快速GTO(门极可关断晶闸管—可控硅)主要参数及互换

合集下载

学习资料-全控型电力电子器件

学习资料-全控型电力电子器件

图4-5 GTR的外观
4.2.1 GTR的极限参数
1.集电极最大电流ICM(最大电流额定值) 一般将电流放大倍数β下降到额定值的1/2~1/3 时集电极电流 IC的值定为ICM。 因此,通常IC的值只能到ICM值的一半左右,使用 时绝不能让IC值达到ICM,否则GTR的性能将变坏。
2. 集电极最大耗散功率PCM
的时间限制(ton(min)=1~12μs),最大导通的时间限制、正反
3. 掣住电流IL
与普通晶闸管定义一样,IL是指门极加触发信号后, 阳极大 面积饱和导通时的临界电流。GTO由于工艺结构特殊, 其IL要比普
通晶闸管大得多,因而在电感性负载时必须有足够的触发脉冲宽 度。
GTO有能承受反压和不能承受反压两种类型,在使用时要特别 注意。
表4-1 国产50 A GTO
图中GTO为主开关,控制GTO导通与关断即可使脉冲变压器TR次 级产生瞬时高压,该电压使汽油机火花塞电极间隙产生火花。 在
晶体管V的基极输入脉冲电压,低电平时,V截止,电源对电容C充 电,同时触发GTO。由于L和C组成LC谐振电路,C两端可产生高于电 源的电压。脉冲电压为高电平时,晶体管V导通,C放电并将其电压
+EC
+EC
GTO
V
1
V2
C
VD1
V3
UI
V4
L
GTO
V1
V2
V1
L
+EC
V2
V 4
V3
GTO
R VD V
(a)
(b)
(c)
图 4-3
(a) 小容量GTO门极驱动电路; (b) 桥式驱动电路; (c)
大容量GTO门极驱动电路
4.1.5 GTO的典型应用

电力电子技术-门极可关断晶闸管 晶体管

电力电子技术-门极可关断晶闸管 晶体管

P2
N2
K
A
IA
PNP
V1
G IG
Ic1
Ic2
R
NPN V2
S EG
IK
EA
K
a)
b)
晶闸管的双晶体管模型及其工作原理
由P1N1P2和N1P2N2构成的两个晶体管V1、V2分别具有共基极电流增益α1 和α2 。
α1+α2=1是器件临界导通的条件。
电力电子器件(3)
GTO能够通过门极关断的原因是其与普通晶闸管有如下区别:
GTO导通后,可通过在门极施加负的脉冲电流使其关断。
2. GTO的主要参数
2.4 晶体管
2.4.1 电力晶体管
1. GTR的结构与工作原理(在电力电子电路中GTR工作在开关状态)
2. GTR的基本特性
3. GTR的主要参数
重点:GTO的工作原理,主要参数
难点:GTO与SCR的区别
饱和区
Ic 放大区
ib3 ib2
ib1 ib1<ib2<ib3
截止区 O
Uce 共发射极接法时GTR的输出特性
电力电子器件(3)
3. GTR的主要参数 前已述及电流放大倍数β、集射极间漏电流Iceo等,此外还有:
电压定额
最高工作电压 GTR上电压超过规定值时会发生击穿。 击穿电压不仅和晶体管本身特性有关,还与外电路接法有关。
BUcbo> BUcex> BUces> BUcer> BUceo。 实际使用时,最高工作电压要比BUceo低得多。
电力电子器件(3)
电流定额 集电极最大允许电流IcM
通常规定为直流电流增益hFE下降到规定值的1/2~1/3时所对应的Ic 。 实际使用时要留有裕量,只能用到IcM的一半或稍多一点。

可控硅的主要参数与可控硅的基本用途

可控硅的主要参数与可控硅的基本用途

可控硅的主要参数与可控硅的基本用途可控硅主要参数——电流:1、额定通态电流(IT)即最大稳定工作电流,俗称电流。

常用可控硅的IT一般为一安到几十安。

2、反向重复峰值电压(VRRM)或断态重复峰值电压(VDRM),俗称耐压。

常用可控硅的VRRM/VDRM一般为几百伏到一千伏。

3、控制极触发电流(IGT),俗称触发电流。

常用可控硅的IGT 一般为几微安到几十毫安。

4、在规定环境温度和散热条件下,允许通过阴极和阳极的电流平均值。

可控硅的封装:常用可控硅的封装形式有TO-92、TO-126、TO-202AB、TO-220、TO-220ABC、TO-3P、SOT-89、TO-251、TO-252、SOT-23、SOT23-3L等。

可控硅的用途:普通晶闸管最基本的用途就是可控整流。

大家熟悉的二极管整流电路属于不可控整流电路。

如果把二极管换成晶闸管,就可以构成可控整流电路。

以最简单的单相半波可控整流电路为例,在正弦交流电压U2的正半周期间,如果VS的控制极没有输入触发脉冲Ug,VS仍然不能导通,只有在U2处于正半周,在控制极外加触发脉冲Ug时,晶闸管被触发导通。

画出它的波形(c)及(d),只有在触发脉冲Ug 到来时,负载RL上才有电压UL输出。

Ug到来得早,晶闸管导通的时间就早;Ug到来得晚,晶闸管导通的时间就晚。

通过改变控制极上触发脉冲Ug到来的时间,就可以调节负载上输出电压的平均值UL。

在电工技术中,常把交流电的半个周期定为180°,称为电角度。

这样,在U2的每个正半周,从零值开始到触发脉冲到来瞬间所经历的电角度称为控制角α;在每个正半周内晶闸管导通的电角度叫导通角θ。

很明显,α和θ都是用来表示晶闸管在承受正向电压的半个周期的导通或阻断范围的。

通过改变控制角α或导通角θ,改变负载上脉冲直流电压的平均值UL,实现了可控整流。

1:小功率塑封双向可控硅通常用作声光控灯光系统。

额定电流:IA小于2A。

2:大、中功率塑封和铁封可控硅通常用作功率型可控调压电路。

晶闸管和IGBT有什么区别

晶闸管和IGBT有什么区别

晶闸管和IGBT有什么区别?功率晶闸管(SCR)在过去相当一段时间里,几乎是能够承受高电压和大电流的唯一半导体器件。

因此,针对SCR的不足,人们又研制开发出了门极关断晶闸管(GTO)。

用GTO 晶闸管作为逆变器件取得了较为满意的结果,但其关断控制较易失败,仍较复杂,工作频率也不够高。

几乎与此同时,电力晶体管(GTR)迅速发展了起来。

绝缘栅双极晶体管IGBT是MOSFET和GTR相结合的产物。

其主体部分与晶体管相同,也有集电极和发射极,但驱动部分却和场效应晶体管相同,是绝缘栅结构。

IGBT的工作特点是,控制部分与场效应晶体管相同,控制信号为电压信号 UGE,输人阻抗很高,栅极电流I G≈0,故驱动功率很小。

而其主电路部分则与GTR相同,工作电流为集电极电流,工作频率可达20kHz。

由IGBT作为逆变器件的变频器载波频率一般都在10kHz以上,故电动机的电流波形比较平滑,基本无电磁噪声。

虽然硅双极型及场控型功率器件的研究已趋成熟,但是它们的性能仍待提高和改善,而1996年出现的集成门极换流晶闸管(IGCT)有迅速取代 GTO的趋势。

集成门极换流晶闸管(IGCT)是将门极驱动电路与门极换流晶闸管GCT集成于一个整体形成的器件。

门极换流晶闸管GCT是基于GTO结构的一个新型电力半导体器件,它不仅与GTO有相同的高阻断能力和低通态压降,而且有与IGBT相同的开关性能,兼有GTO和IGBT之所长,是一种较理想的兆瓦级、中压开关器件。

IGCT芯片在不串不并的情况下,二电平逆变器容量0.5~3MVA,三电平逆变器1~6MVA;若反向二极管分离,不与IGCT 集成在一起,二电平逆变器容量可扩至4. 5MVA,三电平扩至9MVA。

目前IGCT已经商品化,ABB公司制造的IGCT产品的最高性能参数为 4.5kV/4kA,最高研制水平为6kV/4kA[1]。

1998 年,日本三菱公司也开发了直径为88mm的6kV/4kA的GCT晶闸管。

晶闸管换流阀技术简介

晶闸管换流阀技术简介

I
IF
+_
UBR URRM
IH o U
_+
反向特性
IG2 > IG1 > IG0 IG2 IG1 IG0 UFRM UBO U
正向特性
晶闸管元件参数:
1)阳极伏安特性(断态不重复峰值电压UDSM 反向不重复峰值电压URSM );
2)门极特性; 3)断态重复峰值电压( UDRM ); 4)反向重复峰值电压(URRM); 5)额定平均电流; 6)断态临界电压上升率du/dt ; 7)通态临界电流上升率di/dt ; 8)开通时间TON; 9)关断时间TOFF 。
三、换流阀应用
工程概况: 双极电压±800kV,电流4000A,功率6400MW,每极两组十二脉动换
流器
1)工程概况:
双极电压±800kV,电流4000A,功率6400MW,每极两组十二脉动换 流器
2)阀结构
每个6脉动桥包括3个200 kV 直流电压的双重阀塔 每个双重阀由 2 个单阀组成
每个单阀由 2 个晶闸管组件组成
通常直流额定电压较低,直流额 定电流较高;
不设直流滤波器,有时也可省去 平波电抗器;
无直流开关设备; 当要求较高的可靠性及可用率时,
可采用一个以上的单极或双极系 统并联。
直流侧接线简单。
2、整流站特殊接线方式(2)
当发电厂无地区负荷或地区负荷很小时,也可以考虑采用发 电机—变压器—换流器独立的单元接线形式。这种接线方式 不仅可省去一级变压,还可省去换流站的交流母线及其相关 的开关设备,换流器所消耗的无功功率可由发电机来提供, 交流侧谐波也可以由发电机来吸收。
换流阀目前绝大多数直流输电工程均采用晶闸管阀, 本节主要论述晶闸管阀。

全控型电力电子器件GTO

全控型电力电子器件GTO
iG
O
t
iA IA 90%IA 10%IA 0
td
tr
ts
tf
tt
t0
t1
t2
t3
t4t5t6tGTO的开通和关断过程电流波形 的开通和关断过程电流波形
4. GTO的主要参数 的主要参数
许多参数和普通晶闸管相应的参数意义相同, 许多参数和普通晶闸管相应的参数意义相同,以下 只介绍意义不同的参数。 只介绍意义不同的参数。 (1)开通时间 on )开通时间t
(3)最大可关断阳极电流 ATO )最大可关断阳极电流I
——GTO额定电流 额定电流。 额定电流
(4) 电流关断增益βoff )
——最大可关断阳极电流与门极负脉冲电流最 最大可关断阳极电流与门极负脉冲电流最 大值I 之比称为电流关断增益。 大值 GM之比称为电流关断增益。
β off
I ATO = I GM
较大,使晶体管V 设计α2较大,使晶体管 2控 制灵敏,易于关断。 制灵敏,易于关断。 更接近1, 导通时α1+α2更接近 ,导 通时接近临界饱和, 通时接近临界饱和,有利门 极控制关断, 极控制关断,但导通时管压 降增大。 降增大。 多元集成结构, 多元集成结构,每个元阴极 和门极距离很短,使得P 和门极距离很短,使得 2基 区横向电阻很小, 区横向电阻很小,能从门极 抽出较大电流。 抽出较大电流。
GTO的开关时间比普通晶闸管短但比 的开关时间比普通晶闸管短但比GTR长,因此工 长 的开关时间比普通晶闸管短但比 作频率介于两者之间。 作频率介于两者之间。 不少GTO都制造成逆导型,类似于逆导晶闸管,需承 不少 都制造成逆导型,类似于逆导晶闸管, 都制造成逆导型 受反压时,应和电力二极管串联 。 受反压时,

可控硅参数说明

可控硅参数说明可控硅是一种常见的半导体器件,也被称为晶闸管。

它具有可控性强、效率高、性能稳定等优点,在电力控制和电子控制领域得到广泛应用。

下面是对可控硅参数的详细说明:1.最大额定电压(VRRM):可控硅能够承受的最大电压。

超过这个额定电压时,可控硅可能会出现击穿现象,导致失效或损坏。

2.最大平均整流电流(IOAV):在特定条件下,可控硅能够持续稳定工作的最大平均电流。

该参数与可控硅的热稳定性和功率特性有关。

3.最大重复峰值反向电压(VRSM):可控硅能够承受的最大峰值电压。

超过这个峰值电压时,可控硅可能会出现击穿现象,导致失效或损坏。

4.最大峰值水平电流(IPP):可控硅在极端工作条件下能够承受的瞬时峰值电流。

该参数与可控硅的电流承载能力和热稳定性有关。

5.最大正向门极触发电流(IFGT):为了激活可控硅,需要施加正向的门极触发电流。

该参数表示可控硅的最大门极触发电流。

6.最大正向临界触发电流(IFRM):当可控硅被正向触发时,电流开始流过器件,达到临界触发电流的值。

该参数表示可控硅的最大正向临界触发电流。

7.最大漏极电流(IRM):未施加触发电流时,可控硅漏极的泄露电流。

该参数表示可控硅的泄露电流水平。

8.最大导通电压降(VTM):在可控硅正向导通状态下,器件两端的电压降。

该参数对于功耗和电压稳定性非常重要。

9.最大反向漏电流(IRRM):在可控硅反向电压下,漏极的最大反向泄露电流。

该参数表示可控硅的漏路电流水平。

10. 最大引出电阻(Rth):可控硅的热阻值,表示器件在工作过程中产生的热量与温度之间的关系。

较小的热阻值有利于可控硅的散热和长时间稳定工作。

以上是对可控硅参数的详细说明,这些参数在可控硅的选择和应用中非常重要。

在使用可控硅时,需要根据具体的应用需求和工作环境来选择合适的可控硅型号和参数。

浅析晶闸管参数选择

浅析晶闸管参数选择晶闸管是一种半导体器件,具有开关功率和控制信号的功能。

在实际的电路设计和应用中,晶闸管的参数选择对于电路的性能和稳定性至关重要。

本文将从晶闸管的工作原理、参数及选择等方面进行浅析,以帮助读者更好地理解晶闸管的选择和应用。

一、晶闸管工作原理晶闸管是一种四层PNPN结构的半导体器件,其工作原理是基于PNP或NPN晶体管的耦合和反馈原理。

当晶闸管的控制端施加一个触发信号时,PNP-NPN结构内部会形成正反馈,导致晶闸管进入导通状态;当控制信号消失时,晶闸管会自动关闭。

这一特性使得晶闸管成为一种可以控制电流的开关器件,广泛应用于电力电子、变频调速、电磁启动、逆变器等领域。

二、晶闸管参数1. 最大反向电压(VRRM):晶闸管能够承受的最大反向电压,决定了晶闸管的安全工作范围。

2. 最大正向电流(ITAV):晶闸管可以持续工作的最大正向电流,直接关系到晶闸管的载流能力和散热能力。

3. 触发电流(IGT):晶闸管进入导通状态所需的最小控制电流,是控制晶闸管导通的关键参数。

4. 阻断能力(di/dt、dv/dt):晶闸管在承受高压和高电流冲击时的性能,涉及到晶闸管的抗干扰和稳定性。

5. 吸收时间(tq):晶闸管在关闭状态转换为导通状态所需的时间,决定了晶闸管的开关速度。

1. 根据实际需求确定VRRM和ITAV:根据具体的电路工作电压和电流要求,选择晶闸管的VRRM和ITAV参数,使其能够稳定工作在所需的工作环境中。

2. 考虑IGT和触发方式:根据控制信号的特点和控制电路的设计要求,选择适合的IGT和触发方式,保证晶闸管可以可靠地控制。

3. 注意di/dt、dv/dt和tq:在高频开关电路中,需要特别注意晶闸管的阻断能力和吸收时间,以降低电压和电流冲击造成的损坏。

四、举例分析以一款控制电机的变频调速器为例,其输出电流为20A,工作电压为220V,控制系统为数字信号控制。

根据上述参数选择原则,我们可以选择VRRM为400V的晶闸管,ITAV为30A,IGT为20mA,di/dt、dv/dt和tq都要能够适应变频调速器的工作条件。

「可控硅的符号、性能和参数介绍」

一、可控硅符号与性能介绍可控硅符号:可控硅也称作晶闸管,它是由PNPN四层半导体构成的元件,有三个电极,阳极A,阴极K和控制极G。

ﻫ可控硅在电路中能够实现交流电的无触点控制,以小电流控制大电流,并且不象继电器那样控制时有火花产生,而且动作快、寿命长、可靠性好。

在调速、调光、调压、调温以及其他各种控制电路中都有它的身影。

ﻫ可控硅分为单向的和双向的,符号也不同。

单向可控硅有三个PN结,由最外层的P极和N极引出两个电极,分别称为阳极和阴极,由中间的P极引出一个控制极。

单向可控硅有其独特的特性:当阳极接反向电压,或者阳极接正向电压但控制极不加电压时,它都不导通,而阳极和控制极同时接正向电压时,它就会变成导通状态。

一旦导通,控制电压便失去了对它的控制作用,不论有没有控制电压,也不论控制电压的极性如何,将一直处于导通状态。

要想关断,只有把阳极电压降低到某一临界值或者反向。

双向可控硅的引脚多数是按T1、T2、G的顺序从左至右排列(电极引脚向下,面对有字符的一面时)。

加在控制极G上的触发脉冲的大小或时间改变时,就能改变其导通电流的大小。

ﻫ与单向可控硅的区别是,双向可控硅G极上触发脉冲的极性改变时,其导通方向就随着极性的变化而改变,从而能够控制交流电负载。

而单向可控硅经触发后只能从阳极向阴极单方向导通,所以可控硅有单双向之分。

电子制作中常用可控硅,单向的有MCR-100等,双向的有TLC336等。

这是TLC336的样子:二、向强电冲击的先锋—可控硅可控硅是可控硅整流元件的简称,是一种具有三个PN 结的四层结构的大功率半导体器件。

实际上,可控硅的功用不仅是整流,它还可以用作无触点开关以快速接通或切断电路,实现将直流电变成交流电的逆变,将一种频率的交流电变成另一种频率的交流电,等等。

可控硅和其它半导体器件一样,其有体积小、效率高、稳定性好、工作可靠等优点。

它的出现,使半导体技术从弱电领域进入了强电领域,成为工业、农业、交通运输、军事科研以至商业、民用电器等方面争相采用ﻫ 1.可控硅的结构和特性的元件。

GTO驱动电路

GTO驱动电路门极可关断晶闸管GTO驱动电路1.电⼒电⼦器件驱动电路简介电⼒电⼦器件的驱动电路是指主电路与控制电路之间的接⼝,可使电⼒电⼦器件⼯作在较理想的开关状态,缩短开关时间,减⼩开关损耗,对装置的运⾏效率、可靠性和安全性都有重要的意义。

⼀些保护措施也往往设在驱动电路中,或通过驱动电路实现。

驱动电路的基本任务:按控制⽬标的要求施加开通或关断的信号;对半控型器件只需提供开通控制信号;对全控型器件则既要提供开通控制信号;⼜要提供关断控制信号。

门极可关断晶闸管简称GTO, 是⼀种通过门极来控制器件导通和关断的电⼒半导体器件,它的容量仅次于普通晶闸管,它应⽤的关键技术之⼀是其门极驱动电路的设计。

门极驱动电路设计不好,常常造成GTO晶闸管的损坏,⽽门极关断技术应特别予以重视。

门极可关断晶闸管GTO的电压、电流容量较⼤,与普通晶闸管接近,因⽽在兆⽡级以上的⼤功率场合仍有较多的应⽤。

2.GTO驱动电路的设计要求由于GTO是电流驱动型,所以它的开关频率不⾼。

GTO驱动电路通常包括开通驱动电路、关断驱动电路和门极反偏电路三部分,可分为脉冲变压器耦合式和直接耦合式两种类型。

⽤理想的门极驱动电流去控制GTO 的开通和关断过程,以提⾼开关速度,减少开关损耗。

GTO要求有正值的门极脉冲电流,触发其开通;但在关断时,要求很⼤幅度的负脉冲电流使其关断。

因此全控器件GTO的驱动器⽐半控型SCR复杂。

门极电路的设计不但关系到元件的可靠导通和关断, ⽽且直接影响到元件的开关时间、开关损耗, ⼯作频率、最⼤重复可控阳极电流等⼀系列重要指标。

门极电路包括门极开通电路和门极关断电路。

GTO对门极开通电路的要求:GTO的掣住电流⽐普通晶闸管⼤得多, 因此在感性负载的情况下, 脉冲宽度要⼤⼤加宽。

此外, 普通晶闸管的通态压降⽐较⼩, 当其⼀旦被触发导通后, 触发电流可以完全取消, 但对于GTO, 即使是阻性负载, 为了降低其通态压降,门极通常仍需保持⼀定的正向电流, 因此, 门极电路的功耗⽐普通品闸管的触发电路要⼤的多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档