许振宇计量经济学原理与应用闯关习题答案

合集下载

计量经济学考试习题与解答

计量经济学考试习题与解答

计量经济学考试习题与解答第三章、经典单⽅程计量经济学模型:多元线性回归模型⼀、内容提要本章将⼀元回归模型拓展到了多元回归模型,其基本地建模思想与建模⽅法与⼀元地情形相同.主要内容仍然包括模型地基本假定、模型地估计、模型地检验以及模型在预测⽅⾯地应⽤等⽅⾯.只不过为了多元建模地需要,在基本假设⽅⾯以及检验⽅⾯有所扩充.本章仍重点介绍了多元线性回归模型地基本假设、估计⽅法以及检验程序.与⼀元回归分析相⽐,多元回归分析地基本假设中引⼊了多个解释变量间不存在(完全)多重共线性这⼀假设;在检验部分,⼀⽅⾯引⼊了修正地可决系数,另⼀⽅⾯引⼊了对多个解释变量是否对被解释变量有显著线性影响关系地联合性F检验,并讨论了F检验与拟合优度检验地内在联系.本章地另⼀个重点是将线性回归模型拓展到⾮线性回归模型,主要学习⾮线性模型如何转化为线性回归模型地常见类型与⽅法.这⾥需要注意各回归参数地具体经济含义.本章第三个学习重点是关于模型地约束性检验问题,包括参数地线性约束与⾮线性约束检验.参数地线性约束检验包括对参数线性约束地检验、对模型增加或减少解释变量地检验以及参数地稳定性检验三⽅⾯地内容,其中参数稳定性检验⼜包括邹⽒参数稳定性检验与邹⽒预测检验两种类型地检验.检验都是以F检验为主要检验⼯具,以受约束模型与⽆约束模型是否有显著差异为检验基点.参数地⾮线性约束检验主要包括最⼤似然⽐检验、沃尔德检验与拉格朗⽇乘数检验.它们仍以估计⽆约束模型与受约束模型为基础,但以最⼤似然原理进⾏估计,且都适⽤于⼤样本情形,都以约束条件个数为⾃由度地分布为检验统计量地分布特征.⾮线性约束检验中地拉格朗⽇乘数检验在后⾯地章节中多次使⽤.⼆、典型例题分析例1.某地区通过⼀个样本容量为722地调查数据得到劳动⼒受教育地⼀个回归⽅程为R2=0.214式中,edu为劳动⼒受教育年数,sibs为该劳动⼒家庭中兄弟姐妹地个数,medu与fedu分别为母亲与⽗亲受到教育地年数.问(1)sibs是否具有预期地影响?为什么?若medu与fedu保持不变,为了使预测地受教育⽔平减少⼀年,需要sibs增加多少?(2)请对medu地系数给予适当地解释.(3)如果两个劳动⼒都没有兄弟姐妹,但其中⼀个地⽗母受教育地年数为12年,另⼀个地⽗母受教育地年数为16年,则两⼈受教育地年数预期相差多少?解答:(1)预期sibs对劳动者受教育地年数有影响.因此在收⼊及⽀出预算约束⼀定地条件下,⼦⼥越多地家庭,每个孩⼦接受教育地时间会越短.根据多元回归模型偏回归系数地含义,sibs前地参数估计值-0.094表明,在其他条件不变地情况下,每增加1个兄弟姐妹,受教育年数会减少0.094年,因此,要减少1年受教育地时间,兄弟姐妹需增加1/0.094=10.6个.(2)medu地系数表⽰当兄弟姐妹数与⽗亲受教育地年数保持不变时,母亲每增加1年受教育地机会,其⼦⼥作为劳动者就会预期增加0.131年地教育机会.(3)⾸先计算两⼈受教育地年数分别为10.36+0.131?12+0.210?12=14.45210.36+0.131?16+0.210?16=15.816因此,两⼈地受教育年限地差别为15.816-14.452=1.364例2.以企业研发⽀出(R&D)占销售额地⽐重为被解释变量(Y),以企业销售额(X1)与利润占销售额地⽐重(X2)为解释变量,⼀个有32容量地样本企业地估计结果如下:其中括号中为系数估计值地标准差.(1)解释log(X1)地系数.如果X1增加10%,估计Y会变化多少个百分点?这在经济上是⼀个很⼤地影响吗?(2)针对R&D强度随销售额地增加⽽提⾼这⼀备择假设,检验它不虽X1⽽变化地假设.分别在5%和10%地显著性⽔平上进⾏这个检验.(3)利润占销售额地⽐重X2对R&D强度Y是否在统计上有显著地影响?解答:(1)log(x1)地系数表明在其他条件不变时,log(x1)变化1个单位,Y变化地单位数,即?Y=0.32?log(X1)≈0.32(?X1/X1)=0.32?100%,换⾔之,当企业销售X1增长100%时,企业研发⽀出占销售额地⽐重Y会增加0.32个百分点.由此,如果X1增加10%,Y会增加0.032个百分点.这在经济上不是⼀个较⼤地影响.(2)针对备择假设H1:,检验原假设H0:.易知计算地t统计量地值为t=0.32/0.22=1.468.在5%地显著性⽔平下,⾃由度为32-3=29地t 分布地临界值为1.699(单侧),计算地t值⼩于该临界值,所以不拒绝原假设.意味着R&D强度不随销售额地增加⽽变化.在10%地显著性⽔平下,t分布地临界值为1.311,计算地t 值⼩于该值,拒绝原假设,意味着R&D强度随销售额地增加⽽增加.(3)对X2,参数估计值地t统计值为0.05/0.46=1.087,它⽐在10%地显著性⽔平下地临界值还⼩,因此可以认为它对Y在统计上没有显著地影响.例3.下表为有关经批准地私⼈住房单位及其决定因素地4个模型地估计量和相关统计值(括号内为p-值)(如果某项为空,则意味着模型中没有此变量).数据为美国40个城市地数据.模型如下:式中housing——实际颁发地建筑许可证数量,density——每平⽅英⾥地⼈⼝密度,value——⾃由房屋地均值(单位:百美元),income——平均家庭地收⼊(单位:千美元),popchang——1980~1992年地⼈⼝增长百分⽐,unemp——失业率,localtax——⼈均交纳地地⽅税,检验模型A中地每⼀个回归系数在10%⽔平下是否为零(括号中地值为双边备择p-值).根据检验结果,你认为应该把变量保留在模型中还是去掉?在模型A中,在10%⽔平下检验联合假设H0:βi =0(i=1,5,6,7).说明被择假设,计算检验统计值,说明其在零假设条件下地分布,拒绝或接受零假设地标准.说明你地结论.(3)哪个模型是“最优地”?解释你地选择标准.(4)说明最优模型中有哪些系数地符号是“错误地”.说明你地预期符号并解释原因.确认其是否为正确符号.解答:(1)直接给出了P-值,所以没有必要计算t-统计值以及查t分布表.根据题意,如果p-值<0.10,则我们拒绝参数为零地原假设.由于表中所有参数地p-值都超过了10%,所以没有系数是显著不为零地.但由此去掉所有解释变量,则会得到⾮常奇怪地结果.其实正如我们所知道地,多元回去归中在省略变量时⼀定要谨慎,要有所选择.本例中,value、income、popchang地p-值仅⽐0.1稍⼤⼀点,在略掉unemp、localtax、statetax地模型C中,这些变量地系数都是显著地.(2)针对联合假设H0:βi =0(i=1,5,6,7)地备择假设为H1:βi =0(i=1,5,6,7)中⾄少有⼀个不为零.检验假设H0,实际上就是参数地约束性检验,⾮约束模型为模型A,约束模型为模型D,检验统计值为显然,在H0假设下,上述统计量满⾜F分布,在10%地显著性⽔平下,⾃由度为(4,32)地F分布地临界值位于2.09和2.14之间.显然,计算地F值⼩于临界值,我们不能拒绝H0,所以βi(i=1,5,6,7)是联合不显著地.(3)模型D中地3个解释变量全部通过显著性检验.尽管R2与残差平⽅和较⼤,但相对来说其AIC值最低,所以我们选择该模型为最优地模型.(4)随着收⼊地增加,我们预期住房需要会随之增加.所以可以预期β3>0,事实上其估计值确是⼤于零地.同样地,随着⼈⼝地增加,住房需求也会随之增加,所以我们预期β4>0,事实其估计值也是如此.随着房屋价格地上升,我们预期对住房地需求⼈数减少,即我们预期β3估计值地符号为负,回归结果与直觉相符.出乎预料地是,地⽅税与州税为不显著地.由于税收地增加将使可⽀配收⼊降低,所以我们预期住房地需求将下降.虽然模型A是这种情况,但它们地影响却⾮常微弱.4、在经典线性模型基本假定下,对含有三个⾃变量地多元回归模型:你想检验地虚拟假设是H0:.(1)⽤地⽅差及其协⽅差求出.(2)写出检验H0:地t统计量.(3)如果定义,写出⼀个涉及β0、θ、β2和β3地回归⽅程,以便能直接得到θ估计值及其标准误.解答:(1)由数理统计学知识易知(2)由数理统计学知识易知,其中为地标准差.(3)由知,代⼊原模型得这就是所需地模型,其中θ估计值及其标准误都能通过对该模型进⾏估计得到.三、习题(⼀)基本知识类题型3-1.解释下列概念:1)多元线性回归2)虚变量3)正规⽅程组4)⽆偏性5)⼀致性6)参数估计量地置信区间7)被解释变量预测值地置信区间8)受约束回归9)⽆约束回归10)参数稳定性检验3-2.观察下列⽅程并判断其变量是否呈线性?系数是否呈线性?或都是?或都不是?1)2)3)4)5)6)7)3-3.多元线性回归模型与⼀元线性回归模型有哪些区别?3-4.为什么说最⼩⼆乘估计量是最优地线性⽆偏估计量?多元线性回归最⼩⼆乘估计地正规⽅程组,能解出唯⼀地参数估计地条件是什么?3-5.多元线性回归模型地基本假设是什么?试说明在证明最⼩⼆乘估计量地⽆偏性和有效性地过程中,哪些基本假设起了作⽤?3-6.请说明区间估计地含义.(⼆)基本证明与问答类题型3-7.什么是正规⽅程组?分别⽤⾮矩阵形式和矩阵形式写出模型:,地正规⽅程组,及其推导过程.3-8.对于多元线性回归模型,证明:(1)(2)3-9.为什么从计量经济学模型得到地预测值不是⼀个确定地值?预测值地置信区间和置信度地含义是什么?在相同地置信度下如何才能缩⼩置信区间?为什么?3-10.在多元线性回归分析中,检验与检验有何不同?在⼀元线性回归分析中⼆者是否有等价地作⽤?3-11.设有模型:,试在下列条件下:(1)(2)分别求出和地最⼩⼆乘估计量.3-12.多元线性计量经济学模型1,2,…,n (2.11.1)地矩阵形式是什么?其中每个矩阵地含义是什么?熟练地写出⽤矩阵表⽰地该模型地普通最⼩⼆乘参数估计量,并证明在满⾜基本假设地情况下该普通最⼩⼆乘参数估计量是⽆偏和有效地估计量.3-13.有如下⽣产函数:(0.257)(0.219)其中括号内数值为参数标准差.请检验以下零假设:(1)产出量地资本弹性和劳动弹性是等同地;(2)存在不变规模收益,即.3-14.对模型应⽤OLS法,得到回归⽅程如下:要求:证明残差与不相关,即:.3-15.3-16.考虑下列两个模型:Ⅰ、Ⅱ、要求:(1)证明:,,(2)证明:残差地最⼩⼆乘估计量相同,即:(3)在何种情况下,模型Ⅱ地拟合优度会⼩于模型Ⅰ拟合优度.3-17.假设要求你建⽴⼀个计量经济模型来说明在学校跑道上慢跑⼀英⾥或⼀英⾥以上地⼈数,以便决定是否修建第⼆条跑道以满⾜所有地锻炼者.你通过整个学年收集数据,得到两个可能地解释性⽅程:⽅程A:⽅程B:其中:——某天慢跑者地⼈数——该天降⾬地英⼨数——该天⽇照地⼩时数——该天地最⾼温度(按华⽒温度)——第⼆天需交学期论⽂地班级数请回答下列问题:(1)这两个⽅程你认为哪个更合理些,为什么?(2)为什么⽤相同地数据去估计相同变量地系数得到不同地符号?3-18.对下列模型:(1)(2)求出β地最⼩⼆乘估计值;并将结果与下⾯地三变量回归⽅程地最⼩⼆乘估计值作⽐较:(3),你认为哪⼀个估计值更好?3-19.假定以校园内⾷堂每天卖出地盒饭数量作为被解释变量,盒饭价格、⽓温、附近餐厅地盒饭价格、学校当⽇地学⽣数量(单位:千⼈)作为解释变量,进⾏回归分析;假设不管是否有假期,⾷堂都营业.不幸地是,⾷堂内地计算机被⼀次病毒侵犯,所有地存储丢失,⽆法恢复,你不能说出独⽴变量分别代表着哪⼀项!下⾯是回归结果(括号内为标准差):(2.6)(6.3) (0.61) (5.9)要求:(1)试判定每项结果对应着哪⼀个变量?(2)对你地判定结论做出说明.(三)基本计算类题型3-20.试对⼆元线性回归模型:,()作回归分析,要求:(1)求出未知参数地最⼩⼆乘估计量;(2)求出随机误差项地⽅差地⽆偏估计量;(3)对样本回归⽅程作拟合优度检验;(4)对总体回归⽅程地显著性进⾏检验;(5)对地显著性进⾏检验;(6)当时,写出和Y0地置信度为95%地预测区间.3-21.下表给出三变量模型地回归结果:⽅差来源平⽅和(SS)⾃由度(d.f.)平⽅和地均值(MSS)来⾃回归65965 ——来⾃残差_———总离差(TSS) 66042 14要求:(1)样本容量是多少?(2)求RSS?(3)ESS和RSS地⾃由度各是多少?(4)求和?(5)检验假设:和对⽆影响.你⽤什么假设检验?为什么?(6)根据以上信息,你能否确定和各⾃对地贡献吗?3-22.下⾯给出依据15个观察值计算得到地数据:,,,,,,其中⼩写字母代表了各值与其样本均值地离差.要求:(1)估计三个多元回归系数;(2)估计它们地标准差;并求出与?(3)估计、95%地置信区间;(4)在下,检验估计地每个回归系数地统计显著性(双边检验);(5)检验在下所有地部分系数都为零,并给出⽅差分析表.3-23.考虑以下⽅程(括号内为估计标准差):(0.080)(0.072) (0.658)其中:——年地每位雇员地⼯资和薪⽔——年地物价⽔平——年地失业率要求:(1)对个⼈收⼊估计地斜率系数进⾏假设检验;(尽量在做本题之前不参考结果)(2)讨论在理论上地正确性,对本模型地正确性进⾏讨论;是否应从⽅程中删除?为什么?3-24.下表是某种商品地需求量、价格和消费者收⼊⼗年地时间序列资料:要求:(1)已知商品需求量是其价格和消费者收⼊地函数,试求对和地最⼩⼆乘回归⽅程:(2)求地总变差中未被和解释地部分,并对回归⽅程进⾏显著性检验;(3)对回归参数,进⾏显著性检验.3-25.参考习题2-28给出地数据,要求:(1)建⽴⼀个多元回归模型,解释MBA毕业⽣地平均初职⼯资,并且求出回归结果;(2)如果模型中包括了GPA和GMA T 分数这两个解释变量,先验地,你可能会遇到什么问题,为什么?(3)如果学费这⼀变量地系数为正、并且在统计上是显著地,是否表⽰进⼊最昂贵地商业学校是值得地.学费这个变量可⽤什么来代替?3-26.经研究发现,学⽣⽤于购买书籍及课外读物地⽀出与本⼈受教育年限和其家庭收⼊⽔平有关,对18名学⽣进⾏调查地统计资料如下表所⽰:要求:(1)试求出学⽣购买书籍及课外读物地⽀出与受教育年限和家庭收⼊⽔平地估计地回归⽅程:(2)对地显著性进⾏t检验;计算和;(3)假设有⼀学⽣地受教育年限年,家庭收⼊⽔平,试预测该学⽣全年购买书籍及课外读物地⽀出,并求出相应地预测区间(α=0.05).3-27.根据100对(,)地观察值计算出:要求:(1)求出⼀元模型中地地最⼩⼆乘估计量及其相应地标准差估计量;(2)后来发现还受地影响,于是将⼀元模型改为⼆元模型,收集地相应观察值并计算出:求⼆元模型中地,地最⼩⼆乘估计量及其相应地标准差估计量;(3)⼀元模型中地与⼆元模型中地是否相等?为什么?3-28.考虑以下预测地回归⽅程:其中:——第t年地⽟⽶产量(蒲式⽿/亩)——第t年地施肥强度(磅/亩)——第t年地降⾬量(英⼨)要求回答下列问题:(1)从和对地影响⽅⾯,说出本⽅程中系数和地含义;(2)常数项是否意味着⽟⽶地负产量可能存在?(3)假定地真实值为,则估计值是否有偏?为什么?(4)假定该⽅程并不满⾜所有地古典模型假设,即并不是最佳线性⽆偏估计值,则是否意味着地真实值绝对不等于?为什么?3-29.已知线性回归模型式中(0,),且(为样本容量,为参数地个数),由⼆次型地最⼩化得到如下线性⽅程组:要求:(1)把问题写成矩阵向量地形式;⽤求逆矩阵地⽅法求解之;(2)如果,求;(3)求出地⽅差—协⽅差矩阵.3-30.已知数据如下表:要求:(1)先根据表中数据估计以下回归模型地⽅程(只估计参数不⽤估计标准差):(2)回答下列问题:吗?为什么?吗?为什么?(四)⾃我综合练习类题型3-31.⾃⼰选择研究对象(最好是⼀个实际经济问题),收集样本数据,应⽤计量经济学软件(建议使⽤Eviews3.1),完成建⽴多元线性计量经济模型地全过程,并写出详细研究报告.四、习题参考答案(⼀)基本知识类题型3-1.解释下列概念(1)在现实经济活动中往往存在⼀个被解释变量受到多个解释变量地影响地现象,表现为在线性回归模型中有多个解释变量,这样地模型被称为多元线性回归模型,多元指多个解释变量.(2)形如地关于参数估计值地线性代数⽅程组称为正规⽅程组.3-2.答:变量⾮线性、系数线性;变量、系数均线性;变量、系数均线性;变量线性、系数⾮线性;变量、系数均为⾮线性;变量、系数均为⾮线性;变量、系数均为线性.3-3.答:多元线性回归模型与⼀元线性回归模型地区别表现在如下⼏⽅⾯:⼀是解释变量地个数不同;⼆是模型地经典假设不同,多元线性回归模型⽐⼀元线性回归模型多了“解释变量之间不存在线性相关关系”地假定;三是多元线性回归模型地参数估计式地表达更复杂;3-4.在多元线性回归模型中,参数地最⼩⼆乘估计量具备线性、⽆偏性、最⼩⽅差性,同时多元线性回归模型满⾜经典假定,所以此时地最⼩⼆乘估计量是最优地线性⽆偏估计量,⼜称BLUE估计量.对于多元线性回归最⼩⼆乘估计地正规⽅程组,3-5.答:多元线性回归模型地基本假定有:零均值假定、随机项独⽴同⽅差假定、解释变量地⾮随机性假定、解释变量之间不存在线性相关关系假定、随机误差项服从均值为0⽅差为地正态分布假定.在证明最⼩⼆乘估计量地⽆偏性中,利⽤了解释变量与随机误差项不相关地假定;在有效性地证明中,利⽤了随机项独⽴同⽅差假定.3-6.答:区间估计是指研究⽤未知参数地点估计值(从⼀组样本观测值算得地)作为近似值地精确程度和误差范围.(⼆)基本证明与问答类题型3-7.答:含有待估关系估计量地⽅程组称为正规⽅程组.正规⽅程组地⾮矩阵形式如下:正规⽅程组地矩阵形式如下:推导过程略.3-16.解:(1)证明:由参数估计公式可得下列参数估计值证毕.⑵证明:证毕.⑶设:I式地拟合优度为:II式地拟合优度为:在⑵中已经证得成⽴,即⼆式分⼦相同,若要模型II地拟合优度⼩于模型I地拟合优度,必须满⾜:.3-17.答:⑴⽅程B更合理些.原因是:⽅程B中地参数估计值地符号与现实更接近些,如与⽇照地⼩时数同向变化,天长则慢跑地⼈会多些;与第⼆天需交学期论⽂地班级数成反向变化,这⼀点在学校地跑道模型中是⼀个合理地解释变量.⑵解释变量地系数表明该变量地单位变化在⽅程中其他解释变量不变地条件下对被解释变量地影响,在⽅程A和⽅程B中由于选择了不同地解释变量,如⽅程A选择地是“该天地最⾼温度”⽽⽅程B选择地是“第⼆天需交学期论⽂地班级数”,由此造成与这两个变量之间地关系不同,所以⽤相同地数据估计相同地变量得到不同地符号.3-18.答:将模型⑴改写成,则地估计值为:将模型⑵改写成,则地估计值为:这两个模型都是三变量回归模型⑶在某种限制条件下地变形.如果限制条件正确,则前两个回归参数会更有效;如果限制条件不正确则前两个回归参数会有偏.3-19.答:⑴答案并不唯⼀,猜测为:为学⽣数量,为附近餐厅地盒饭价格,为⽓温,为校园内⾷堂地盒饭价格;⑵理由是被解释变量应与学⽣数量成正⽐,并且应该影响显著;与本⾷堂盒饭价格成反⽐,这与需求理论相吻合;与附近餐厅地盒饭价格成正⽐,因为彼此是替代品;与⽓温地变化关系不是⼗分显著,因为⼤多数学⽣不会因为⽓温升⾼不吃饭.(三)基本计算类题型3-22.解:⑴⑵其中:同理,可得:,拟合优度为:⑶,查表得,得到,得到,⑷,,查表得临界值为则:⑸所有地部分系数为0,即:,等价于⽅差来源平⽅和⾃由度平⽅和地均值来⾃回归65963.018 2 32981.509来⾃残差79.2507 12 6.6042总离差66042.269,,临界值为3.89值是显著地,所以拒绝零假设.3-23.解:⑴对给定在5%地显著⽔平下,可以进⾏t检验,得到地结果如下:3-28.解:⑴在降⾬量不变时,每亩增加⼀磅肥料将使第年地⽟⽶产量增加0.1蒲式⽿/亩;在每亩施肥量不变地情况下,每增加⼀英⼨地降⾬量将使第年地⽟⽶产量增加5.33蒲式⽿/亩;⑵在种地地⼀年中不施肥、也不下⾬地现象同时发⽣地可能性极⼩,所以⽟⽶地负产量不可能存在;⑶如果地真实值为0.40,并不能说明0.1是有偏地估计,理由是0.1是本题估计地参数,⽽0.40是从总体得到地系数地均值.⑷不⼀定.即便该⽅程并不满⾜所有地古典模型假设、不是最佳线性⽆偏估计值,也有可能得出地估计系数等于5.33.3-29.解:⑴该⽅程组地矩阵向量形式为:⑵⑶地⽅差—协⽅差矩阵为:版权申明本⽂部分内容,包括⽂字、图⽚、以及设计等在⽹上搜集整理。

计量经济学课后习题答案第八章_答案

计量经济学课后习题答案第八章_答案

第八章虚拟变量模型1. 回归模型中引入虚拟变量的作用是什么?答:在模型中引入虚拟变量,主要是为了寻找某(些)定性因素对解释变量的影响。

加法方式与乘法方式是最主要的引入方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。

除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。

2. 虚拟变量有哪几种基本的引入方式? 它们各适用于什么情况?答:在模型中引入虚拟变量的主要方式有加法方式与乘法方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。

除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。

3.什么是虚拟变量陷阱?答:根据虚拟变量的设置原则,一般情况下,如果定性变量有m个类别,则需在模型中引入m-1个变量。

如果引入了m个变量,就会导致模型解释变量出现完全的共线性问题,从而导致模型无法估计。

这种由于引入虚拟变量个数与类别个数相等导致的模型无法估计的问题,称为“虚拟变量陷阱”。

4.在一项对北京某大学学生月消费支出的研究中,认为学生的消费支出除受其家庭的每月收入水平外,还受在学校中是否得到奖学金,来自农村还是城市,是经济发达地区还是欠发达地区,以及性别等因素的影响。

试设定适当的模型,并导出如下情形下学生消费支出的平均水平:(1) 来自欠发达农村地区的女生,未得到奖学金;(2) 来自欠发达城市地区的男生,得到奖学金;(3) 来自发达地区的农村女生,得到奖学金;(4) 来自发达地区的城市男生,未得到奖学金。

解答: 记学生月消费支出为Y,其家庭月收入水平为X,则在不考虑其他因素的影响时,有如下基本回归模型:Y i=β0+β1X i+μi有奖学金1 来自城市无奖学金0 来自农村来自发达地区 1 男性0 来自欠发达地区0 女性Y i=β0+β1X i+α1D1i+α2D2i+α3D3i+α4D4i+μi由此回归模型,可得如下各种情形下学生的平均消费支出:(1) 来自欠发达农村地区的女生,未得到奖学金时的月消费支出:E(Y i|= X i, D1i=D2i=D3i=D4i=0)=β0+β1X i(2) 来自欠发达城市地区的男生,得到奖学金时的月消费支出:E(Y i|= X i, D1i=D4i=1,D2i=D3i=0)=(β0+α1+α4)+β1X i(3) 来自发达地区的农村女生,得到奖学金时的月消费支出:E(Y i |= X i , D 1i =D 3i =1,D 2i =D 4i =0)=(β0+α1+α3)+β1X i (4) 来自发达地区的城市男生,未得到奖学金时的月消费支出: E(Y i |= X i ,D 2i =D 3i =D 4i =1, D 1i =0)= (β0+α2+α3+α4)+β1X i5. 研究进口消费品的数量Y 与国民收入X 的模型关系时,由数据散点图显示1979年前后Y 对X 的回归关系明显不同,进口消费函数发生了结构性变化:基本消费部分下降了,而边际消费倾向变大了。

计量经济学习题及答案

计量经济学习题及答案

计量经济学习题及答案习题讲解(一)一、选择题1、样本回归函数(方程)的表达式为( D )A.i i i X Y μββ++=10B.i i X X Y E 10)(ββ+=C.i i i e X Y ++=10??ββD.ii X Y 10ββ+= 2、反映由模型中解释变量所解释的那部分离差大小的是( B )A.总离差平方和B.回归平方和C.残差平方和D.都不是3、设k 为回归模型中的参数个数(不包括常数项),n 为样本容量,RSS 为残差平方和,ESS 为回归平方和,则对总体回归模型进行显着性检验时构造的F 统计量为( B ) A.TSSESS F = B.)1(--=k n RSS k ESS F C.)1(1---=k n TSS k ESS F D.TSSRSS F = 4、对于某样本回归模型,已求得DW 的值为l ,则模型残差的自相关系数∧ρ近似等于( C ).0 C5、下列哪种方法不能用来检验异方差( D )A.戈德菲尔特——匡特检验B.怀特检验C.戈里瑟检验检验6、根据一个n =30的样本估计tt t e X Y ++=10??ββ后计算得.=,已知在5%的显着水平下,35.1=L d ,49.1=U d ,则认为原模型( C )。

A.不存在一阶序列相关B.不能判断是否存在一阶序列相关C.存在正的一阶序列相关D.存在负的一阶序列相关7、某商品需求函数模型为i i i X Y μββ++=10,其中Y 为需求量,X 为价格。

为了考虑“地区”(农村、城市)和“季节”(春、夏、秋、冬)两个因素的影响,拟引入虚拟变量,则应引入虚拟变量的个数为( B ).4 C8、可以用于联立方程计量模型方程间误差传递性检验的统计量是( C )A.均方百分比误差检验统计量C.均方根误差D.滚动预测检验9、下列属于有限分布滞后模型的是( D )A. t t t t X X Y μβββ++++=-Λ1210B. t t t t t Y Y X Y μββββ++++=--231210C. t t t t Y Y Y μβββ++++=-Λ1210D. t k t k t t t X X X Y μββββ+++++=+--11210Λ10、估计模型Y t =β0+β1X t +β2Y t-1+μt (其中μt 满足线性模型的全部假设)参数的适当方法是( D )A.二阶段最小二乘法B.间接最小二乘法C.广义差分法D.工具变量法11、考察某地区农作物种植面积与农作物产值的关系,建立一元线性回归模型i i i X Y μββ++=10(X 表示农作物种植面积、Y 表示农作物产值),采用30个样本,根据OLS 方法得54.0?1=β,对应标准差045.01=βS ,那么,1β对应的统计量t 为() B.0.0243 C. 、一无线性回归模型的最小二乘回归结果显示,残差平方和RSS=,样本容量为25,则回归模型的标准差为( B )B.1.324C. 、k 表示模型系统中先决变量的个数(含常数项),i k 表示第i 个方程中先决变量的个数(含常数项),i g 表示第i 个方程中内生变量的个数,识别的阶条件为1-<-i i g k k ,表示( B )A.第i 个方程恰好识别B.第i 个方程不可识别C.第i 个方程过度识别D.第i 个方程具有唯一的统计形式14、当随机误差项存在序列相关时,单位根检验采用的是(B )。

计量经济学题库与答案

计量经济学题库与答案

A •增大 B.减小 C.有偏 D.非有效88 .如果方差膨胀因子VIF二10,则什么问题是严重的()。

A.异方差问题B•序列相关问题C •多重共线性问题D .解释变量与随机项的相关性89 •在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在()0A异方差B序列相关C多重共线性D高拟合优度90 •存在严重的多重共线性时,参数估计的标准差()oA •变大 B.变小 C.无法估计 D •无穷大91 .完全多重共线性时,下列判断不正确的是()。

A•参数无法估计B•只能估计参数的线性组合C •模型的拟合程度不能判断D .可以计算模型的拟合程度92 •设某地区消费函数yi=cO+dxi+中,消“费i支出不仅与收入x有关,而且与消费者的年龄构成有关,若将年龄构成分为小孩、青年人、成年人和老年人4个层次。

假设边际消费倾向不变,则考虑上述构成因素的影响时,该消费函数引入虚拟变量的个数为()A.1个B.2个C.3个D.4个93 •当质的因素引进经济计量模型时,需要使用()A.外生变量B.前定变量C.内生变量D.虚拟变量94 .由于引进虚拟变量,回归模型的截距或斜率随样本观测值的改变而系统地改变,这种模型称为()A.系统变参数模型系统模型C.变参数模型D.分段线性回归模型95 .假设回归模型为Q +/3 xi,+期毗Xi为随机变量,Xi与Ui相关则B的普通最小二乘估计量0A.无偏且一致B.无偏但不一致C.有偏但一致D.有偏且不一致96 •假定正确回归模型为Q+Blx1i+ 苦遗漏“ 了解释变量X2,且X1、X2线性相关则B1的普通最小二乘法估计量0A.无偏且一致B.无偏但不一致C.有偏但一致D.有偏且不一致99 .虚拟变量()A.主要来代表质的因素,但在有些情况下可以用来代表数量因素B只能代表质的因素C.只能代表数量因素D.只能代表季节影响因素100 .分段线性回归模型的几何图形是()oA.平行线B垂直线C.光滑曲线D.折线101 .如果一个回归模型中不包含截距项,对一个具有m个特征的质的因素要引入虚拟变量数目为()oA.mB.m-1C.m-2D.m+1102 •设某商品需求模型为yt=bO+b1xt+ut ,其中丫是商品的需求量,X是商品的价格,为了考虑全年12个月份季节变动的影响,假设模型中引入了12个虚拟变量,则会产生的问题为()。

计量经济学-练习题与答案

计量经济学-练习题与答案

* 密 *一、解释概念:多重共线性SRF解释变量的边际奉献一阶偏相关系数最小方差准那么OLS偏相关系数WLSU t 自相关二阶偏相关系数技术方程式零阶偏相关系数经历加权法虚拟变量不完全多重共线性多重可决系数边际奉献的 F 检验OLSEPRF阿尔蒙法BLUE复相关系数滞后效应异方差性高斯-马尔可夫定理可决系数二.单项选择题:1、计量经济学的研究方法一般分为以下四个步骤〔〕A.确定科学的理论依据、模型设定、模型修定、模型应用B.模型设定、估计参数、模型检验、模型应用C.搜集数据、模型设定、估计参数、预测检验D.模型设定、模型修定、构造分析、模型应用2、简单相关系数矩阵方法主要用于检验〔〕A.异方差性 B.自相关性C .随机解释变量D.多重共线性3、在某个构造方程恰好识别的条件下,不适用的估计方法是()A .间接最小二乘法B.工具变量法C. 二阶段最小二乘法D.普通最小二乘法4、在利用月度数据构建计量经济模型时,如果一年里的12 个月全部表现出季节模式,那么应该引入虚拟变量个数为〔〕A.4B.12C.11D.65、 White 检验可用于检验〔〕A.自相关性B.异方差性C.解释变量随机性D.多重共线性6、如果回归模型违背了无自相关假定,最小二乘估计量是( )A.无偏的,有效的B.有偏的,非有效的C.无偏的,非有效的D.有偏的,有效的* 密 *7、 DW统计量的值接近于2,那么样本回归模型残差的一阶自相关系数近似等于 ()A.0B.–1C.1D.48、在简单线性回归模型中,认为具有一定概率分布的随机变量是()A.内生变量B.外生变量C.虚拟变量D.前定变量9、应用 DW检验方法时应满足该方法的假定条件,以下不是其假定条件的为〔〕A.解释变量为非随机的B.被解释变量为非随机的C.线性回归模型中不能含有滞后内生变量D.随机误差项服从一阶自回归10、二元回归模型中,经计算有相关系数=0.9985 ,那么说明〔〕A.X2 和X3间存在完全共线性B.X 2和 X3间存在不完全共线性C.X 2对 X3的拟合优度等于 0.9985D.不能说明 X2和 X3间存在多重共线性11、在 DW检验中,存在正自相关的区域是〔〕A. 4-d L<d<4B. 0<d<d LC. d U<d<4-d UD. d L<d<d U,4-d U<d<4-d L12、库伊克模型不具有如下特点〔〕A.原始模型为无限分布滞后模型,且滞后系数按某一固定比例递减B.以一个滞后被解释变量Y t-1代替了大量的滞后解释变量X t-1 ,X t-2 , , ,从而最大限度的保证了自由度C.滞后一期的被解释变量Y t-1与 X t的线性相关程度肯定小于X t-1 ,X t-2 , ,的相关程度,从而缓解了多重共线性的问题D.由于,因此可使用OLS方法估计参数,参数估计量是一致估计量* 密 *13、在具体运用加权最小二乘法时, 如果变换的结果是,那么 Var(u t ) 是以下形式中的哪一种?()14、将内生变量的前期值作解释变量, 这样的变量称为〔〕A、虚拟变量B、控制变量C、政策变量D、滞后变量15、在异方差的情况下,参数估计值仍是无偏的,其原因是〔〕A. 零均值假定不成立B.序列无自相关假定成立C.无多重共线性假定成立D.解释变量与随机误差项不相关假定成立1、经济计量模型是指 ()A. 投入产出模型B.数学规划模型C. 包含随机方程的经济数学模型D.模糊数学模型2、对于回归模型Y t =α0+α1X t + α2Y t-1 +u t,检验随机误差项是否存在自相关的统计量为 ()3、以下说法正确的有〔〕A.时序数据和横截面数据没有差异B.对总体回归模型的显著性检验没有必要C.总体回归方程与样本回归方程是有区别的D.判定系数 R2不可以用于衡量拟合优度4、在给定的显著性水平之下,假设 DW统计量的下和上临界值分别为dL 和 dU,那么当时,可认为随机误差项( )A. 存在一阶正自相关B.存在一阶负相关C. 不存在序列相关D.存在序列相关与否不能断定5、在线性回归模型中 , 假设解释变量X1i和X2i的观测值成比例 , 即有X1i=k X2i, 其中 k 为非零常数 , 那么说明模型中存在 ()A.异方差B.多重共线性C.序列自相关D.设定误差6、对联立方程组模型估计的方法主要有两类,即〔〕A.单一方程估计法和系统估计法B. 间接最小二乘法和系统估计法C.单一方程估计法和二阶段最小二乘法D. 工具变量法和间接最小二乘法7、模型的形式为, 在用实际数据对模型的参数进展估计的时候 , 测得 DW统计量为 0.6453, 那么广义差分变量是 ( )8、调整后的判定系数与判定系数之间的关系表达不正确的有〔〕A.与均非负B.判断多元回归模型拟合优度时,使用C.模型中包含的解释变量个数越多,与 R2就相差越大D.只要模型中包括截距项在内的参数的个数大于1,那么<R29、对多元线性回归方程的显著性检验,所用的 F 统计量可表示为〔〕10、在回归模型中,正确地表达了随机扰动项序列相关的是〔〕A. COV (μi,μj)≠0,i≠ . COV (μ i,μj) = 0,i≠ jC. COV (X i ,X j ) =0, i≠jD. COV (X i,X j )≠0,i≠ j11、在 DW检验中,存在负自相关的判定区域是〔〕12、以下说法正确的选项是〔〕A. 异方差是样本现象B.异方差的变化与解释变量的变化有关C.异方差是总表达象D.时间序列更易产生异方差13、设 x1 ,x 2为回归模型的解释变量,那么表达完全多重共线性是〔〕14、以下说法不正确的选项是〔〕A.自相关是一种随机误差现象B.自相关产生的原因有经济变量的惯性作用C.检验自相关的方法有F 检验法D.修正自相关的方法有广义差分法15、利用德宾 h检验自回归模型扰动项的自相关性时,以下命题正确的选项是〔〕A.德宾 h 检验只适用一阶自回归模型B.德宾 h 检验适用任意阶的自回归模型C.德宾 h 统计量渐进服从 t 分布D.德宾 h 检验可以用于小样本问题1、以下变量中可以作为解释变量的有〔〕A、外生变量B、滞后内生变量C、虚拟变量D、前定变量E、内生变量2、在简单线性回归模型中,认为具有一定概率分布的随机数是()A 、内生变量B、外生变量C、虚拟变量D、前定变量3、计量经济模型中的内生变量〔〕A.可以分为政策变量和非政策变量B .是可以加以控制的独立变量C.其数值由模型所决定,是模型求解的结果D .和外生变量没有区别4、在以下各种数据中,〔〕不应作为经济计量分析所用的数据。

计量经济学(第四版)习题及参考答案详细版

计量经济学(第四版)习题及参考答案详细版

计量经济学(第四版)习题参考答案潘省初第一章 绪论1.1 试列出计量经济分析的主要步骤。

一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据 (4)估计参数 (5)假设检验 (6)预测和政策分析 1.2 计量经济模型中为何要包括扰动项?为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。

1.3什么是时间序列和横截面数据? 试举例说明二者的区别。

时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。

横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。

如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。

1.4估计量和估计值有何区别?估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。

在一项应用中,依据估计量算出的一个具体的数值,称为估计值。

如Y就是一个估计量,1nii YY n==∑。

现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。

第二章 计量经济分析的统计学基础2.1 略,参考教材。

2.2请用例2.2中的数据求北京男生平均身高的99%置信区间NSS x ==45=1.25 用α=0.05,N-1=15个自由度查表得005.0t =2.947,故99%置信限为 x S t X 005.0± =174±2.947×1.25=174±3.684也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在170.316至177.684厘米之间。

计量经济学考试习题及答案

一、单项选择题1、双对数模型 μββ++=X Y ln ln ln 10中,参数1β的含义是() A.Y 关于X 的增长率 B.Y 关于X 的发展速度 C. Y 关于X 的弹性 D. Y 关于X 的边际变化2、设k 为回归模型中的参数个数,n 为样本容量。

则对多元线性回归方 程进行显著性检验时,所用的F 统计量可表示为())1/n /.--k RSS k ESS A ()( )/1)1/(.22k n R k R B ---()( )1/R 1)k -n /.22--k R C ()(( )()(k n T S S k E S S D --/1/.3、 回归模型中具有异方差性时,仍用OLS 估计模型,则以下说法正确的是()A. 参数估计值是无偏非有效的B. 参数估计量仍具有最小方差性C. 常用F 检验失效D. 参数估计量是有偏的4、利用德宾h 检验自回归模型扰动项的自相关性时,下列命题正确的是()A. 德宾h 检验只适用一阶自回归模型B. 德宾h 检验适用任意阶的自回归模型C. 德宾h 统计量渐进服从t 分布D. 德宾h 检验可以用于小样本问题5、一元线性回归分析中的回归平方和ESS 的自由度是()A. nB. n-1C. n-kD. 16、已知样本回归模型残差的一阶自相关系数接近于1,则DW 统计量近似等于( )A. 0B. 1C. 2D. 4 7、更容易产生异方差的数据为 ( )A. 时序数据B. 修匀数据C. 横截面数据D. 年度数据8、设M 为货币需求量,Y 为收入水平,r 为利率,流动性偏好函数为μβββ+++=r Y M 210,又设∧∧21ββ、分别是1β 、2β的估计值,则根据经济理论,一般来说(A )A. ∧1β应为正值,∧2β应为负值 B. ∧1β应为正值,∧2β应为正值 C. ∧1β应为负值,∧2β应为负值 D. ∧1β应为负值,∧2β应为正值 9、以下选项中,正确地表达了序列相关的是()j i C o vA j i ≠≠,0),(.μμ j i C o vB j i ≠=,0),(.μμ j i X X CovC j i ≠=,0),(. j i X C o vD j i ≠≠,0),(.μ 10、在一元线性回归模型中,样本回归方程可表示为( )A. t t Y μββ++=10B.i t t X Y E Y μ+=)/(C. t t X Y ∧∧∧+=10ββ D. t t t X X Y E 10)/(ββ+= 11、对于有限分布滞后模型t k t k t t t t X X X X Y μββββα++++++=--- 22110在一定条件下,参数iβ可近似用一个关于i 的阿尔蒙多项式表示(),,2,1,0m i =,其中多项式的阶数m 必须满足( )A .m <kB .m=kC .m >kD .k m ≥12、设t μ为随机误差项,则一阶线性自相关是指( )A .)(0),(s t Cov s t ≠≠μμ B. t t t ερμμ+=-1C. t t t t εμρμρμ++=--2211D. t t t εμρμ+=-1213、把反映某一总体特征的同一指标的数据,按一定的时间顺序和时间间隔排列起来,这样的数据称为( )A. 横截面数据B. 时间序列数据C. 修匀数据D. 原始数据14、多元线性回归分析中,调整后的可决系数R 与可决系数R 2之间的关系( )A .kn n R R ----=1)1(122 B. 22R R ≥C. 02>RD. 1)1(122----=n k n R R15、Goldfeld-Quandt 检验法可用于检验( )A.异方差性B.多重共线性C.序列相关D.设定误差 16、用于检验序列相关的DW 统计量的取值范围是( )A .10≤≤DWB .11≤≤-DWC .22≤≤-DWD .40≤≤DW17、如果回归模型中解释变量之间存在完全的多重共线性,则最小二乘估计量的值为( )A.不确定,方差无限大B.确定,方差无限大C.不确定,方差最小D.确定,方差最小18、应用DW 检验方法时应满足该方法的假定条件,下列不是其假定条件的为( )A.解释变量为非随机的B.被解释变量为非随机的C.线性回归模型中不能含有滞后内生变量D.随机误差项服从一阶自回归二、多项选择题1、古典线性回归模型的普通最小二乘估计量的特性有() A. 无偏性 B. 线性性 C. 最小方差性 D. 不一致性 E. 有偏性2、如果模型中存在自相关现象,则会引起如下后果() A.参数估计值有偏 B.参数估计值的方差不能正确确定 C.变量的显著性检验失效 D.预测精度降低 E.参数估计值仍是无偏的3、利用普通最小二乘法求得的样本回归直线tt X Y 21ˆˆˆββ+=的特点()A. 必然通过点(Y X ,)B. 可能通过点(Y X ,)C. 残差t e 的均值为常数D. t Y ˆ的平均值与tY ˆ的平均值相等 E. 残差t e 与解释变量t X 之间有一定的相关性 4、广义最小二乘法的特殊情况是()A .对模型进行对数变换 B.加权最小二乘法 C.数据的结合 D.广义差分法 E.增加样本容量5、计量经济模型的检验一般包括内容有 ()A 、经济意义的检验B 、统计推断的检验C 、计量经济学的检验D 、预测检验E 、对比检验三、判断题(判断下列命题正误,并说明理由)1、 在实际中,一元回归几乎没什么用,因为因变量的行为不可能仅由一个解 释变量来解释。

(完整版)计量经济学(第四版)习题及参考答案详细版

计量经济学(第四版)习题参考答案潘省初第一章 绪论1.1 试列出计量经济分析的主要步骤。

一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据 (4)估计参数 (5)假设检验 (6)预测和政策分析 1.2 计量经济模型中为何要包括扰动项?为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。

1.3什么是时间序列和横截面数据? 试举例说明二者的区别。

时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。

横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。

如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。

1.4估计量和估计值有何区别?估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。

在一项应用中,依据估计量算出的一个具体的数值,称为估计值。

如Y就是一个估计量,1nii YY n==∑。

现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。

第二章 计量经济分析的统计学基础2.1 略,参考教材。

2.2请用例2.2中的数据求北京男生平均身高的99%置信区间NSS x ==45=1.25 用α=0.05,N-1=15个自由度查表得005.0t =2.947,故99%置信限为 x S t X 005.0± =174±2.947×1.25=174±3.684也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在170.316至177.684厘米之间。

计量经济学试题及答案

计量经济学试题及答案1.计量经济学模型:揭示经济现象中客观存在的因果关系,主要采用回归分析方法的经济数学模型。

2.参数估计的无偏性:它的均值或期望值是否等于总体的真实值。

3.参数估计量的有效性:它是否在所有线性无偏估计量中具有最小方差。

估计量的期望方差越大说明用其估计值代表相应真值的有效性越差;否则越好,越有效。

不同的估计量具有不同的方差,方差最小说明最有效。

4.序列相关:即模型的随即干扰项违背了相互独立的基本假设。

5.工具变量:在模型估计过程中被作为工具使用,以替代与随即干扰项相关的随机解释变量。

6.结构式模型:根据经济理论和行为规律建立的描述经济变量之间直接关系结构的计量经济学方程系统。

7.内生变量:具有某种概率分布的随机变量,它的参数是联立方程系统估计的元素,内生变量是由模型系统决定的,同时也对模型系统产生影响。

内生变量一般都是经济变量。

8.异方差:对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。

9. 回归分析:研究一个变量关于另一个(些)变量的依赖关系的计算方法和理论。

其目的在于通过后者的已知或设定值,去估计和预测前者的(总体)均值。

前一变量称为被解释变量或应变量,后一变量称为解释变量或自变量。

1.下列不属于...线性回归模型经典假设的条件是( A )A.被解释变量确定性变量,不是随机变量。

B.随机扰动项服从均值为0,方差恒定,且协方差为0。

C.随机扰动项服从正态分布。

D.解释变量之间不存在多重共线性。

2.参数β的估计量β?具备有效性是指( B )A .0)?(=βVar B .)?(βVar 为最小 C .0)?(=-ββED . )?(ββ-E 为最小3.设Q 为居民的猪肉需求量,I 为居民收入,PP 为猪肉价格,PB 为牛肉价格,且牛肉和猪肉是替代商品,则建立如下的计量经济学模型:iB i P i i t P P I Q μαααα++++=3210 根据理论预期,上述计量经济学模型中的估计参数1?α、2?α和3?α应该是( C )A .1?α<0,2?α<0,0?3>αB .1?α<0,2?α>0,0?3<αC .1?α>0,2?α<0,0?3>αD .1?α>0,2?α>0,0?3<α4.利用OLS 估计模型i i i X Y μαα++=10求得的样本回归线,下列哪些结论是不正确的( D )A .样本回归线通过(Y X ,)点B .∑i μ?=0C .YY ?= D .ii X Y 10??αα+=5.用一组有20个观测值的样本估计模型i i i X Y μββ++=10后,在的显著性水平下对1?β的显著性作t 检验,则1β显著地不等于零的条件是t 统计量绝对值大于( D )A. (20)B. (20)C. (18)D. (18)6.对模型i i i i X X Y μβββ+++=22110进行总体线性显著性检验的原假设是( C )A .0210===βββB .0=j β,其中2,1,0=jC .021==ββD .0=j β,其中2,1=j7.对于如下的回归模型i i i X Y μαα++=ln ln 10中,参数1α的含义是( D )A .X 的相对变化,引起Y 的期望值的绝对变化量B .Y 关于X 的边际变化率C .X 的绝对量发生一定变动时,引起Y 的相对变化率D .Y 关于X 的弹性 8.如果回归模型为背了无序列相关的假定,则OLS 估计量( A )A .无偏的,非有效的B .有偏的,非有效的C .无偏的,有效的D .有偏的,有效的9. 下列检验方法中,不能用来检验异方差的是( D )A.格里瑟检验B.戈德菲尔德-匡特检验C.怀特检验D.杜宾-沃森检验10.在对多元线性回归模型进行检验时,发现各参数估计量的t 检验值都很低,但模型的拟合优度很高且F检验显著,这说明模型很可能存在( C )A.方差非齐性B.序列相关性C.多重共线性D.模型设定误差11.包含截距项的回归模型中包含一个定性变量,且这个定性变量有3种特征,则,如果我们在回归模型中纳入3个虚拟变量将会导致模型出现( A )A.序列相关B.异方差C.完全共线性D.随机解释变量12.下列条件中,哪条不是有效的工具变量需要满足的条件( B )A.与随机解释变量高度相关B.与被解释变量高度相关C.与其它解释变量之间不存D.与随机误差项不同期相关在多重共线性13.当模型中存在随机解释变量时,OLS估计参数仍然是无偏的要求( A )A.随机解释变量与随机误差项独立B.随机解释变量与随机误差项同期不相关,而异期相关C.随机解释变量与随机误差项同期相关D.不论哪种情况,OLS 估计量都是有偏的14.在分布滞后模型t t t t X X Y μβββ+++=-1210中,解释变量对被解释变量的长期影响乘数为( C )A. 1βB. 2βC. 21ββ+D .210βββ++15.在联立方程模型中,外生变量共有多少个( B )A. 1B. 2C. 3D. 41.普通最小二乘法确定一元线性回归模型i i i e X Y ++=10??ββ的参数0?β和1?β的准则是使( B )A .∑ei 最小B .∑e i2最小C .∑e i 最大D .∑e i2最大2、普通最小二乘法(OLS)要求模型误差项i μ满足某些基本假定。

计量经济学第四版)习题及参考答案详细版

计量经济学(第四版)习题参考答案潘省初第一章 绪论1.1 试列出计量经济分析的主要步骤。

一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据 (4)估计参数 (5)假设检验 (6)预测和政策分析 1.2 计量经济模型中为何要包括扰动项?为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。

1.3什么是时间序列和横截面数据? 试举例说明二者的区别。

时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。

横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。

如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。

1.4估计量和估计值有何区别?估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。

在一项应用中,依据估计量算出的一个具体的数值,称为估计值。

如Y 就是一个估计量,1nii YY n==∑。

现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。

第二章 计量经济分析的统计学基础2.1 略,参考教材。

2.2请用例2.2中的数据求北京男生平均身高的99%置信区间NSS x ==45=1.25 用α=0.05,N-1=15个自由度查表得005.0t =2.947,故99%置信限为 x S t X 005.0± =174±2.947×1.25=174±3.684也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在170.316至177.684厘米之间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=
3205773 249763.4
=12.84
第四步:判断。在 =0.05 下,查 F 分布表得临界值为 F0.0(5 8,8)=3.44 ,因为
2.计量经济学模型的构建步骤 反馈
理模型的建立
样本数据的收集
模型参数的估计
理论模型的检验
一、单项选择题
1-5 ACACC
6-10 CBCDA
第二章 一元线性回归模型
二、简述题 答案见教材
三、软件操作题 参考教材 31 页
一、单项选择题
1-5 ADBBD
6-10 CACAC
第三章 多元线性回归模型
二、简述题 答案见教材
分平分得两个样本区间:1—10 和 19—28,它们的样本个数均是 10 个,即 n1 n2 10 。
第 三 步 : 分 别 对 前 后 各 10 个 样 本 数 据 进 行 回 归 , 得 到 的 残 差 平 方 和 为
e12i 249763.4 , e22i 3205773 ,F 统计量为
F
e22i e 12i
由散点图可以看出,残差平方 ei2 与解释变量 X 的散点图主要分布在图形中的下三角部
分,大致看出残差平方 ei2 随 X i 的变动呈增大的趋势,因此,模型存在异方差。
b.GQ 检验方式
第一步:首先将变量 X 按从小到大进行排序。
第二步:构造子样本区间。在本题中,样本容量 n=28,删除中间 8 个观测值,余下部
第四步:判断。在 =0.05 下,查 F 分布表得临界值为 F0.0(5 10,10)=2.97 ,因为 F 5.32 F0.0(5 10,10)=2.97 ,所以拒绝原假设,表明模型确实存在异方差。
(2)对变量取对数,估计模型 ln Yi
ln Xi ui ,在回归命令窗口输入 log(y) c
log(x),得到对数模型回归结果。
个,即 n1 n2 12 。
第 三 步 : 分 别 对 前 后 各 12 个 样 本 数 据 进 行 回 归 , 得 到 的 残 差 平 方 和 为
e12i 85879910 , e22i 4.57 108 ,F 统计量为
F
e22i e 12i
=
4.57 108 85879910
=5.32
(4.3)
差项存在异方差。 (2)用怀特(white)检验法检验模型是否存在异方差。 nR2=21×0.5659=11.8839>χ0.05(2)=5.99 说明该模型的随机误差项存在异方差。 (3)第一种方法适合大样本,类型为单调性异方差,用 F 检验来判断有无异方差;第
二种方法适合大样本,类型没有限制,用卡方检验来判断有无异方差。
三、软件操作题 参考教材 47 页和 49 页
第四章 异方差性问题 一、单项选择题 1-5 CBADA 6-10 BACBB 二、判断题 1-5 三、简述题 1.简述戈德菲尔德-夸特检验法(G-Q 检验法)基本步骤?
①将样本观察值按观察值 Xi 的大小排队; ②将序列中间的 c=n/4 个观察值除去,并将剩下的观察值划分相同的两个子样本,每个 子样样本容量均为(n-c)/2; ③对每个子样分别进行 OLS 回归,并计算各自的残差平方和; ④提出假设。即 H0:两部分数据的方差相等。构造 F 统计量 F=RSS2/RSS1 若 F 大于临界值,则认为模型存在异方差,如果小于临界值,则认为模型不存在异方差。 2.加权最小二乘法的基本思路和具体步骤? 基本思路:对较小的残差平方给予较大的权重,对较大的残差平方给予较小的权重。 具体步骤:(1)选择权重 w
(2)检验是否存在异方差 a.图形法
首先估计回归模型,生成残差序列 ei .回归结果如下:
接着绘制残差平方序列 ei2 对 X i 的散点图。
RESID^2
2,400,000 2,000,000 1,600,000 1,200,000
800,000 400,000
0 0 100 200 300 400 500 600 X
且变量 t 检验都通过。最终模型为:Yi 368.6203 2.9528 X i
(4)异方差的形式为:Var(ui )
2X 4 i
3. (1)GQ 检验法检验异方差性:
第一步:首先将变量 X 按从小到大进行排序。
第二步:构造子样本区间。在本题中,样本容量 n=31,删除中间 1/4 的观测值,即大
约 7 个观测值,余下部分平分得两个样本区间:1—12 和 20—31,它们的样本个数均是 12
(2)计算∑we2,并使其达到最小,计算参数估计值。 四、计算分析题 1.(1)用 GQ 检验法检验模型是否存在异方差。
求 F 统计量为
F
e22 e 12
7811.189 1372.202
5.6924483
给定 0.05 ,查 F 分布表,得临界值为 F0.05 (6, 6) 4.28 。
比较临界值与 F 统计量值,有 F =5.6924483> F0.05 (6, 6) 4.28 ,说明该模型的随机误
2.(1)从图 1 可以看出残差平方 ei2 随 X i 的变动而变化,因此,模型很可能存在异方差。
(2)加权最小二乘法。其基本思路:对较小的残差平方给予较大的权重,对较大的残差 平方给予较小的权重。
(3)表 2 权数为 w2=1/X^2 时模型效果最好,因为该回归结果拟合优度最高(为 0.9387),
对数模型回归结果
对上述对数回归模型做怀特检验可知:nR2 3.616423 < 02.0(5 2)=5.9915 ,所以接受
原假设,表明模型不存在异方差,经过对数变换,模型已消除异方差。
对数模型的怀特检验
所以模型估计结果为: lnYˆi 5.274878 0.693019ln Xi
表明房地产业每增加 1%增加值,地区生产总值增长 0.69%,房地产行业的发展对地区经 济发展具有重要推动作用。 4.(1)采用截面数据易导致异方差。
一、单项选择题
1-5 CACAA
6-10 CDABA
第一章 计量经济学概述
二、简述题 1.什么计量经济学模型?计量经济学模型包括哪三个要素? 计量经济模型(The model of Econometrics)是表示经济现象及其主要因素之间数量
关系的方程式,通常用随机性的数学方程加以描述,数学方程式主要由经济变量、参数以 及随机误差三大要素组成。
相关文档
最新文档