微波功率器件及其材料的发展和应用前景..
高功率微波___概述说明以及解释

高功率微波概述说明以及解释1. 引言1.1 概述高功率微波(High-Power Microwaves,简称HPM)是一种特殊频率范围内的电磁波,具有较高的功率输出。
随着科技的不断发展,高功率微波技术在多个领域得到了广泛应用。
本文将对高功率微波进行深入的概述、分析和解释。
1.2 文章结构为了系统地介绍高功率微波技术相关内容,本文按以下结构进行论述:第2部分:高功率微波概述:包括其定义和背景、发展历程以及应用领域;第3部分:高功率微波原理解析:涵盖电磁波特性、辐射与传输过程、以及功率放大原理;第4部分:高功率微波技术进展:讨论高功率微波源技术改进、辐射与控制技术发展,以及解决该系统问题的新方法与思路;最后一部分:结论,总结了文章主要观点,并强调未来研究的方向与挑战。
1.3 目的本文的目的是全面介绍和阐述高功率微波技术方面的知识,旨在增加读者对该技术的了解。
通过对高功率微波的概述、原理解析以及技术进展的分析,我们可以深入认识它的重要性和应用前景,并为未来的研究提供方向与思路。
通过本文的阅读,读者将能够对高功率微波技术有一个全面而清晰的认识。
2. 高功率微波概述2.1 定义和背景高功率微波(High Power Microwave, HPM)是指具有高的能量密度和较大功率输出的微波信号。
它是一种电磁辐射形式,主要由频率范围在300MHz至300GHz之间的无线电波组成。
高功率微波技术源于对电磁辐射的研究和应用探索,对现代科学、工程技术和国防安全等领域具有重要作用。
2.2 发展历程高功率微波技术的研究与应用始于20世纪中叶。
最早期的发展集中在军事领域,用于雷达系统、导弹防御以及电子战等方面。
随着科学技术的进步,高功率微波逐渐扩展到其他领域,如通信、医疗、飞行器激光推进等。
2.3 应用领域高功率微波在众多领域具有广泛应用。
首先,在军事领域,它可被用于电子侦察与打击、无线电干扰以及雷达干扰等任务。
其次,在通信领域,高功率微波可以提供高速数据传输和远距离通信,被广泛应用于卫星通信、雷达系统和无线电波干扰等方面。
SiC微波半导体在T/R组件中的应用前景

20 0 8年 l 2月
中 鼋; 研宝甓 氟 目 纠譬 『学
Jun l fC I o r a AE T o
V0 - . l3 No 6 De . 2 0 c o8
SC微 波 半 导体 在 T R 组件 中的应 用前 景 i /
张 福 琼
( 京 电子技 术研 究所 , 南 南京 20 1 ) 10 3
计 思路进 行 了讨论 , SC微 波 器件在 T R组件 中的潜在 应 用 , 及 i / 比较 了 S 和 S 时代 , i i C 关键 电路 的
特性及其技术状态, 以及对未来军事电子设备相控阵雷达 T R组件发展的重要性。 / 关键词 : 宽禁带半导体 ; 碳化硅微波器件 ;/ T R组件 中图分 类号 :N 0 文献标 识码 : 文 章编 号 :6 35 9 ( 0 8 0  ̄3 - T 33 A 1 7 -6 2 2 0 ) 6 1 4 0
( aj gR sa hIstt o lc oi eh o g ,N mig 10 3 C ia N ni eer tu f et n sTc nl y a n 0 1 , h ) n c nie E r c o 2 n
Ab t a t h e t r fS C mi r w v e c n u t ri i t d c d sr c :T e f au e o i c o a e s mi o d co s n r u e .Co a e i is mio d co , o mp r d w t S e c n u tr h S C h s r ma k b e a v na e n b e k o n e e t cf l n e st i a e r a l d a tg s i r a d w l cr — e d it n i i i y,h a o d c in r t a d g i h r e tc n u t ae n a n c a - o a tr t .T e a p i ain o c ie p a e ra a a n / mo u e r ic s e n t i a e .A1 c ei i s c h p l t fa t h s d a r y r d a d T R d l sa e d s u s d i sp p r c o v r h 一 S ic se st e k y t c n lg fmir w v b u / d l si o e mp i e h i O d s u s d i e h oo y o c o a ea o t R mo u e n p w ra l d c an,h g o r h e T i f ih p we
微波技术的发展及其应用研究

微波技术的发展及其应用研究章节1:前言微波技术是一种高频电磁波技术,它的应用涉及到领域广泛,如通信、雷达、医疗、水利、军事等。
自20世纪50年代微波技术开始进入实用化阶段,随着科学技术的发展,在微波技术的各个领域中,一系列优秀的创新性强、应用性强的新技术、新装备、新产品不断涌现,今天的微波技术已然成长为一种非常成熟的技术。
章节2:微波技术的发展历程微波技术最初是在19世纪末期被理论家们研究发现,20世纪初期在实践应用方面得到了提高。
而20世纪50年代,美国等国家成功研制出了微波电子管、半导体微波器件,这使得微波技术迅速发展并得到广泛应用。
到了70年代后期,微波技术进入一个成熟发展的阶段,在领域的广泛应用中,成就了许多重大突破,其中以行业发展为代表的通信领域,做出了很多优秀的成果贡献。
到了21世纪,微波技术得以进一步完善,形成了新的应用领域,如无线电频段、毫米波频段、纳微波领域等等,成为了在各个行业中不可或缺的技术。
章节3:微波技术在通信领域的应用研究作为微波技术的最大应用领域,通信领域中微波技术的研究和应用也越来越成熟。
我们可以从各种不同类型的整机装备、芯片和器件等方面来深入了解微波技术在通信领域的应用。
首先,移动通信是广大民众非常熟悉的一种通讯方式,而微波技术在该领域中更是发挥着重要作用。
通过微波技术,不仅能使信号更稳定,更有效地传送,而且能缩短通信时间,增强带宽,提高通信质量等。
如4G、5G移动通信装备中的小型基站采用的就是微波技术,来支撑这一高速、高清的通信需求。
再来看卫星通信,卫星通信是一种不受地理位置、时间、地形等限制的远距离通信方式。
而卫星通信的成功离不开微波技术的应用,如雷达跟踪系统、定向天线等,它们都依赖于微波电子系统、微波传输系统等用于实现卫星通信的核心技术。
章节4:微波技术在其他领域的应用研究除了通信领域,微波技术在许多其他领域上也有很广泛的应用。
在水利领域,通过微波感知仪器设备实现对蒸发过程的长期观测、水库水位测量、水质分析等,都能够实时获取数据,为水资源管理提供了有力支持。
微波技术发展与前景展望

微波技术发展与前景展望1、引言微波技术是近一个世纪以来最重要的科学技术之一,从雷达到广播电视、无线电通信再到微波炉,其波长约在1米到1毫米之间,可被进一步细分为分米波,厘米波和毫米波.随着现代微波技术的发展,波长在1毫米以下的亚毫米波也被视为微波的范畴,这相当于把微波的频率范围进一步扩大到更高的频率。
因此,有的文献里也把微波的频率范围定义为300MHZ-3000GHZ.本文介绍了微波技术的发展以及在各个领域中的应用,并对微波技术未来的发展方向进行了讨论。
2、微波技术发展简史从19世纪末德国物理学家赫兹发现并用实验证明了电磁波的存在后,对电磁波的研究便迅速展开。
对微波直到20世纪初期对微波技术的研究又有了一定的进展。
到了20世纪30年代,高频率的超外差接受器和半导体混频器的出现为微波技术的进一步发展提供了条件,使得微波技术的发展取得的一定的进步。
我国开始研究和利用微波技术是在20世纪70年代初期,首先是在连续微波磁控管的研制方面取得重大进展,特别是大功率磁控管的研制成功,为微波技术的应用提供了先决条件.20世纪80年代,我国开始生产微波炉,到目前为止,已经发展有家用微波炉、工业微波炉等系列产品,产品质量接近或达到世界先进水平。
随着科学技术的迅猛发展,微波技术的研究向着更高频段──毫米波段和亚毫米波段发展。
3、微波技术发展现状和未来趋势进入21世纪,微波技术继续在广播、有线电视、电话和无线通信领域发挥着巨大的作用,在其他领域如计算机网络等应用中也崭露头角.在广播电视方面,当前广播电视节目制作逐步走向数字化。
在通信领域,微波与卫星和光缆并列为现代通信传输的三大支柱。
微波通信可作为干线光纤传输的备份及补充,解决城区内铺设有线资源困难的问题。
此外,诸如微波单片集成、全数字化处理、数字专用集成电路等提高可靠性及降低成本的技术也需要进一步的研究。
3。
1 太赫兹波的应用太赫兹时域光谱技术是国际上近年来发展起来的研究技术。
氮化镓半导体材料研究与应用现状

氮化镓半导体材料研究与应用现状一、本文概述Overview of this article随着科技的飞速发展,半导体材料作为现代电子技术的基石,其重要性日益凸显。
氮化镓,作为一种具有优异物理和化学性能的半导体材料,近年来在科研和工业界引起了广泛关注。
本文旨在全面综述氮化镓半导体材料的研究现状以及其在各领域的应用情况,以期为读者提供一个清晰、系统的认识。
With the rapid development of technology, the importance of semiconductor materials as the cornerstone of modern electronic technology is becoming increasingly prominent. Gallium nitride, as a semiconductor material with excellent physical and chemical properties, has attracted widespread attention in scientific research and industry in recent years. This article aims to comprehensively review the research status and applications of gallium nitride semiconductor materials in various fields, in order to provide readers with a clear and systematic understanding.我们将从氮化镓的基本性质出发,介绍其晶体结构、能带结构、电子迁移率等关键参数,为后续的应用研究提供理论基础。
接着,我们将回顾氮化镓材料的发展历程,包括制备技术、掺杂技术等方面的进步。
氮化镓微波功率器件

氮化镓微波功率器件
氮化镓微波功率器件是一种利用氮化镓材料制作的微波功率放大器或开关器件。
氮化镓具有优异的热稳定性、高电子迁移率和较大的饱和漂移速度,使其成为高功率、高频率微波电子器件的理想材料。
氮化镓微波功率器件可以用于各种微波应用,如通信、雷达、无线电、广播和卫星通信等领域。
它具有高功率和高频率操作的能力,能够提供更大的输出功率和较高的工作频率。
此外,氮化镓材料还具有较低的损耗和较高的工作温度能力,因此能够在各种苛刻的环境条件下工作。
一种常见的氮化镓微波功率器件是氮化镓高电子迁移率晶体管(HEMT)。
HEMT是一种由氮化镓材料构成的场效应晶体管结构,其中氮化镓层用作电子传输通道。
HEMT具有较高的电子迁移率和较低的电子散射率,使其能够实现高功率和高频率的操作。
另一种氮化镓微波功率器件是氮化镓双极晶体管(HBT)。
HBT是一种具有双极结构的晶体管,其中氮化镓材料用于制作基区和集电区。
HBT具有高电流增益和较低的饱和漂移速度,因此适用于需要高电流增益和中等功率输出的应用。
除了HEMT和HBT之外,氮化镓还可用于制作其他类型的微波功率器件,如氮化镓基片上的谐振器、磷化铟/氮化镓混合集成电路等。
总之,氮化镓微波功率器件由于其优异的性能和能力,在微波
和射频领域具有广泛的应用前景。
它们可以提供更高的功率和更高的工作频率,同时具有较低的损耗和较高的工作温度能力,有助于推动微波和射频技术的发展和应用。
射频微波电阻-概述说明以及解释

射频微波电阻-概述说明以及解释1.引言1.1 概述射频微波电阻是一种在射频和微波电路中广泛应用的电子元器件。
它能够在电路中提供特定的电阻值,并能够有效地限制电流的流动。
射频微波电阻的主要作用是消耗电流的能量,将其转化为热能,以防止其在电路中产生反射和干扰。
射频微波电阻的原理是基于电阻材料的电阻特性和射频微波信号的特点。
电阻材料通常是金属或碳基材料,具有一定的电阻率和频率特性。
当射频微波信号通过电阻材料时,信号中的能量会被电阻材料吸收,使得电流在电路中产生阻碍。
这种阻碍作用能够有效地控制电路中的信号流动,提高电路的稳定性和性能。
射频微波电阻在通信、雷达、无线电、航天等领域中起着非常重要的作用。
在通信系统中,射频微波电阻用于匹配电路,确保信号能够有效地发送和接收。
在雷达系统中,射频微波电阻用于调节波导中的波阻抗,以提高雷达的探测和测量性能。
在航天系统中,射频微波电阻用于抑制电磁干扰,保障航天器的正常运行。
射频微波电阻在未来有着广阔的应用前景。
随着通信技术的不断发展,射频微波电路的需求将越来越大。
人们对于信号传输质量和系统性能的要求也越来越高。
射频微波电阻作为一种关键的电子元器件,将继续发挥着重要的作用,并得到进一步的研究和应用。
综上所述,射频微波电阻是一种在射频和微波电路中广泛应用的电子元器件。
它能够有效地控制电路中的信号流动,提高电路的稳定性和性能。
在通信、雷达、无线电、航天等领域中具有重要的作用,并且在未来有着广阔的应用前景。
1.2 文章结构文章结构是指文章整体呈现的组织框架,它有助于读者理解文章的逻辑结构和内容安排。
本文的结构主要包括引言、正文和结论三个部分。
引言部分是文章的开篇,旨在概述文章的主题,并介绍文章的结构和目的。
在引言中,我们将简要介绍射频微波电阻的定义和原理,以及射频微波电阻在不同领域的应用情况。
正文部分是整篇文章的核心,详细介绍射频微波电阻的定义和原理,以及其在各个领域的应用。
RFLDMOS的发展状况和技术路线课件

• 但在民用射频LDMOS功率器件方面,国内所需基本全部 依赖进口。
9
• 国内开展LDMOS微波功率器件的厂家主要 有南京电子器件研究所以及河北半导体研 究所,都研制出过P波段和L波段LDMOS样品。
27
28
• 双层RESURF漂移区由n-top/p-top组成,ptop在有源区外围与地连接,用于加速漂移区 的耗尽,n-top用于降低导通电阻。(纵向结 构角度)。
• 实际上从漂移区横向结构上看,漂移区的理 想掺杂方式是从栅漏交叠端到漏金属接触 端浓度线性增加,但这在工艺上比较难以实 现,一般可以采用漂移区分段掺杂,从栅漏交 叠端到漏金属接触端逐段提高浓度的办法 来模拟线性掺杂,从而实现漂移区内横向电 场强度的均匀分布。
3
• 1999年初,来自荷兰的飞利浦(Philips)也推出了在 1.03GHz-l.09GHz内输出的功率为200W,增益为14dB, 效率大于40%的LDMOS产品,并大量用于WCDMA移动 通信基站的功率放大器中。
• 进入21世纪后,飞思卡尔公司(原Motorola半导体)、恩 智普公司(原Philips半导体)与英飞凌公司在多年的技术 积累下,不断推出性能强大的射频LDMOS功率器件与功 放模块,并各自形成了系列化的产品线。
• MRF8P293000HS是为S波段脉冲应用而开发的, 在频率2.7~2.9 GHz,脉宽300Ls,占空比10%,工作 电压32 V条件下输出功率320 W,增益13.3 dB,效 率50.5%,能够承受10∶1的负载失配。
6
• NXP 2010年研制的两种典型LDMOS射频功率器 件产品BLF888A和BLS7G2933S-150。其中 BLF888A器件热阻0.15 K/W,在频率470~860 MHz,工作电压50 V条件下,输出功率600 W,增益 21 dB,能够承受40∶1的负载失配;BLS7G2933S150是为2.9~3.3 GHz脉冲应用而设计,器件热阻 0.16 K/W,在脉宽300Ls,占空比10%,工作电压32 V 条件下输出功率150 W,增益13.5 dB,效率47%,能 够承受10∶1的负载失配。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微波功率器件及其材料的发展和应用前景来源:《材料导报》内容摘要:介绍了微波功率器的发展和前景,对HBT, MESFET 和HEMT微波功率器件材料的特点和选取,以及器件的特性和设计做了分类说明。
着重介绍了SiGe合金.InPSiC、GaN等新型微波功率器件材料。
并对目前各种器件的最新进展和我国微波功率器件的研制现状及与国外的差距做了概述与展望。
文剑曾健平晏敏(湖南大学应用物理系,长沙410082)0 概述由Ge、Si、Ⅲ-V化合物半导体等材料制成的,工作在微波波段的二极管、晶体管称为微波器件。
微波即波长介于1m~1mm之间的电磁波,相应频率在300MHz~300GHz之间。
微波半导体器件在微波系统中能发挥各方面性能,归纳起来为微波功率产生及放大、控制、接收3个方面。
对微波功率器件要求有尽可能大的输出功率和输出效率及功率增益。
进入20世纪90年代后,由于MOCVD(金属有机化学气相淀积)和MBE(分子束外延)技术的发展,以及化合物材料和异质结工艺的日趋成熟,使三端微波器件取得令人瞩目的成就,使得HBT(异质结双极型晶体管)、MESFET(肖特基势垒场效应晶体管)以及HEMT(高电子迁移率晶体管)结构的各种器件性能逐年提高。
与此同时,在此基础上构成的MMIC(单片集成电路)已实用化,并进人商品化阶段,使用频率基本覆盖整个微波波段,不仅能获得大功率高效率而且,噪声系数小。
随着微波半导体器件工作频率的进一步提高,功率容量的增大,噪声的降低以及效率和可靠性的提高,特别是集成化的实现,将使微波电子系统发生新的变化。
表1列出了几种主要的三端微波器件目前的概况。
表1 微波三端器件概况1 HBT功率微波器件的特性及设计要点微波双极型晶体管包括异质结微波双极型晶体管和Si 微波双极型晶体管。
Si器件自20世纪60年代进入微波领域后,经过几十年的发展,性能已接近理论极限,并且其理论和制造已非常成熟,这可为后继的第二代、第三代器件借鉴。
HBT主要由化合物半导体或合金半导体构成,需要两种禁带宽度不同的材料分别作为发射区和基区,宽带隙材料作发射区,窄带隙材料作基区。
当为DHBT(双异质结双极型晶体管)时,集电区与基区材料带隙也不相同。
为更加有效地利用异质结晶体管的特性,其结构也不再是普通的平面结构,而是采用双平面结构。
1.1 材料的选取及特性虽然大部分微波功率器件被Ⅲ-V化合物功率器件占据,但Ⅲ-V化合物HBT在目前也存在着可用频率范围小、材料制备及工艺成本高,器件在这些材料上的集成度不高,机械强度小以及在大功率情况下热不稳定现象严重,并可能造成发射结陷落和雪崩击穿,以及晶格匹配和热匹配等问题。
InP自身具有良好的特性,与GaAs相比,击穿电场、热导率、电子平均速度均更高,而且在异质结InAlAs/InGaAs界面处存在着较大的导带不连续性、二维电子气密度大,沟道中电子迁移率高等优点,决定了InP基器件在化合物半导体器件中的地位和优异的性能。
随着近几年对InP器件的大力开发和研制,InPHBT有望在大功率、低电压等方面开拓应用市场,拥有更广的应用领域。
987年Lyer.S.S和Patton.G.L等首次发表了用MBE技术成功地研制出Si0.88Ge0.l2基区HBT,使SiGe合金受到关注。
由于近年来的研究,基于SiGe的HBT器件很好地解决了材料问题,因其与SiCMOS器件工艺的兼容性,使得SiGe HBT能够高度集成,而且由于材料的纯度与工艺的完善,使其具有比Ⅲ-V化合物HBT更小的1/f噪声。
SiGe合金的带隙可根据组分的变化自由调节,且其电子、空穴的迁移率比Si中的高,由于比硅单晶器件有更好的性能,SiGe与目前的硅超大规模集成电路制造工艺的兼容性使其在成本与性价比方面具有极大的优势,因此SiGe被看作是第二代器件材料,受到广泛重视。
由于Si和Ge有高达4.2%的晶格失配,则必须在低温下才能生长出高质量的SiGe/Si异质结,并且Ge组分越小热稳定性就会越好。
1.2 器件的设计功率微波晶体管不仅工作频率高,而且承受的功率大,即要求有大的电压和电流容量。
提高电流容量需增加发射极总周长,并防止大电流下的发射结注入效率下降,避免有效基区扩展效应和发射极电流集边效应等。
从频率和功率两方面考虑则可用增益带宽乘积来表示:其中G TM是增益,f是带宽,f T是特征频率,l e为发射极寄生电感,r b是基区电阻,C C 是集电极电容。
故要减小结面积以减小电容C C,并减小r b。
HBT理论(利用半导体材料带隙宽度的变化及其作用于电子和空穴上的电场力来控制载流子的分布和流动)的提出很好地解决了这些问题。
由于HBT晶体管发射区材料的禁带宽度比基区大,对npn型HBT,其宽禁带的发射区势垒阻碍了基区空穴的注入,因而可在注入比不变的情况下提高基区掺杂浓度,降低基区电阻。
采用选择再生长技术可将其基区电阻r b缩小4倍,同时利用非晶InGaAs缓变基区使通过再生长的基于GaAs的HBT获得更低的rb、C C,从而获得更高的f max,这样可扩大Ⅲ-V 化合物器件的频率范围。
这些器件有26GHz HBT,输出功率为3.63W,功率效率(PAE)为21%;35GHz HBT,输出功率为1W,效率为29%等。
此外,我国中科院做电子研究所利用发射极金属掩蔽进行内切腐蚀的方法研制成自对准InGaP/GaAs HBT,其特征频率(f T)达到54GHz。
由于热传导的二维、三维效应,晶体管的结温不处于统一温度,而是随位置变化的。
在微波功率管中,这种现象更加明显,究其原因主要有:①微波应用中,发射极与基极的线条更细、发射极间距更小、热偶合更加显著;②为提高微波和功率性能,集电极电流密度很大,因而功率密度更高;③为获得更大的功率和充分利用芯片面积,器件有源区的面积也不断增加,器件的中心区域热流趋近一维传导,而边缘则是二维、三维导热;④发射极电流密度对温度的正反馈,电流集中于中心区域。
所以中心与边缘温度相差很大,严重时可达几十度,导致器件的可靠性下降。
实验表明,低掺杂的外延层不仅能作为镇流电阻,而且还能非常有效地降低发射极电流集边效应,大大提高了器件可靠性,此法主要是减弱发射极电流密度对温度的正反馈效应,不能改变热流的二维、三维效应。
采用不等间距和不等发射极条长设计或发射条的间断设计 (即在器件的中心区边缘发射条断开,并空出此区域,因而在此区域没有功耗)可获得结温一致的晶体管。
2003年蔡勇等人的模拟数据表明,采用功率密度非均匀设计可整体提高微波功率晶体管器件的可靠性。
对于Si/SiGe/Si的器件的设计,可采用双平面结构。
与小功率微波HBT器件相比,微波功率器件的发射结大小的特性并不是最重要的。
器件设计的目标是大功率和高速度,即对于SiGe HBT来说既要有大的输出功率,又要有高的微波波段响应频率,这两方面是互相限制的,所以当器件用作功率放大器时其特性可用最高振荡频率来衡量,即:为了提高器件的频率响应,采用了竖直和外延结构优化组合设计方法来达到高的,f max 值。
对于SiGe HBT,Ge的含量必须很好设计,这有利于提高器件的性能。
最大的Ge成分是在E-B结一边,然后向B-C结渐变降低,是最合适的选择,当前的研究表明35 at%左右(<40 at%)的Ge含量可使少子在基区的迁移率达到最大。
作为功率器件,基区要求高掺杂,可降低基区电阻,并可产生良好的欧姆接触,从而降低接触金属的宽度,并能使基区宽度进一步缩小,这可提高频率特性(在不考虑基区穿通的情况下)。
高掺杂将降低载流子迁移率。
但根据基区掺杂浓度的增加带来的好处超过了载流子迁移率下降的弊端。
集电区厚度及掺杂浓度的设计对功率微波晶体管来说最为重要,因为它将影响器件的热效应和速度,采用厚的轻掺杂的集电区有利于提高f max,同时也会降低热效应,这给器件功率特性(即减小了集电结电流密度)带来不利影响。
虽然厚集电区会使τc增加而使f T下降,但它带来的好处(降低C C和热效应以及有大的击穿电压和好的线性度)也超过了使fT下降的不良影响。
在一般情况下,SiGe微波功率HBT的基区掺杂浓度在1020cm3数量级,集电区掺杂浓度在3×1016cm3左右。
Ge的含量在合金中占30 at%。
2 MESFET功率微波器件的特性及设计要点2.1 材料的选取及特性在上个世纪70年代后期,GaAs单晶及外延技术获得突破,GaAs肖特基势垒栅场效应晶体管(MESFET)得以成功制成。
GaAs材料的电子迁移率比Si的高7倍,且漂移速度快,所以GaAs比Si具有更好的高频特性,并具有电路损耗小、噪声低、频带宽、动态范围大、功率大、附加效率高等特点,而且GaAs是直接带隙,禁带宽度大,因而器件的抗电磁辐射能力强,工作温度范围宽,更适合在恶劣的环境下工作。
由于GaAs器件具有以上优点,GaAs MESFET已几乎占领了微波应用的各个领域。
20世纪90年代中后期对于SiC材料的研究表明,它的性能指标比GaAs器件还要高一个数量级。
SiC具有下列优异的物理特点:高的禁带宽度(4H-SiC,3.2eV),高的饱和电子漂移速率(2×107cm/s),高的击穿强度(4×106V/cm),低的介电常数和高的热导率(4.9W/cm·k)。
上述这些优异的物理特性,决定了SiC在高温、高频率、高功率的应用场合是极为理想的半导体材料。
在同样的耐压和电流条件下,SiC器件的漂移区电阻要比Si低200倍。
其功率密度是Si和GaAs的3~4倍,热导性能是Si的3倍,是GaAs的10倍。
用SiC材料制造的MESFET的射频(RF)功率密度达到4.6W/mm,功率效率(PAE)达到65.7%,击穿电压超过100V,SiC的型体非常多,在半导体应用时4H-SiC和6H-SiC由于单晶生长工艺的成熟以及较好的重复性而应用较广,目前已商品化,尺寸也由25mm增大到50mm,75mm的晶元也有样品展出,产品目前主要来自于美国的Cree公司。
2.2 器件的设计SiC器件由于过去缺乏高质量的大SiC衬底而受到限制,体SiC的最大缺陷是微管 (材料中0.5~lμm直径的空洞)。
Cree公司在这方面取得了大的进展,制造出4H-SiC晶片微管密度<lcm-2。
并已报道SiC MESFET已达到f max=50GHz,功率密度为4.6W/mm。
而目前最大功率SiC器件已由Cree公司研制出,其工作频率在3.1GHz时功率为80W,PAE为31%,栅长0.7μm,栅宽48mm,工作电压58V(f T=9GHz,f max=20GHz)。
其设计目前已可采用多指栅,由于器件有超过2个的栅,因此需要空中桥 (air bridge),Chalmers大学报道了一种制造空中桥的多指栅高功率SiC MESFET 工艺,空中桥是用纯金形成,器件是建立在Cree 公司半绝缘4H-SiC的3层同质外延结构,从上到下的层结构为0.15μmN型覆盖层(N D=1×1019cm3),0.5μmN型沟道层(ND=1×1017cm3)和0.5μm的P型缓冲层(N A=5 ×1015cm3),栅下沟道厚度是0.35μm,栅长0.5μm,栅源间隙0.5μm,栅漏间隙为1.0μm,栅接触由多层金属结构(Ti/Pt/Au)构成。