emc地线干扰机理
EMC基本原理

3V/m 0.15MHz-80MHz Modulation: 80% AM,2Hz
>95% dip in UT for 0.5 cycle 60% dip in UT for 5 cycle 30% dip in UT for 25 cycle >95% dip in UT for 5 sec
常见EMC测试项目
10
谐波测试的分类
CLASS A:
包括平衡的三相设备,家用电器(不属于D类的设备),工具(不属于 便携工具),白炽灯调光灯,音频设备等
CLASS B:
便携工具
CLASS C:
照明设备
CLASS D:
小于600W的下列设备:个人电脑,显示器,电视
11
静电放电ESD:Electrostatic
常见EMC测试项目
8
Harmonics:交流电源谐波
设备的输入电压为正 弦波(50Hz或者 60Hz),当该电压 的输入负载为非线性 电路时,将会使得输 入电流发生畸变,即 输入电流不为正弦波, 根据傅利叶变换,非 正弦波信号在频域将 会存在谐波,这些谐 波电流将会降低设备 电源的使用效率,并
常见EMC测试项目
Harmonic Current IEC/EN 61000-3-2 Class A
Voltage fluctuations
IEC/EN 61000-3-3 Pst 10mins
24
医用电气设备设备电磁兼容— 要求和试验(续)
IMMUNITY
ESD
CONTACT:±4KV
AIR: ±8KV
RS
3V/m
跌落深度 持续时间 性能判据
emc防护知识

电磁兼容性( EMC)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。
因此,EMC防护知识主要涉及如何降低设备或系统产生的电磁干扰以及提高其抵抗电磁干扰的能力。
以下是一些常见的EMC防护知识:
1.接地:接地是EMC防护中最基本的方法之一。
通过将设备或系统的接地,可以将静
电和电磁干扰导入地下,从而减少对设备的干扰。
2.屏蔽:屏蔽是另一种常用的EMC防护方法。
通过使用导电材料(如金属)制成的屏
蔽体,可以有效地隔离和减少电磁干扰的传播。
3.滤波:滤波技术可以有效地减少电磁干扰的传播。
通过使用适当的滤波器,可以减
少信号中的噪声和干扰成分,从而降低电磁干扰的影响。
4.电缆管理:电缆是电磁干扰的主要传播途径之一。
因此,良好的电缆管理对于EMC
防护至关重要。
确保电缆远离干扰源,避免电缆过长,以及使用适当的电缆类型都可以降低电磁干扰的影响。
5.设备布局:设备布局对于EMC防护也非常重要。
确保敏感设备远离干扰源,并按照
特定的规则和顺序排列设备,可以减少电磁干扰的影响。
6.软件开发:软件开发人员在编写代码时也应该考虑EMC问题。
通过使用适当的算法
和数据结构,可以减少软件运行时产生的电磁干扰。
以上是一些常见的EMC防护知识,但具体的实现方法可能因设备和系统的不同而有所差异。
因此,在实际应用中,建议参考相关设备的EMC标准和规范,以确保设备或系统的正常运行和可靠性。
EMC电磁兼容整改一般来说主要的整改方法

EMC电磁兼容整改一般来说主要的整改方法EMC电磁兼容整改一般来说主要的整改方法有如下几种:一、EMC电磁兼容整改之减弱干扰源在找到干扰源的基础上,可对干扰源进行允许范围内的减弱。
二、EMC电磁兼容整改之电线电缆的分类整理在电子设备中,线间耦合是一种重要的途径,也是造成干扰的重要原因,因为频率的因素,可大体分为高频耦合与低频耦合。
因耦合方式不同,其整改方法也是不同的,下边分别讨论:EMC电磁兼容整改之低频耦合:低频耦合是指导线长度等于或小于1/16波长的情况,低频耦合又可分为电场和磁场耦合,电场耦合的物理模型是电容耦合,因此整改的主要目的是减小分布耦合电容或减小耦合量。
EMC电磁兼容整改之高频耦合:高频耦合是指长于1/4波长的走线由于电路中出现电压和电流的驻波,会使耦合量增强。
三、EMC电磁兼容整改之改善地线系统EMC电磁兼容整改理想的地线是一个零阻抗,零电位的物理实体,它不仅是信号的参考点,而且电流流过时不会产生电压降。
在具体的电气电子设备中,这种理想地线是不存在的,当电流流过地线时必然会产生电压降。
据此可根据地线中干扰形成机理可归结为以下两点:1.减小低阻抗和电源馈线阻抗。
2.正确选择接地方式和阻隔地环路,按接地方式来分有悬浮地、单点接地、多点接地、混合接地。
如果敏感线的干扰主要来自外部空间或系统外壳,此时可采用悬浮地的方式加以解决,但是悬浮地设备容易产生静电积累,当电荷达到一定程度后,会产生静电放电,所以悬浮地不宜用于一般的电子设备。
单点接地适用于低频电路,为防止工频电流及其他杂散电流在信号地线上各点之间产生地电位差,信号地线与电源及安全地线隔离,在电源线接大地处单点连接。
单点接地主要适用于频率低于3MHz的情况。
多点接地是高频信号唯一实用的接地方式,在射频时会呈现传输线特性,为使多点接地的有效性,当接地导体长度超过最高频率1/8波长时,多点接地需要一个等电位接地平面。
多点接地适用于300KHz以上。
EMC原理传导辐射详解

EMC原理传导辐射详解共模传导是指电磁干扰信号以共同的模态传导,并引入到其他电路或系统中。
共模传导主要发生在电源线、信号线、地线等电缆或导线上,当电磁波经过导线时,会产生电压或电流,进而引起干扰。
共模传导的原因主要包括线路长度、布线方式、支路接口、驱动源负载、接地系统等。
为了减少共模传导的干扰,可以采取一定的屏蔽措施,如使用屏蔽电缆、布线时距离间隔、增加线路的地面反射性等。
差模传导是指电磁干扰信号通过差模模态传导,并引入到其他电路或系统中。
差模传导主要发生在差模信号线中,差模信号是指两个信号线之间的差值。
差模传导的主要原因包括信号线的电流不平衡、信号线之间的电压差异、信号线的电阻差异等。
为了减少差模传导的干扰,可以采取一些方法,如使用双绞线、增加信号线电阻匹配、增加差模电流等。
辐射是指电磁干扰信号通过空间电磁波辐射的方式传播,并引起其他电路或系统的干扰。
辐射主要分为近场辐射和远场辐射。
近场辐射是指电磁波离开辐射源后,在辐射场中的一个区域内进行辐射传播。
在这个区域中,电磁波的电场和磁场分量具有非常复杂的时空变化规律。
近场辐射主要发生在高频电路、天线等设备中,会导致与之相邻的设备产生干扰。
为了减少近场辐射的干扰,可以采取一些方法,如合理布局电路、选择合适的天线、增加辐射吸收材料等。
远场辐射则是指电磁波在空间中传播到远离辐射源的一个区域。
在远场区域内,电场和磁场具有从辐射源向远离源的方向逐渐减弱的特点,同时它们的比例关系以及传播速度都有规律可循。
远场辐射主要发生在无线通信设备、雷达等设备中,并对周围的设备和系统产生干扰。
为了减少远场辐射的干扰,可以采取一些方法,如增加辐射源的耦合电容、选择合适的频率和天线、增加辐射源的屏蔽等。
综上所述,EMC原理中的传导和辐射是电磁兼容性问题中两个重要的方面。
共模传导和差模传导是电磁干扰信号通过导线传导到其他电路中的两种方式,而近场辐射和远场辐射则是电磁干扰信号通过电磁波辐射方式传播到其他设备和系统中的两种方式。
电机电磁兼容性设计原理

电机电磁兼容性设计原理电机电磁兼容性(EMC)设计是一种确保电机正确运行并避免对周围电子设备造成干扰的重要原理。
在设计电机系统时,我们需要考虑各种因素,以确保整个系统在电磁环境中的稳定工作。
本文将介绍电机电磁兼容性设计的原理以及一些常用的方法。
一、电机电磁干扰源分析在进行电机电磁兼容性设计之前,首先需要对电机系统的电磁干扰源进行分析。
电机系统中可能存在着各种电磁干扰源,比如电机本身的辐射、电磁波等。
通过对这些干扰源的分析,我们可以有针对性地采取措施来减少电磁干扰。
二、设计电机系统的地线地线是电机系统中非常重要的一个组成部分,它可以有效地减少电磁干扰。
在设计电机系统时,应当合理规划地线的布局,确保每个部分都有良好的接地。
同时,地线的长度也要控制在合适的范围内,以减小电磁回路的面积。
三、滤波器的应用滤波器是电机系统中常用的一种降噪装置,能够滤除电磁波等干扰信号,提高系统的稳定性。
在设计电机系统时,应当考虑在适当的位置设置滤波器,以减少电磁干扰的影响。
四、合理设计电机系统的线路线路的设计直接影响着电机系统的电磁兼容性。
在设计电机系统的线路时,应当尽量减少回路的面积,避免形成大面积的回路,从而减小电磁干扰的可能性。
同时,线路的设计也应当合理布局,避免出现干扰信号的交叉。
五、屏蔽的使用在一些特殊情况下,可以考虑使用屏蔽来减少电磁干扰。
屏蔽可以有效地隔绝电磁波等干扰信号,提高系统的电磁兼容性。
在设计电机系统时,可以考虑在敏感部位设置屏蔽,减少干扰信号的影响。
六、定期测试和检查为了确保电机系统的电磁兼容性设计符合要求,应当定期进行测试和检查。
通过测试可以检测系统中存在的电磁干扰,并及时采取相应的措施。
定期检查也可以确保系统的稳定性和可靠性。
综上所述,电机电磁兼容性设计是电机系统设计中非常重要的一个环节。
通过合理设计电机系统的地线、使用滤波器、合理设计线路等方法,可以有效地提高系统的电磁兼容性,确保系统在电磁环境中正确运行。
can信号emc干扰机理

CAN(Controller Area Network)总线是一种广泛应用于汽车及工业自动化领域的多主通讯系统。
由于它使用差分信号传输,通常具有较好的抗干扰能力,但在恶劣的电磁环境中,仍可能出现EMC(Electromagnetic Compatibility)干扰问题。
CAN信号的EMC干扰机理主要包括以下几个方面:1. **电磁辐射干扰(Radiated Interference)**:- 辐射干扰是指干扰源通过空间辐射的方式对CAN信号产生影响。
例如,其他电子设备的工作产生的高频电磁波可能耦合到CAN总线上,引起信号误码。
2. **电磁感应干扰(Inductive Interference)**:- 当电流变化时,会在周围产生磁场,这个磁场可能会穿过PCB板并对邻近的CAN信号线产生感应电压,造成信号干扰。
3. **电容耦合干扰(Capacitive Coupling)**:- 电容耦合是干扰信号通过电容方式耦合到CAN总线上的。
这种干扰可能发生在相邻的走线之间,或者通过共同的电源或地线传播。
4. **共模干扰**:- 共模干扰是指干扰信号通过电路的共同路径(如公共地线或电源线)传播。
这种干扰可能影响CAN总线的完整性,导致数据错误。
5. **差模干扰**:- 差模干扰是指干扰信号直接作用于CAN总线的差分信号线上。
这种干扰可能会改变CAN信号的差分电压,导致数据错误。
6. **地回流干扰**:- 地回流干扰是指由于地线或电源线的电阻,导致电流不能有效回流,从而在CAN总线信号线中产生干扰。
为了减少这些干扰,可以采取以下EMC设计措施:- **电路布局**:合理布局电路,尽量减少走线长度,使用专门的CAN信号线,并避免与高功率信号线相邻。
- **屏蔽**:对CAN总线和敏感电路采用屏蔽措施,如使用屏蔽电缆和屏蔽罩,以减少辐射和感应干扰。
- **滤波**:在CAN总线入口处使用滤波器,以减少高频噪声的影响。
电源设计中的EMC问题与解决方法

电源设计中的EMC问题与解决方法在电源设计过程中,电磁兼容性(Electromagnetic Compatibility,简称EMC)问题是一个需要被高度关注的重要方面。
EMC问题的存在可能导致电子设备之间的相互干扰,从而影响系统的正常工作。
因此,深入了解电源设计中的EMC问题并寻求解决方法,对于保证产品稳定性和可靠性具有重要意义。
首先,我们来了解一些常见的EMC问题。
电源设计中的EMC问题主要包括以下几个方面:1. 电源线干扰:电源线作为电源输入和输出的连接途径,可能成为传导干扰的通道。
当电源线上的高频噪声传导到其他部分时,会引起其他电子设备的干扰,影响其正常使用。
2. EMI辐射:电源设备在工作过程中会产生电磁辐射,如果辐射幅度过高,可能会对周围的其他设备和信号线路产生干扰,使其无法正常工作。
3. 地线干扰:地线是电路中的参考电位点,负责回流电流。
但如果地线的阻抗较大或者回流电流过大,可能会导致地线产生较大的共模干扰,进而影响整个系统的正常工作。
接下来,我们将介绍一些解决电源设计中EMC问题的方法:1. 合理的布局设计:在电源设计过程中,应注意合理的布局设计。
通过将不同电路板的布局位置安排合理,减小信号之间的干扰。
将高频和低频电路分开布局,采用屏蔽罩等措施对敏感电路进行隔离,以减少电磁辐射和传导干扰。
2. 使用滤波器:在电源设计中,适当选择并使用滤波器可以有效减小电源线上的高频噪声。
滤波器能够过滤掉不需要的高频干扰信号,提高电源线的电磁兼容性。
3. 优化接地设计:合理的地线设计对于解决地线干扰问题至关重要。
通过降低地线的阻抗并增加回流电流的路径,减小共模干扰的产生。
同时,合理选择接地点,如使用星型接地方式,可以减少单点接地带来的电磁干扰。
4. 选择合适的电源元件:在电源设计中,选择合适的电源元件也能够有效降低EMC问题。
例如,采用能够提供更好电源抗干扰能力的开关电源,选择低电磁辐射的磁性元件等。
浅谈基于EMC的共模干扰与差模干扰以及抑制方法

基于EMC的共模干扰与差模干扰以及抑制方法什么是共模与差模电器设备的电源线,电话等的通信线, 与其它设备或外围设备相互交换的通讯线路,至少有两根导线,这两根导线作为往返线路输送电力或信号,在这两根导线之外通常还有第三导体,这就是"地线"。
电压和电流的变化通过导线传输时有两种形态, 一种是两根导线分别做为往返线路传输, 我们称之为"差模";另一种是两根导线做去路,地线做返回传输, 我们称之为"共模"。
如上图, 蓝色信号是在两根导线内部作往返传输的,我们称之为"差模";而黄信号是在信号与地线之间传输的,我们称之为"共模"。
共模干扰与差模干扰任何两根电源线或通信线上所存在的干扰,均可用共模干扰和差模干扰来表示:共模干扰在导线与地(机壳)之间传输,属于非对称性干扰,它定义为任何载流导体与参考地之间的不希望有的电位差;差模干扰在两导线之间传输,属于对称性干扰,它定义为任何两个载流导体之间的不希望有的电位差。
在一般情况下,共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。
差模干扰幅度小、频率低、所造成的干扰较小。
共模干扰信号共模干扰的电流大小不一定相等,但是方向(相位)相同的。
电气设备对外的干扰多以共模干扰为主,外来的干扰也多以共模干扰为主,共模干扰本身一般不会对设备产生危害,但是如果共模干扰转变为差模干扰,干扰就严重了,因为有用信号都是差模信号。
差模干扰信号差模干扰的电流大小相等,方向(相位)相反。
由于走线的分布电容、电感、信号走线阻抗不连续,以及信号回流路径流过了意料之外的通路等,差模电流会转换成共模电流。
共模干扰产生原因1. 电网串入共模干扰电压。
2. 辐射干扰(如雷电,设备电弧,附近电台,大功率辐射源)在信号线上感应出共模干扰,原因是交变的磁场产生交变的电流,地线-零线回路面积与地线-火线回路面积不相同,两个回路阻抗不同等原因造成电流大小不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 地线干扰形成机理
电气电子设备电磁兼容问题,主要由电磁骚扰源、耦合途径、敏感设备三要素组成,缺少其中任何要素,均不会构成电磁兼容问题。
对于电磁兼容问题来说,弄清了电磁干扰的耦合途径,就可以采用屏蔽、滤波、接地、瞬态抑制的措施,切断其传播途径,提高电子设备的抗干扰能力或抑制其电磁骚扰。
因此,电磁干扰耦合途径的研究是解决电子设备电磁兼容问题的难点与关键。
电磁兼容耦合途径主要分为传导耦合、辐射耦合。
辐射干扰耦合是指干扰源通过空间传播到敏感设备的干扰,主要分为电场(电容)耦合、磁场(电感)耦合、电磁场(天线)耦合。
所谓传导干扰是以传导耦合为主要传播方式的电磁干扰,是骚扰源与敏感设备之间最主要的耦合途径或方式。
传导耦合要求在骚扰源与敏感设备之间有完整的电路连接。
其耦合途径有三种:公共电源、公共地回路、互连导线。
其中,通过以公共地回路进行传导耦合的干扰,即地线干扰,最为复杂、最以难处理,也最为常见。
3.1 地线干扰耦合机理
信号地线是各种物理量的传感器、信号、通信互连设备的零电位公共基准地线。
电子设备一般采用具有一定面积的铜皮面作为接地面,由于各种原因在接地面上总有接地电流通过,而金属接地两点之间总存在一定的阻抗,因而产生接地干扰电压。
可见接地电流的存在是产生接地干扰的根源。
由于信号一般都较弱,易受干扰,因此在电磁兼容设计中,对信号地的要求较高。
地线干扰形成机理如下图所示:
图4 单根信号线的地环路干扰
假设在信号线注入共模电流Si,首先会对第一部分电路IC1的输入信号产生干扰,如果在
IC1的输入端加了滤波电容C(如果没有C,干扰就可能直接影响IC1),则Si干扰信号大部分被C滤除或旁路,然后大部分会沿着PCB的地阻抗从一端流向地层的另一端,后一级的干扰将会在干扰电流流过系统时产生。
图中Z0V表示PCB中两部分电路之间的地阻抗,表示集成电路ICI向集成电路IC2传递的信号电压。
当共模干扰电流流过地阻抗Z0V时,Z0V的两端就会产生压降,如下式所示:
该压降对集成电路IC2来说相当于在ICI的传递信号上叠加一个干扰信号。
3.2 地线干扰的特性
按照干扰信号对于电路作用的形态不同,可将传导干扰分为“共模干扰”和“差模干扰”。
“差模干扰”是指的干扰电压存在于信号线及其信号地回路之间,干扰电流回路则是在导线构成的回路中流动,如下图所示:
图5 差模干扰电压与电流示意图
共模干扰指的是干扰电压在信号线及其信号地回路上的幅度相同,这里的电压以附近的大地、金属机箱、参考地线板等为参考电位,干扰电流回路则是在导线与参考物体构成的回路中流动,如下图所示:
图6共模干扰电压与电流示意图
3.3 公共阻抗耦合的地线干扰
当两个以上不同电路的电流流过公共阻抗时,就出现共阻抗耦合。
在电源线和地线上传播的
骚扰电流,通常都是通过共阻抗耦合方式进入敏感电路中。
如下图所示,地电流1和地电流2都流过公共阻抗,就电路2来说,它的地电压被流动在共地阻抗的地电流1所调制,因此,一些噪声信号从电路1中通过共地阻抗耦合到电路2中。
图7 公共阻抗耦合
3.4 地环路干扰
地环路干扰是一种较常见的干扰现象,常常发生在通过较长电缆连接的相距较远的设备之间,其产生的内在原因是设备之间的地线电位差。
地线电压导致了地环路电流,由于电路的非平衡性,地环路电流将导致对电路造成影响的差模干扰电压产生。
地环路干扰如下图所示:
图8 地环路干扰
由于地线阻抗的存在,当电流流过地线上时将产生电压,当电流很大时,这个电压可以很大。
譬如轨道交通附近有大功率的电动机车通过时,会在地线中流过很强的电流,这个电流可在两个设备的连接电缆上产生电流。
由于电路的不平衡性,每根导线上的电流、不同,因此会产生差模电压,对电路造成影响。
由于这种干扰是由电缆与地线构成的环路电流产生的,因此称为地环路干扰。
此外,地环路中的电流还可以由外界电磁场在感应出来。