试题解析
一、选择题(本题有10小题,每小题3分,共30分)
1.在下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【考点】中心对称图形;轴对称图形.
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答】解:A、该图形是轴对称图形,但不是中心对称图形,故本选项错误;
三、解答题(本题有7小题,共66分,解答应写出文字说明、证明过程或演算步骤)
17.计算: ×[(﹣2)﹣3﹣23].
2024年浙江省中考数学试卷(附答案)
2024年浙江省中考数学试卷(附答案)一、选择题(每题3分)1.(3分)以下四个城市中某天中午12时气温最低的城市是()北京济南太原郑州0℃﹣1℃﹣2℃3℃A.北京B.济南C.太原D.郑州【分析】有理数大小比较的法则:(1)正数都大于0;(2)负数都小于0;(3)正数大于一切负数;(4)两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:|﹣1|=1,|﹣2|=2,∵1<2,∴﹣1>﹣2;∵3℃>0℃>﹣1℃>﹣2℃,∴所给的四个城市中某天中午12时气温最低的城市是太原.故选:C.【点评】此题主要考查了有理数大小比较的方法,解答此题的关键是要明确:(1)正数都大于0;(2)负数都小于0;(3)正数大于一切负数;(4)两个负数,绝对值大的其值反而小.2.(3分)5个相同正方体搭成的几何体主视图为()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看,共有三列,从左到右小正方形的个数分别为2、2、1.故选:B.【点评】此题主要考查了简单组合体的三视图,主视图是从物体的正面看得到的视图.3.(3分)2024年浙江经济一季度GDP为2013,7000,0万元,其中2013,7000,0用科学记数法表示为()A.20.137×109B.0.20137×108C.2.0137×109D.2.0137×108【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.4.(3分)下列式子运算正确的是()A.x3+x2=x5B.x3•x2=x6C.(x3)2=x9D.x6÷x2=x4【分析】根据合并同类项、同底数幂的乘除法及幂的乘方与积的乘方进行计算,逐一判断即可.【解答】解:A.x3+x2不能合并同类项,故本选项不符合题意;B.x3•x2=x5,故本选项不符合题意;C.(x3)2=x6,故本选项不符合题意;D.x6÷x2=x4,故本选项符合题意;故选:D.【点评】本题主要考查合并同类项、同底数幂的乘除法及幂的乘方与积的乘方,熟练掌握以上知识点是解题的关键.5.(3分)某班有5位学生参加志愿服务次数为:7,7,8,10,13.则这5位学生志愿服务次数的中位数为()A.7B.8C.9D.10【分析】根据中位数的定义求解即可.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:菜鸡班有5位学生参加志愿服务次数为:7,7,8,10,13,从小到大排列排在中间的数是8,所以这5位学生志愿服务次数的中位数为8.故选:B.【点评】本题主要考查中位数,解题的关键是掌握中位数的定义.6.(3分)如图,在平面直角坐标系中,△ABC与△A′B′C′是位似图形,位似中心为点O.若点A(﹣3,1)的对应点为A′(﹣6,2),则点B(﹣2,4)的对应点B′的坐标为()A.(﹣4,8)B.(8,﹣4)C.(﹣8,4)D.(4,﹣8)【分析】根据点A与点A′的坐标求出相似比,再根据位似变换的性质计算即可.【解答】解:∵△ABC与△A′B′C′是位似图形,位似中心为点O,点A(﹣3,1)的对应点为A′(﹣6,2),∴△ABC与△A′B′C′的相似比为1:2,∵点B的坐标为(﹣2,4),∴点B的对应点B′的坐标为(﹣2×2,4×2),即(﹣4,8),故选:A.【点评】本题主要考查的是位似变换,正确求出相似比是解题的关键.7.(3分)不等式组的解集在数轴上表示为()A.B.C.D.【分析】按照解一元一次不等式组的步骤进行计算,即可解答.【解答】解:,解不等式①得:x≥1,解不等式②得:x<4,∴原不等式组的解集为:1≤x<4,∴该不等式组的解集在数轴上表示如图所示:故选:A.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,熟练掌握解一元一次不等式组的步骤是解题的关键.8.(3分)如图,正方形ABCD由四个全等的直角三角形(△ABE,△BCF,△CDG,△DAH)和中间一个小正方形EFGH组成,连接DE.若AE=4,BE=3,则DE=()A.5B.C.D.4【分析】由全等三角形的性质得DH=AE=4,AH=BE=3,则EH=AE﹣AH=1,而∠DHE=90°,所以DE==,于是得到问题的答案.【解答】解:∵Rt△DAH≌Rt△ABE,∴DH=AE=4,AH=BE=3,∴EH=AE﹣AH=4﹣3=1,∵四边形形EFGH是正方形,∴∠DHE=90°,∴DE===,故选:C.【点评】此题重点考查全等三角形的性质、正方形的性质、勾股定理等知识,求得DH=4,EH=1,并且证明∠DHE=90°是解题的关键.9.(3分)反比例函数的图象上有P(t,y1),Q(t+4,y2)两点.下列正确的选项是()A.当t<﹣4时,y2<y1<0B.当﹣4<t<0时,y2<y1<0C.当﹣4<t<0时,0<y1<y2D.当t>0时,0<y1<y2【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再对各选项进行逐一判断即可.【解答】解:∵反比例函数中,k=4>0,∴此函数图象的两个分支分别位于第一、三象限,在每一象限内y随x的增大而减小,A、当t<﹣4时,t+4<0,∵t<t+4,∴y2<y1<0,正确,符合题意;B、当﹣4<t<0时,点P(t,y1)在第三象限,点Q(t+4,y2)在第一象限,∴y1<0,y2>0,∴y1<0<y2,原结论错误,不符合题意;C、由B知,当﹣4<t<0时,y1<0<y2,原结论错误,不符合题意;D、当t>0时,t+4>0,∴P(t,y1),Q(t+4,y2)在第一象限,∵t<t+4,∴y1>y2>0,原结论错误,不符合题意.故选:A.【点评】本题考查的是反比例函数图象上点的坐标特征,熟知反比例函数的图象与系数的关系是解题的关键.10.(3分)如图,在▱ABCD中,AC,BD相交于点O,AC=2,.过点A作AE⊥BC的垂线交BC于点E,记BE长为x,BC长为y.当x,y的值发生变化时,下列代数式的值不变的是()A.x+y B.x﹣y C.xy D.x2+y2【分析】过D作DH⊥BC,交BC延长线于H,由平行四边形当性质推出AB=DC,AD∥BC,得到AE=DH,判定Rt△DCH≌Rt△ABE(HL),得到CH=BE=x,由勾股定理得到22﹣(y﹣x)2=﹣(y+x)2,得到xy=2.【解答】解:过D作DH⊥BC,交BC延长线于H,∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∵AE⊥BC,DH⊥BC,∴AE=DH,∴Rt△DCH≌Rt△ABE(HL),∴CH=BE=x,∵BC=y,∴EC=BC﹣BE=y﹣x,BH=BC+CH=y+x,∵AE2=AC2﹣EC2,DH2=BD2﹣BH2,∴22﹣(y﹣x)2=﹣(y+x)2,∴xy=2.故选:C.【点评】本题考查平行四边形的性质,全等三角形的判定和性质,勾股定理,关键是由Rt△DCH≌Rt△ABE(HL),得到CH=BE,由勾股定理得到22﹣(y﹣x)2=﹣(y+x)2.二、填空题(每题3分)11.(3分)因式分解:a2﹣7a=a(a﹣7).【分析】用提取公因式法分解因式即可.【解答】解:a2﹣7a=a(a﹣7).故答案为:a(a﹣7).【点评】本题考查了分解因式,能选择适当的方法分解因式是解此题的关键,注意:因式分解的方法有:提取公因式法,公式法,十字相乘法等.12.(3分)若,则x=3.【分析】先去分母将分式方程化为整式方程,求出整式方程的解,再进行检验即可.【解答】解:两边都乘以(x﹣1),得2=x﹣1,解得x=3,经检验x=3是原方程的解,所以原方程的解为x=3.故答案为:3.【点评】本题考查解分式方程,掌握分式方程的解法是正确解答的关键.13.(3分)如图,AB是⊙O的直径,AC与⊙O相切,A为切点,连接BC.已知∠ACB=50°,则∠B的度数为40°.【分析】由切线的性质得到∠BAC=90°,由直角三角形的性质求出∠B=90°﹣50°=40.【解答】解:∵AB是⊙O的直径,AC与⊙O相切,A为切点,∴BA⊥AC,∴∠BAC=90°,∵∠ACB=50°,∴∠B=90°﹣50°=40°.故答案为:40°.【点评】本题考查切线的性质,关键是由切线的性质得到∠BAC=90°.14.(3分)有8张卡片,上面分别写着数1,2,3,4,5,6,7,8.从中随机抽取1张,该卡片上的数是4的整数倍的概率是.【分析】直接由概率公式求解即可.【解答】解:∵有8张卡片,上面分别写着数1,2,3,4,5,6,7,8,其中该卡片上的数是4的整数倍的数是4,8,∴该卡片上的数是4的整数倍的概率是=,故答案为:.【点评】本题考查了概率公式:概率=所求情况数与总情况数之比.熟记概率公式是解题的关键.15.(3分)如图,D,E分别是△ABC边AB,AC的中点,连接BE,DE.若∠AED=∠BEC,DE=2,则BE的长为4.【分析】根据三角形中位线定理得到BC=2DE=4,DE∥BC,根据平行线的性质得到∠AED=∠C,根据题意得到∠BEC=∠C,再根据等腰三角形的性质求出BE.【解答】解:∵D,E分别是△ABC边AB,AC的中点,∴BC=2DE=2×2=4,DE∥BC,∴∠AED=∠C,∵∠AED=∠BEC,∴∠BEC=∠C,∴BE=BC=4,故答案为:4.【点评】本题主要考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.16.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,.线段AB与A′B′关于过点O的直线l对称,点B的对应点B′在线段OC上,A′B′交CD于点E,则△B′CE与四边形OB′ED的面积比为.【分析】根据轴对称可得到等线段等角,再结合菱形的性质可得到△A'ED≌△CEB'(AAS),再证△DOE ≌△B'OE(SSS),由B'C:B'O=2:3即可求出答案.【解答】解:如图连接OE、A'D,∵AB关于过O的直线对称,∴A'在BD延长线上,∵,∴设AC=10k,BD=6k,在菱形ABCD中,OA=OC=5k,CB=OD=3k,∵AB与A'B'关于过O的直线对称,∴OA=OA'=5k,OB=OB'=3k,∠A'=∠DAC=∠DCA,∴A'D=B'C=2k,∵∠A'ED=∠B'CE,∴△A'ED≌△CEB'(AAS),∴DE=B'E,∵OE=OE,OD=OB',∴△DOE≌△B'OE(SSS),=S△B′OE,∴S△DOE∵==,∴==.故答案为:.【点评】本题主要考查了轴对称的性质和菱形的性质、全等三角形的判定和性质,熟练掌握以上基础知识和线段之间的转化是解题关键.三、解答题(17-21每题8分,22、23每题10分,24题12分)17.(8分)计算:.【分析】利用负整数指数幂,立方根的定义,绝对值的性质计算即可.【解答】解:原式=4﹣2+5=7.【点评】本题考查实数的运算,负整数指数幂,立方根,绝对值,熟练掌握相关运算法则是解题的关键.18.(8分)解方程组:.【分析】先有①×3+②得出10x=5,求出x=,再把x=代入①求出y即可.【解答】解:,①×3+②得:10x=5,解得:x=,把x=代入①得:2×﹣y=5,解得:y=﹣4,所以方程组的解是.【点评】本题考查了二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.19.(8分)如图,在△ABC中,AD⊥BC,AE是BC边上的中线,AB=10,AD=6,tan∠ACB=1.(1)求BC的长;(2)求sin∠DAE的值.【分析】(1)由tan∠ACB=1可得CD=AD=6,根据勾股定理可得BD的长,进而底层BC的长;(2)根据AE是BC边上的中线可得CE的长,由DE=CE﹣CD可得DE的长,根据勾股定理可得AE 的长,再根据三角函数的定义解答即可.【解答】解:(1)∵AD⊥BC,AB=10,AD=6,∴BD===8;∵tan∠ACB=1,∴CD=AD=6,∴BC=BD+CD=8+6=14;(2)∵AE是BC边上的中线,∴CE==7,∴DE=CE﹣CD=7﹣6=1,∵AD⊥BC,∴==,∴sin∠DAE===.【点评】本题考查了解直角三角形以及勾股定理,在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.20.(8分)某校开展科学活动.为了解学生对活动项目的喜爱情况,随机抽取部分学生进行问卷调查.调查问卷和统计结果描述如下:科学活动喜爱项目调查问卷以下问题均为单选题,请根据实际情况填写.问题1:在以下四类科学“嘉年华”项目中,你最喜爱的是A(A)科普讲座(B)科幻电影(C)AI应用(D)科学魔术如果问题1选择C.请继续回答问题2.问题2:你更关注的AI应用是E(E)辅助学习(F)虚拟体验(G)智能生活(H)其他根据以上信息.解答下列问题:(1)本次调查中最喜爱“AI应用”的学生中更关注“辅助学习”有多少人?(2)菜鸡学校共有1200名学生,根据统计信息,估计该校最喜爱“科普讲座”的学生人数.【分析】(1)用本次调查中最喜爱“AI应用”的学生人数乘E所占百分比即可;(2)用1200乘该校最喜爱“科普讲座”项目的百分比即可.【解答】解:(1)80×40%=32(人),答:本次调查中最喜爱“AI应用”的学生中更关注“辅助学习”有32人;(2)1200×=324(人),答:估计该校最喜爱“科普讲座”的学生人数大约有324人.【点评】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8分)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2.以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明AF∥CE;(2)指出小丽作法中存在的问题.【分析】(1)根据小明的作法知,CF=AE,根据平行四边形的性质求出AD∥BC,根据“一组对边平行且相等的四边形是平行四边形”求出四边形AFCE是平行四边形,根据“平行四边形的对边互相平行”即可得证;(2)以A为圆心,EC为半径画弧,交BC于点F,此时可能会有两个交点,只有其中之一符合题意.【解答】(1)证明:根据小明的作法知,CF=AE,∵四边形ABCD是平行四边形,∴AD∥BC,又∵CF=AE,∴四边形AFCE是平行四边形,∴AF ∥CE ;(2)解:以A 为圆心,EC 为半径画弧,交BC 于点F ,此时可能会有两个交点,只有其中之一符合题意.故小丽的作法有问题.【点评】此题考查了平行四边形的判定与性质,熟记平行四边形的判定定理与性质定理是解题的关键.22.(10分)小明和小丽在跑步机上慢跑锻炼.小明先跑,10分钟后小丽才开始跑,小丽跑步时中间休息了两次.跑步机上C 档比B 档快40米/分、B 档比A 档快40米/分.小明与小丽的跑步相关信息如表所示,跑步累计里程s (米)与小明跑步时间t (分)的函数关系如图所示.时间里程分段速度档跑步里程小明16:00~16:50不分段A 档4000米小丽16:10~16:50第一段B 档1800米第一次休息第二段B 档1200米第二次休息第三段C 档1600米(1)求A ,B ,C 各档速度(单位:米/分);(2)求小丽两次休息时间的总和(单位:分);(3)小丽第二次休息后,在a 分钟时两人跑步累计里程相等,求a 的值.【分析】(1)由小明的跑步里程及时间可得A 档速度,再根据B 档比A 档快40米/分、C 档比B 档快40米/分,即可得出答案;(2)结合图象求出小丽每段跑步所用时间,再根据总时间即可求解;(3)由题意可得,此时小丽在跑第三段,所跑时间为a ﹣10﹣15﹣10﹣5=a ﹣40(分),可得方程80a=3000+160(a﹣40),求解即可.【解答】解:(1)由题意可知,A档速度为4000÷50=80(米/分),则B档速度为80+40=120(米/分),C档速度为120+40=160(米/分),答:A,B,C各档速度80米/分、120米/分、160米/分.(2)小丽第一段跑步时间为1800÷120=15(分),小丽第二段跑步时间为(3000﹣1800)÷120=10(分),小丽第三段跑步时间为(4600﹣3000)÷160=10(分),则小丽两次休息时间的总和为50﹣10﹣15﹣10﹣10=5(分),答:小丽两次休息时间的总和为5分钟.(3)∵小丽第二次休息后,在a分钟时两人跑步累计里程相等,∴此时小丽在跑第三段,所跑时间为a﹣10﹣15﹣10﹣5=a﹣40(分),∴80a=3000+160(a﹣40),∴a=42.5.【点评】本题主要考查一次函数的应用,读懂图中的数据是解题的关键.23.(10分)已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(﹣2,5),对称轴为直线.(1)求二次函数的表达式;(2)若点B(1,7)向上平移2个单位长度,向左平移m(m>0)个单位长度后,恰好落在y=x2+bx+c 的图象上,求m的值;(3)当﹣2≤x≤n时,二次函数y=x2+bx+c的最大值与最小值的差为,求n的取值范围.【分析】(1)依据题意,由二次函数为y=x2+bx+c,可得抛物线为直线x=﹣=﹣,可得b的值,再由图象经过点A(﹣2,5),求出c的值,进而可以得解;(2)依据题意,由点B(1,7)向上平移2个单位长度,向左平移m个单位长度(m>0),进而可得平移后的点为(1﹣m,9),结合(1﹣m,9)在y=x2+x+3图象上,可得9=(1﹣m)2+(1﹣m)+3,进而计算可以得解;(3)依据题意,由y=x2+x+3=(x+)2+,可得当x=﹣时,y取最小值,最小值为,再根据n<﹣、﹣2<﹣≤n≤1和n>1进行分类讨论,即可计算得解.【解答】解:(1)由题意,∵二次函数为y=x2+bx+c,∴抛物线的对称轴为直线x=﹣=﹣.∴b=1.∴抛物线为y=x2+x+c.又图象经过点A(﹣2,5),∴4﹣2+c=5.∴c=3.∴抛物线为y=x2+x+3.(2)由题意,∵点B(1,7)向上平移2个单位长度,向左平移m个单位长度(m>0),∴平移后的点为(1﹣m,9).又(1﹣m,9)在y=x2+x+3,∴9=(1﹣m)2+(1﹣m)+3.∴m=4或m=﹣1(舍去).∴m=4.(3)由题意,当时,∴最大值与最小值的差为.∴,不符合题意,舍去.当﹣≤n≤1时,∴最大值与最小值的差为,符合题意.当n>1时,最大值与最小值的差为,解得n1=1或n2=﹣2,不符合题意.综上所述,n的取值范围为﹣≤n≤1.【点评】本题主要考查了待定系数法求二次函数解析式、二次函数的性质、二次函数图象上点的坐标特征、二次函数的最值、坐标与图形变化﹣平移,解题时要熟练掌握并能灵活运用是关键.24.(12分)如图,在圆内接四边形ABCD中,AD<AC,∠ADC<∠BAD,延长AD至点E,使AE=AC,延长BA至点F,连结EF,使∠AFE=∠ADC.(1)若∠AFE=60°,CD为直径,求∠ABD的度数.(2)求证:①EF∥BC;②EF=BD.【分析】(1)根据圆周角定理进行计算即可;(2)①利用圆内接四边形的外角等于它的内对角以及平行线的判定方法即可得出结论;②根据全等三角形的性质,圆周角定理进行解答即可.【解答】(1)解:∵CD为直径,∴∠CAD=90°,∵∠AFE=∠ADC=60°,∴∠ACD=90°﹣60°=30°,∴∠ABD=∠ACD=30°;(2)证明:①如图,延长AB,∵四边形ABCD是圆内接四边形,∴∠CBM=∠ADC,又∵∠AFE=∠ADC,∴∠AFE=∠CBM,∴EF∥BC;②过点D作DG∥BC交⊙O于点G,连接AG,CG,∵DG∥BC,∴=,∴BD=CG,∵四边形ACGD是圆内接四边形,∴∠GDE=∠ACG,∵EF∥DG∴∠DEF=∠GDE,∴∠DEF=∠ACG,∵∠AFE=∠ADC,∠ADC=∠AGC,∴∠AFE=∠AGC,∵AE=AC,∴△AEF≌△ACG(AAS),∴EF=CG,∴EF=BD.【点评】本题考查圆周角定理,圆内接四边形的性质,掌握圆周角定理,圆内接四边形的性质以及平行四边形的性质是正确解答的关键.。
2021年浙江省杭州市中考数学试题(word版,含答案解析)
2021年浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分。
1.(3分)(2021)(--= ) A .2021-B .2021C .12021-D .120212.(3分)“奋斗者”号载人潜水器此前在马里亚纳海沟创造了10909米的我国载人深潜记录.数据10909用科学记数法可表示为( ) A .50.1090910⨯B .41.090910⨯C .310.90910⨯D .2109.0910⨯3.(3分)因式分解:214(y -= ) A .(12)(12)y y -+B .(2)(2)y y -+C .(12)(2)y y -+D .(2)(12)y y -+4.(3分)如图,设点P 是直线l 外一点,PQ l ⊥,垂足为点Q ,点T 是直线l 上的一个动点,连结PT ,则( )A .2PT PQB .2PT PQC .PT PQD .PT PQ5.(3分)下列计算正确的是( ) A 222B 2(2)2-=-C 222=±D 2(2)2-±6.(3分)某景点今年四月接待游客25万人次,五月接待游客60.5万人次.设该景点今年四月到五月接待游客人次的增长率为(0)x x >,则( ) A .60.5(1)25x -=B .25(1)60.5x -=C .60.5(1)25x +=D .25(1)60.5x +=7.(3分)某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等.某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是( )A .15B .14 C .13D .128.(3分)在“探索函数2y ax bx c =++的系数a ,b ,c 与图象的关系”活动中,老师给出了直角坐标系中的四个点:(0,2)A ,(1,0)B ,(3,1)C ,(2,3)D .同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数表达式各不相同,其中a 的值最大为( )A .52B .32C .56D .129.(3分)已知线段AB ,按如下步骤作图:①作射线AC ,使AC AB ⊥;②作BAC ∠的平分线AD ;③以点A 为圆心,AB 长为半径作弧,交AD 于点E ;④过点E 作EP AB ⊥于点P ,则:(AP AB = )A .5B .1:2C .3D .210.(3分)已知1y 和2y 均是以x 为自变量的函数,当x m =时,函数值分别是1M 和2M ,若存在实数m ,使得120M M +=,则称函数1y 和2y 具有性质P .以下函数1y 和2y 具有性质P 的是( )A .212y x x =+和21y x =--B .212y x x =+和21y x =-+C .11y x=-和21y x =--D .11y x=-和21y x =-+二、填空题:本大题有6个小题,每小题4分,共24分。
2020年浙江省杭州市中考数学试题及参考答案(word解析版)
2020年浙江省杭州市中考数学试题及参考答案与解析(考试时间100分钟,满分100分)一、仔细选一选(本题有10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,注意可以用多种不同的方法来选取正确答案。
1.×=()A.B.C.D.32.(1+y)(1﹣y)=()A.1+y2B.﹣1﹣y2C.1﹣y2D.﹣1+y23.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费()A.17元B.19元C.21元D.23元4.如图,在△ABC中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则()A.c=b sin B B.b=c sin BC.a=b tan B D.b=c tan B5.若a>b,则()A.a﹣1≥b B.b+1≥a C.a+1>b﹣1 D.a﹣1>b+16.在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.7.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x8.设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,()A.若h=4,则a<0 B.若h=5,则a>0C.若h=6,则a<0 D.若h=7,则a>09.如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°10.在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,()A.若M1=2,M2=2,则M3=0 B.若M1=1,M2=0,则M3=0C.若M1=0,M2=2,则M3=0 D.若M1=0,M2=0,则M3=0二、认真填一填(本题有6个小题,每小題4分,共24分)11.若分式的值等于1,则x=.12.如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30°,∠EFC=130°,则∠A=.13.设M=x+y,N=x﹣y,P=xy.若M=1,N=2,则P=.14.如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接AC,OC.若sin∠BAC=,则tan∠BOC=.15.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是.16.如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=,BE=.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(6分)以下是圆圆解方程=1的解答过程.解:去分母,得3(x+1)﹣2(x﹣3)=1.去括号,得3x+1﹣2x+3=1.移项,合并同类项,得x=﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.18.(8分)某工厂生产某种产品,3月份的产量为5000件,4月份的产量为10000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)求4月份生产的该产品抽样检测的合格率;(2)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?19.(8分)如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.20.(10分)设函数y1=,y2=﹣(k>0).(1)当2≤x≤3时,函数y1的最大值是a,函数y2的最小值是a﹣4,求a和k的值.(2)设m≠0,且m≠﹣1,当x=m时,y1=p;当x=m+1时,y1=q.圆圆说:“p一定大于q”.你认为圆圆的说法正确吗?为什么?21.(10分)如图,在正方形ABCD中,点E在BC边上,连接AE,∠DAE的平分线AG与CD边交于点G,与BC的延长线交于点F.设=λ(λ>0).(1)若AB=2,λ=1,求线段CF的长.(2)连接EG,若EG⊥AF,①求证:点G为CD边的中点.②求λ的值.22.(12分)在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0).(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式.(2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点(,0).(3)设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值.23.(12分)如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC的中点,连接EF.(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.(2)连接BF,DF,设OB与EF交于点P,①求证:PE=PF.②若DF=EF,求∠BAC的度数.答案与解析一、仔细选一选(本题有10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,注意可以用多种不同的方法来选取正确答案。
2024年浙江省杭州市滨江区九年级中考数学一模试题(含答案)
2024年浙江省杭州市滨江区中考数学一模试卷考生须知:1.本试卷满分120分,考试时间120分钟.2.答题前,在答题纸上写名字和准考证号,并在试卷首页的指定位置写上名字和座位号.3.必须在答题纸的对应答题位置上答题,写在其他地方无效,答题方式详见答题纸上的说明.4.如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑.5.考试结束后,试卷和答题纸一并上交.一.选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在0,-2,1,-3这四个数中,最小的数是( )A .-3B .1C .-2D .02.下列运算正确的是( )A .B .C .D .3.如图是由7个相同的小立方块搭成的几何体,它的主视图是()A .B .C .D .4.如图,□ABCD 对角线AC ,BD 交于点O ,请添加一个条件:____使得□ABCD 是菱形()(第4题)A .AB =ACB .AC ⊥BDC .AB =CDD .AC =BD5.如图,在△ABD 中,∠BAD =90°,将△ABD 绕点A 逆时针旋转后得到△ACE ,此时点C 恰好落在BD 边上.若∠E =24°,则∠BAC =()235a a a +=236a a a ⋅=632a a a ÷=()326aa =(第5题)A .24°B .48°C .66°D .72°6.如图,反比例函数(k 为常数,且k ≠0)的图象与正比例函数(m 为常数,且m ≠0)的图象相交于A ,B 两点,点A 的横坐标为-1.若,则x 的取值范围是()(第6题)A .-1<x <0B .x <-1C .x >1D .-1<x <0或x >17.如图,点C 、点E 分别在线段AD ,AB 上,线段BC 与DE 交于点F ,且满足AB =AD .下列添加的条件中不能推得△ABC ≌△ADE 的是()(第7题)A .AC =AEB .BF =DFC .BE =CDD .BC =DE8.某班有40名学生,一次体能测试后,老师对测试成绩进行了统计,由于小滨没有参加本次测试,算得39人测试成绩数据的平均数,中位数.后来小滨进行了补测,成绩为29分,得到40人测试成绩数据的平均数,中位数,则( )A .,B .,C .,D .,9.二次函数(a ,b ,c 为常数,且a ≠0)中的x 与y 的部分对应值如表:x -1013y-13531ky x=2y mx =210y y <<128x =128m =2x 2m 12x x =12m m =12x x <12m m <12x x <12m m ≤12x x >12m m =2y ax bx c =++下列结论:①该函数图象的开口向下;②该函数图象的顶点坐标为(1,5);③当x >1时,y 随x 的增大而减少;④x =3是方程的一个根.正确的是( )A .①②B .②③C .③④D .①④10.如图,在等腰三角形ABC 中.AB =AC ,∠A =α(0°<α<90°).点D ,E 在AB 边上,点F ,G 分别在BC和AC 边上.若四边形DEFG为正方形,则( )(第10题)A .B .C .D .二.填空题:本大题有6个小题,每小题3分,共18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2017年浙江省杭州市大江东区中考数学一模试卷 一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项最符合题目要求. 1.下列各数中,能化为无限不循环小数的是( ) A. B. C. D. 2.下列二次根式中,最简二次根式的是( ) A. B. C. D. 3.下列运算正确的是( ) A.x3+x2=x5 B.x3﹣x2=x C.(x3)2=x5 D.x3÷x2=x 4.下列命题中,真命题是( ) A.周长相等的锐角三角形都全等 B.周长相等的等腰直角三角形都全等 C.周长相等的钝角三角形都全等 D.周长相等的直角三角形都全等 5.如图,AB∥CD,EC⊥CD于C,CF交AB于B,已知∠2=29°,则∠1的度数是( )
A.58° B.59° C.61° D.62° 6.在社会实践活动中,某中学对甲、乙,丙、丁四个超市三月份的苹果价格进行调查.它们的价格的平均值均为3.50元,方差分别为S甲2=0.3,S乙2=0.4,S丙2=0.1,S丁2=0.25.三月份苹果价格最稳定的超市是( ) A.甲 B.乙 C.丙 D.丁 7.小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了,设公共汽车的平均速度为x千米/时,则下面列出的方程中正确的是( ) A. =× B. =× 2
C. += D.﹣= 8.已知:点P到直线l的距离为3,以点P为圆心,r为半径画圆,如果圆上有且只有两点到直线L的距离均为2,则半径r的取值范围是( ) A.r>1 B.r>2 C.2<r<2 D.1<r<5 9.如图是一个3×2的长方形格,组成网格的小长方形长为宽的2倍,△ABC的顶点都是网格中的格点,则sin∠BAC的值( )
A. B. C. D. 10.如图在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D是AB边上的一个动点(不与点A、B重合),过点D作CD的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示y与x的函数关系图象大致是( )
A. B. C. D. 二、填空题:本题有6个小题,每小题4分,共24分. 11.若分式的值为0,则x的值等于 . 12.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为 . 13.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定,则[+]的值为 . 14.已知三个数1,,2,请再添上一个数,使它们构成一个比例式,满足这样条件的数3
是 . 15.如图,直线y1=k1x+b和直线y2=k2x+b分别与x轴交于A(﹣1,0)和B(3,0)两点.则不等式组k1x+b>k2x+b>0的解集为 .
16.如图,△ABC是定圆O的内接三角形,AD为△ABC的高线,AE平分∠BAC交⊙O于E,交BC于G,连OE交BC于F,连OA,在下列结论中,①CE=2EF,②△ABG∽△AEC,③∠BAO=∠DAC,④为常量.其中正确的有 .
三、解答题:本题有7小题,共66分.解答应写出文字说明、证明过程或演算步骤. 17.如果用c表示摄氏温度,f表示华氏温度,则c与f之间的关系为:c=(f﹣32),试分别求: (1)当f=68和f=﹣4时,c的值; (2)当c=10时,f的值. 18.若关于x,y的方程组与有相同的解. (1)求这个相同的解; (2)求m,n的值. 19.如图,A是∠MON边OM上一点,AE∥ON. (1)在图中作∠MON的角平分线OB,交AE于点B;(要求:尺规作图,保留作图痕迹,不写作法和证明) (2)在(1)中,过点A画OB的垂线,垂足为点D,交ON于点C,连接CB,将图形补充完4
整,并证明四边形OABC是菱形. 20.在我市实施“城乡环境综合治理”期间,某校组织学生开展“走出校门,服务社会”的公益活动.八年级一班王浩根据本班同学参加这次活动的情况,制作了如下的统计图表: 该班学生参加各项服务的频数、频率统计表: 服务类别 频数 频率 文明宣传员 4 0.08 文明劝导员 10 义务小警卫 8 0.16 环境小卫士 0.32 小小活雷锋 12 0.24 请根据上面的统计图表,解答下列问题: (1)该班参加这次公益活动的学生共有 名; (2)请补全频数、频率统计表和频数分布直方图; (3)若八年级共有900名学生报名参加了这次公益活动,试估计参加文明劝导的学生人数.
21.如图,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=3﹣3,CD∥AB,并与弧AB相交于点M、N. 5
(1)求线段OD的长; (2)若sin∠C=,求弦MN的长; (3)在(2)的条件下,求优弧MEN的长度.
22.已知抛物线y=x2﹣2bx+c (1)若抛物线的顶点坐标为(2,﹣3),求b,c的值; (2)若b+c=0,是否存在实数x,使得相应的y的值为1,请说明理由; (3)若c=b+2且抛物线在﹣2≤x≤2上的最小值是﹣3,求b的值. 23.如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q 分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A﹣B﹣﹣C﹣﹣E的方向运动,到点E停止;动点Q沿B﹣﹣C﹣﹣E﹣﹣D的方向运动,到点D停止,设运动时间为xs,△PAQ的面积为ycm2,(这里规定:线段是面积为0的三角形) 解答下列问题: (1)当x=2s时,y= cm2;当x=s时,y= cm2. (2)当5≤x≤14 时,求y与x之间的函数关系式. (3)当动点P在线段BC上运动时,求出S梯形ABCD时x的值. (4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值. 6
2017年浙江省杭州市大江东区中考数学一模试卷 参考答案与试题解析
一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项最符合题目要求. 1.下列各数中,能化为无限不循环小数的是( ) A. B. C. D. 【考点】27:实数. 【分析】根据无理数是无限不循环小数即可求解. 【解答】解:,,都是无限循环小数,是无限不循环小数. 故选:D.
2.下列二次根式中,最简二次根式的是( ) A. B. C. D. 【考点】74:最简二次根式. 【分析】最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,满足上述两个条件的二次根式,叫做最简二次根式. 【解答】解:A、中被开方数是分数,故不是最简二次根式; B、中被开方数是分数,故不是最简二次根式; C、中被开方数不含分母,不含能开得尽方的因数,故是最简二次根式; D、中含能开得尽方的因数,故不是最简二次根式; 故选:C
3.下列运算正确的是( ) A.x3+x2=x5 B.x3﹣x2=x C.(x3)2=x5 D.x3÷x2=x 【考点】48:同底数幂的除法;35:合并同类项;47:幂的乘方与积的乘方. 【分析】根据同底数幂的乘除法,同类项合并等法则即可求出答案, 7
【解答】解:(A)x3与x2不是同类项,不能合并,故A错误; (B)x3与x2不是同类项,不能合并,故B错误; (C)原式=x6,故C错误; 故选(D)
4.下列命题中,真命题是( ) A.周长相等的锐角三角形都全等 B.周长相等的等腰直角三角形都全等 C.周长相等的钝角三角形都全等 D.周长相等的直角三角形都全等 【考点】O1:命题与定理. 【分析】利用全等三角形的定义分别判断后即可确定正确的选项. 【解答】解:A、周长相等的锐角三角形不一定都全等,故错误,是假命题; B、周长相等的等腰直角三角形都全等,正确,是真命题; C、周长相等的钝角三角形不一定全等,故错误,是假命题; D、周长相等的直角三角形不一定全等,故错误,是假命题, 故选B.
5.如图,AB∥CD,EC⊥CD于C,CF交AB于B,已知∠2=29°,则∠1的度数是( )
A.58° B.59° C.61° D.62° 【考点】JA:平行线的性质. 【分析】得到∠DCE=90°,根据余角的性质得到∠3=61°,根据平行线的性质即可得到结论. 【解答】解:延长DC到F, ∵EC⊥CD, ∴∠DCE=90°, ∵∠2=29°, 8
∴∠3=61°, ∵AB∥CD, ∴∠1=∠3=61°, 故选C.
6.在社会实践活动中,某中学对甲、乙,丙、丁四个超市三月份的苹果价格进行调查.它们的价格的平均值均为3.50元,方差分别为S甲2=0.3,S乙2=0.4,S丙2=0.1,S丁2=0.25.三月份苹果价格最稳定的超市是( ) A.甲 B.乙 C.丙 D.丁 【考点】W7:方差. 【分析】根据方差的定义,方差越小数据越稳定,即可得出答案. 【解答】解:∵它们的价格的平均值均为3.50元,方差分别为S甲2=0.3,S乙2=0.4,S丙2=0.1,S丁2=0.25, ∴S乙2>S甲2>S丁2>S丙2, ∴三月份苹果价格最稳定的超市是丙; 故选C.
7.小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了,设公共汽车的平均速度为x千米/时,则下面列出的方程中正确的是( ) A. =× B. =× C. +=D.﹣= 【考点】B6:由实际问题抽象出分式方程. 【分析】根据公共汽车的平均速度为x千米/时,得出出租车的平均速度为(x+20)千米/