聚丙烯的增韧改性)

聚丙烯的增韧改性)
聚丙烯的增韧改性)

常州轻工职业技术学院

综合实践

系别:轻工工程系

专业:高分子材料加工技术

班级: 10线缆331 学生姓名:王淮

学生学号: 1013433119 综合实践课题:浅谈聚丙烯的共混增韧改性指导教师:孙燕清

起迄日期: 202012.7.2-2012.7.28

浅谈聚丙烯的共混增韧改性

王淮

(常州轻工职业技术学院常州 213164)

摘要:聚丙烯作为重要的通用塑料品种,其共混改性是人们研究的重点。本文主要综述了PP增韧机理,重点介绍了PP的增韧改性体系,介绍了PP的共混改性技术,并展望了PP共混增韧改性的发展前景。

关键词:聚丙烯;增韧;橡胶;弹性体;改性

1 前言

聚丙烯(PP)是目前用量最大的通用塑料之一,因其具有密度小,价格低,无毒性,加工性能优良,耐腐蚀,透明性好,耐用力龟裂及耐化学药品性较佳等,被广泛的应用于化工,机械,汽车,日用品等各个领域,在制品领域中所占的市场份额越来越大,但PP材料的缺点是收缩率大,韧性差,耐磨性差,低温时脆性更大,作为结构件材料,存在许多不足,这就大大限制了PP的进一步推广应用,为此,提高PP的韧性,可以产生可观的经济效应。

PP 的共混改性具有耗资少, 生产周期短的特点[1]。PP 共混改性近年来成为PP增韧改性的重点,而橡胶或弹性体增韧PP因为改性效果明显而成为是目前研究比较多的一类方法。弹性体不同,用于增韧PP的效果也有差异。目前,用于PP增韧的弹性体有EPDM(三元乙丙橡胶),SBS(苯乙烯-丁二烯共聚物),SBR(乳聚丁苯橡胶),EPR(乙丙橡胶),BR (顺丁橡胶),POE(乙烯-聚烯烃共聚物)等等,本文就这方面的研究予以综述。

2 PP增韧机理

橡胶或热塑性弹性体与聚合物共混增韧是日前研究较多、增韧效果最明显的一类方法。关于PP增韧机理,普遍为人们所接受的主要是银纹一剪切带屈服理论,对该理论的研究己较为成熟,主要集中在银纹终止理论和剪切带屈服理论。

增韧过程可简单概括为:橡胶以分散相形式分散于基体树脂中,受外力作用时,橡胶粒了成为应力集中点,它在拉仲、压缩或冲击下发生变形,若两相界面k结良好,会导致颗粒所在区域产生大量银纹和剪切带而消耗能量;同时,银纹、橡胶粒了和剪切带又可终止银纹或剪切带,进一步转化为破坏性裂纹,从而起到了增韧作用。

只有当橡胶类聚合物与PP具有良好相容性时,并以一定的粒径分布于PP连续相中,橡胶类聚合物可与PP组成一种良好界面相4_作用的两相或多相形态结构体系。即在共混体系中,橡胶类聚合物呈细微化颗粒分散相(俗称“岛”),随机分布在PP连续相(俗称“海”)的PP球品中或球品之间,使PP大而脆的球品成为细而密集的球品,形成具有良好相界面作用的“海一岛”结构。当具有这种结构体系的增韧PP受到外力作用时,银纹、裂纹泪!裂缝首先产生在PP连续相中,处于PP裂纹和裂缝上的橡胶类聚合物粒了充当应力集中的中心,诱发大量银纹和剪切带产生,大量银纹和剪切带的产生吸收大量能量,从而阻止裂纹和裂缝穿过。另外,橡胶颗粒还可阻滞、转向并终止小裂纹发展,使之不致发展成破坏性裂纹,产生在PP相中的银纹可穿过小于其宽度的橡胶类聚合物粒了而生长[1]。

在弹性体颗粒的影响下,当材料受到外力时,高聚物中生长的银纹遇到橡胶类聚合物大粒了时能分裂成许多方向各异的小银纹。即银纹可在橡胶类聚合物粒了表面支化,银纹的分裂和支化能控制银纹的发展,阻止大银纹变成有破坏性的大裂纹和大裂缝;同时,银纹的增

长伴随着空化空间的发展,空化空间的发展阻止了基体内部裂纹的产生,延缓了材料的破坏,从而达到提高PP韧性的目的[2]。

3 PP增韧改性体系

3.1 PP/EPDM

近年的有关研究表明,β晶型的产生有利于PP韧性的提高,在PP中加入EPDM,使得PP晶型产生了由α~β晶型的本质转变[3],当EPDM用量为30~40%时,体系冲击强度剧增,而此时β晶型含量达13.2%,但是EPDM增加时,其强度,热变形温度又有所下降;且共混体系中由于掺加了EPDM,造成了共混物的强度,刚度和稳定性等方面相当程度的损失,同时EPDM的加入也大大提高了成本,使之在实际应用中受到了限制。

对于反应型PP/EPDM共混物,混合时应先将EPDM与引发剂和部分PP反应共混,再加剩余的PP共混,即采用“二段加料法”,比用一步得到的共混物性能更加优越。

PP/EPDM共混体系以及以它们为基体的填充增强体系具有优异的冲击性能及较理想的综合性能,这使其步入了工程塑料的应川领域。国内多以PP /EPDM体系生产汽车配件专用料且技术比较成熟。姚亚生采用动态硫化方法制备了PP /EPDM改性材料。与简单共混PP /EPDM相比,动态硫化PP /EPDM体系的冲击性能和流动性明显提高,弯曲弹性模量基本一致,拉伸强度略有下降。李庆国等[4]利用基本断裂功方法研究了PP /EPDM共混体系的断裂性能,发现EPDM的加入提高了PP的比基本断裂功,且比基本断裂功随EPDM用量的增加呈先增后减的趋势。

3.2 PP/SBS

SBS具有高弹性,耐低温等特性,同时它兼具硫化橡胶和热塑性的优良性能,可以较好的增韧PP,有关研究表明:当SBS的含量较低时,SBS作为分散相,它在连续相PP中形成“海岛”结构,此结构对PP的增韧起到了很重要的作用,它的突出优点是在较大幅度提高PP韧性的同时,其模量和强度下降不多,耐热性变化不大,这些优异的特性与其两相结构有密切关系。连续相PP起到了保持整体材料模量,强度和玻璃化温度不至于过多下降的作用,而分散相胶粒却能帮助和吸收能量。

当SBS的含量在0~10份时,共混物的冲击强度随SBS含量的增加而提高,如果含量超过15份后,冲击性能反而下降,当SBS含量在10~15份时,共混物的综合力学性能较高。SBS嵌段共聚物兼具硫化橡胶和热塑性塑料的性能。吴润德用SBS嵌段共聚物将交联聚苯乙烯刚性粒子进行包覆与PP复合。结果表明: 当SBS用量6% ~ 8%时, 聚丙烯发生脆韧转变, 拉伸强度稍有下降。PP复合材料断面图像显示交联聚苯乙烯粒子分布均匀, 粒子和基材界面模糊, 材料发生韧性破坏[5]。

3.3 PP/SBR

当分散相与连续相有很好的相容性,界面粘接很好时,可取得理想的增韧效果,谭晓明等[6]对PP/SBR,PP/PE-C等体系的力学性能加以研究,得到如下数据,见表1。

由表1可以发现PP/SBR力学性能优于PP/PE-C,谭晓明认为。这一原因是SBR有较多

非极性侧基,与非极性PP基体的相容性较好,而PE-C与PP相差较大,所以较难相容,因而增韧效果不如前者。

SBR增韧PP,在增韧的同时保持其刚性,使改性PP 的韧性和刚性保持平衡。王延伟等人[7]采用一种新型超细SBR 增韧PP,结果表明超细SBR 粉末橡胶的加入能够显著提高PP 的韧性;加入相容剂嵌段共混物后的增韧效果更好。采用PP 接枝SBR 与PP 共混,通过分析发现PP-g-SBR 作为改性剂能显著提高PP 的机械性能,尤其是缺口冲击强度。含PP-g-SBR 质量分数2% 的PP 在20℃时的缺口冲击强度提高了2.6倍[8]。

3.4 PP/EPR

由于EPR和PP都含有丙基[5],根据相似相容原理,它们之间应具有较好的相容性,另外EPR属于橡胶类,具有高弹性和良好的低温性能(脆化温度可达-60℃以下),因此EPR 是PP较好的增韧改性剂,但是,一般情况下,等规聚丙烯与EPR的相容性依然存在问题,它们的共混物具有多相的形态结构,在相同的共混工艺条件下,组成比及聚合物的熔融粘度差决定着此共混物的形态。当EPR与PP具有相近的熔融粘度时,所制得的共混物的形态结构较均匀;当各组分熔融粘度不同,若EPR粘度低于PP,则EPR可以被很好的分散,相反,EPR粘度高于PP,则EPR相畴粗大,且基本呈球形,一般来说,PP/EPR共混比在60/40~40/60范围内出现相转变,PP/EPR共混比超过60/40时,PP为连续相,得到的共混物是EPR增韧PP;低于40/60时,EPR为连续相,得到的时PP增强EPR。PP/EPR共混比为80/20时,PP/EPR 共混物的常温缺口冲击强度比纯PP高10倍左右,脆化温度比纯PP下降了4倍之多[6]。

PP/EPR共混体系的增韧效果与PP种类及乙丙共聚物的种类有关[7],乙丙橡胶用量相同的情况下,增韧共聚聚丙烯的效果远优于增韧均聚聚丙烯的效果;PP相同选择不同的乙丙共聚物,乙丙共聚物中,EPR的增韧效果要优于EPDM,见图1。另外,增韧剂的结晶度不同对增韧效果也有影响非晶EPR对PP增韧的效果要优于结晶EPR,但随着EPR用量的增加,体系拉伸屈服强度,断裂强度,硬度,弹性模量均有不同程度的下降,流动性变差,使之在实际应用中受到了限制。

3.5 PP/BR

顺丁橡胶具有高弹性,良好的低温性能(玻璃化温度Tg=-110℃左右)和耐磨性,耐挠曲性等优良的特性,而且它的溶解度参数(σ=7.7)和PP(σ=8.1)相近。实践证明,它们的相容性很好,增韧效果明显。以国产聚丙烯粉料(熔融指数0.4~0.8)和国产顺丁橡胶(门尼值44)按100:15(重量比)共混,所得的PP/BR共混物的常温悬臂梁冲击强度比聚丙烯高6倍,脆化温度由聚丙烯的31℃降低至8℃,同时,该共混物比PP,PP/LDPE,PP/EVA等的挤出膨胀比都小,成型后尺寸稳定性好。

3.6 PP/ EVA

EVA 是一种乙烯—乙酸乙烯的共聚物。采用EVA 改性填充PP, 能有效提高冲击性能, 断裂伸长率, 制品表面光泽也有所提高。所用EVA 的VAC( 乙酸乙烯) 质量含量为14% ~ 18%。此时EVA 为极性较低的非晶性材料, 加入PP 共混体系后有明显的增韧作用。研究结果表明, PP/ EVA 共混体系增韧机理主要是EVA 分散相粒子引起PP 基体屈服以及少量界面空洞化吸收了塑料性能。该共混物在冲击强度大幅度提高的同时, 刚性相对下降很小, 并且具有良好的加工性能, 其综合性能优于PP/ EPDM 共混物, 成本低于PP 与橡胶类聚合物的改性材料。

3.7 PP/POE

POE( 聚烯烃弹性体)是由美国DOW公司通过乙烯,辛烯的原位配合技术生产的一种饱和的乙烯-辛烯共聚物,它具有非常窄的分子分布和一定的结晶度。POE作为一种热塑性弹性体,既有塑料的热塑性,又有橡胶的交联性,与EDPM,SBS,EPR相比,其塑性,橡胶特性,加工性能都具有优势,POE的热稳定性,光学性能及抗开裂性能优于EV A;POE的气候老化性优于SBS;POE的脆化温度低于-76℃,POE的剪切稀化性好,热稳定性高,有利于高速挤出和模塑;POE的橡胶特性比EPDM,EPR更优,它可通过过氧化物,硅烷交联剂等交联,交联物的机械性能。抗化学试剂性能及臭氧方面虽然和EPDM相近,但POE的抗热老化性及抗紫外线老化比EPDM,EPR好的多,更适合户外使用,且商品化的POE本身呈颗粒状,可以直接加入到PP中实行改性,因此,POE在加工操作上更为简便,这样可大大降低成本[9]。

由于POE[9]为颗粒状,且具有较小的内聚能,较高的剪切敏感性,其表观剪切粘度对温度的依赖和PP相近,所以在聚丙烯中相容性和分散特别好,在PP基体内易得到较小的分散相粒径和较窄的粒径分布,因而对PP的增韧效果特别明显,无论是均聚PP,共聚PP,还是高流动性PP,POE的增韧效果都优于EPDM或EPR,三种共混体系中相同含量的POE,EPDM,EPR对PP的增韧效果是POE>EPDM>EPR,且当POE的含量超过15%时,对PP的增韧效果明显提高,因此可减少增韧剂的用量;体系弯曲模量都降低,但POE>EPDM >EPR。

此外POE[9]对高流动性PP仍有良好的增韧效果,见表2,而EPDM,EPR当PP的MI

超过15g/10min时,PP共混物的低温冲击强度显著下降,体系呈现脆性,如图2所示。

表2 POE对高流动性PP的增韧改性

图2 不同熔体指数PP体系的低温(-30%)冲击能

4 共混改性技术

PP 共混改性是物理改性中的一种重要技术。它是指用其他塑料、橡胶或热塑性弹性体混入PP 中较大的晶球内,以此改善PP 的韧性和低温脆性。按共混物组成可分为塑—塑共混及橡-塑共混体系,其中较常见的是PP /高密度聚乙烯( HDPE) 、PP /低密度聚乙烯LDPE) 、PP /尼龙等体系。常用的橡胶增韧PP 体系有PP /EPR( 乙丙橡胶) 、PP /EPDM( 一元乙丙橡胶) 、PP /SBS( 苯乙烯-丁二烯.苯乙烯热塑性弹性体) 、PP /BR( 顺丁橡胶) 和PP /POE 等。PP还可采用三元共混体系,此时某些共混改性剂对改善PP 的脆化温度有协同效应,即三元共混体系的抗冲击性能及其他各项力学性能均优于二元体系。

4.1 关键技术

高分子的共混改性技术又称之为ABC技术,即合金(Alloy )、共混(Blend)和复合化(Composite)技术.它是利用容度积参数相近和反应共混的原理在反应器或螺杆中将两种或两种以上的聚合物材料及其助剂通过机械掺混而最终形成一种宏观上均相、微观上分相的新材料。显然这种共混物的性能主要取决于共混组分的相容性及其相对含量;分散相的尺寸及其尺寸分布以及两相界面的相互作用。

近年来,随着催化合金(Catalloy)和反应器制造(Reactor-made)技术的间世,丙烯与乙烯、。一烯烃的共聚可以显著地改善聚丙烯的冲击韧性,甚至可以聚合出乙丙橡胶含量高达35%、橡胶粒径分布为0.4~1.0微米的超高冲击韧性的聚丙烯合金,并且已经开始进入商业化生产阶段。

α-烯烃共聚的PP的冲击韧性明显高于均聚丙烯,这是由于聚乙烯的脆化温度(-120℃)远远低于聚丙烯(10℃ ),以及乙烯同丙烯的相互作用改变了聚丙烯的结晶状态所致。30%乙丙橡胶增韧均聚丙烯和共聚丙烯的结果。

在相同橡胶含量下,增韧共聚丙烯的效果远远好于增韧均聚丙烯的效果。同时,还可看出其增韧效果还同橡胶的种类有关。通常,乙丙橡胶分为二元乙丙橡胶(EPR)和三元乙丙橡胶(EPDM ),根据合成条件和结构不同,它们又分为结晶、无定形和半结晶三类。不同结晶状态的EPR含量对聚丙烯增韧效果的影响。可以看出,橡胶含量30%左右时增韧效果最好。结晶度越低,增韧效果越好[10]。

为了达到更好的增韧效果及减少价格昂贵的橡胶用量,普遍采用二元共混的方法增韧PP。郦华兴等用SBS作为增韧剂、HDPE为补强相容剂对PP进行改性。研究表明PP/ SBS 一元共混效果没有PP/ SBS/ HDPE二元共混效果好。一元共混物中球品的分散度和均匀性差,SBS在基体中分散效果不佳。在二元共混物中,由于HDPE的加入,使共混体系的界面相互渗透,SBS颗粒细化分散均匀。同时,HDPE的加入也使PP细化从而提高了共混物综合性能。任巨光等[11]也认为,PP/ SBS/ BR二元共混体系中,SBS与BR并用增韧PP呈现显著的协同效应,在弹性体总掺入量相同条件下,上述二元共混体系的冲击强度均高于PP/ SI3S或者PP/ BR一元共混体系。类似的二元共混体系还有PP/LDPE/ EPR, PP/ LDPE/ EV A、PP/ H DPE/ EPDM等。

4.2 共混工艺条件

共混工艺条件变化引起共混体系的形态变化,使得共混物的性能也发生相应的变化。共混工艺条件主要包括共混方法、共混温度及共混时间等。

共混方法不同, 如用双辊炼塑机、密炼机、挤出、熔液或乳液共混等, 共混物的结构形态不同, 其性能各异. 此外, 共混的加料方式对共混物的性能也有影响. 一般采用二阶共混分散模式: 母料配置和母料稀释. 采用这种模式共混时, 分散相粒径分布接近于对称分

布, 并可利用此模式来控制分散相粒径的大小及分布的宽窄。

共混温度是影响混合效果好坏的极为重要的因素, 因为共混温度与共混物的形态结构有密切的关系。一般认为, 共混温度以超过塑料的软化点100 ℃为宜. 聚丙烯是一种结晶物, 共混温度将会影响其结晶形态, 从而影响共混物性能. 聚丙烯在高温条件下结晶时会得到大球晶的形态[12],这是改性时不希望出现的.此外, 共混时间也是必须控制的因素. 同一共混体系, 在相同温度下, 共混时间的长短对共混物的性能有很大影响. 根据时温等效原理也可得出共混时间过长, 等同于共混温度过高的效果。

5 PP共混增韧改性的发展前景

目前共混已成为PP改性中普遍使用的有效手段之一,其成本较低,工艺简单,技术灵活性大,在国内外都有很好的发展前景。关于PP的增韧增强改性处在一个高速发展阶段,如何在PP耐冲击性能提高的同时,避免弹性模量、刚度等降低一直是需要解决的问题传统弹性体增韧引进了低模量、低强度的橡胶相,通常使材料在抗冲击强度提高的同时,其使用温度、刚度和拉伸强度都有不同程度的降低;同时由于橡胶体的加入学致混合体系黏度大,流动性差,不利于共混物的加工;刚性粒子易在基体内形缺陷,尽管能提高体系的硬度和刚性,但是降低了基体强度和韧性弹性体与刚性粒子协同增韧PP,既避免了加工上的缺陷,又避免了刚性粒子在PP基体中分散引起的缺陷,因此弹性体协同刚性粒子将会是未来刘一PP 增韧改性的一个主要方向[13]。PP 的共混增韧改性足一个研究非常活跃的领域,涉及的共混体系也是种类繁多使用单一的改性剂往往不能达到对材料较高综合性能的要求而助增韧剂、相容剂以及界面改性剂等第三组分的加入已经成为当今的研究重点[14]。

6 结束语

近年来,PP 的增韧改性, 已成为其工程化的重要手段。PP 的原材料优势, 使其在塑料的开发与应用中, 始终占有相当重要的地位。高分子合金化的思想, 开辟了塑料应用新的前景, 也将PP 再一次推向了科研的前沿。EPDM、POE 增韧PP 后, 所带来的材料的良好的综合性能, 使其在汽车行业得到了普遍的应用。纳米技术在增韧PP 中的运用, 又使制备高刚性高韧性的PP 纳米复合材料成为可能。可以预见, 未来的PP 复合材料, 将会得到更加广泛的应用[15]。

PP增韧技术的研究正处于高速发展的时期,有不少厂家和研究单位经过不懈的努力,取得了一系列的成果。然而,相对于国外来说,我国的研究起步较晚,研究技术相对落后,形成商品化的品种不多,性能上也与世界先进水平有一定差距,但是,大力发展高抗冲PP,PVC,PE等塑料合金是我国塑料工业的发展方向,因此可以预料,今后我国的高抗冲塑料,尤其是高抗冲PP,将会取得更快速的发展。

参考文献

[1]王坷等. PP增韧技术的研究进展[J]. 合成树脂及塑料, 1996.(13):58-60

[2]陈智刚等. 聚丙烯增韧改性技术综述[J]. 华北工学院学报, 2002.28(5):

[3]张凌燕等. 聚丙烯增韧研究最新进展[J].塑料, 2008.13(4):23-25

[4]李跃文等. 聚丙烯增韧改性的方法及机理[J]. 化学推进剂与高分子材料, 2007.12(5):69-71

[5]张金柱. 新型热塑性弹性体POE的性能及其在PP增韧改性中的应用[J]. 塑料科技, 1999.(2):5-7

[6]谭晓明等. 阻燃抗冲聚丙烯的制备及性能研究[J]. 料物理与化学, 2000.12(3):32-35

[7]方少明等. SBS和BR对PP增韧改性协同作用的研究[J]. 塑料工业, 2001.(6):39-41

[8]赵红振. 聚丙烯增韧改性最新进展[J]. 化学推进剂与高分子材料, 2007.5(1):27-31

[9]肖勤莎等. 我国增韧聚丙烯的开发现状及应用[J]. 现代塑料加工应用, 1998, 10(5) : 44-48.

[10]李蕴能等. 聚丙烯共混改性研究新进展[J]. 中国科学院化学研究所,1996.24(3):51-54

[11]任巨光. 我国聚丙烯增韧改性研究进展[J]. 现代塑料加工应用,2002.14(3):42-45

[12]张凌燕. 聚丙烯增韧研究最新进展[J]. 塑料, 2008.37(4):16-19

[13]宣兆龙. 聚丙烯的共混改性研究[J]. 塑料科技,1999.(6) : 17-19

[14]魏京华. 聚丙烯共混增韧研究进展[J].合成树脂及塑,2002.19(2):47-51

[15]张强,朱光明,付东升. 聚丙烯共混增韧改性的研究进展[J]. 现代塑料加工应用,2003.15(3): 58-61

2020年(塑料橡胶材料)聚丙烯塑料的改性及应用(三)

(塑料橡胶材料)聚丙烯塑料的改性及应用(三)

热塑性低烟无卤阻燃电缆料性能

玻纤增强聚丙烯的抗蠕变性得到改善,能够比聚碳酸酯、耐热ABS、聚甲醛等塑料的性能更好。此外在150℃下保持1500小时,其拉伸强度和热变形温度都不会下降,在沸水和水蒸汽中可长期使用。 玻纤增强聚丙烯的加工流动性因玻纤的存在有所下降,但和其它塑料相比,仍然属良好的加工流动性。提高成型加工温度可使其流动性得到改善。

2改性聚丙烯发展动向

聚丙烯在生产数量迅速发展的同时,也在性能上不断出新,使其应用的广度和深度不断变化,近年来或者通过在聚合反应时加以改进,或者在聚合后造粒时采取措施,有壹些更具独特性能的聚丙烯新的品种问世,如透明聚丙烯、高熔体强度聚丙烯等。 2.1透明改性 PP的结晶是造成不透明的主要原因,利用急冷冻结PP的结晶趋向,能够得到透明的薄膜,但有壹定壁厚的制品,因热传导需要时间,芯层不可能迅速被冷却冻结,因此对于有壹定厚度的制品不能指望用急冷的办法提高透明度,必须从PP的结晶规律和影响因素入手。 经壹定技术手段得到的改性PP,可具有优良的透明性和表面光泽度,甚至能够和典型的透明塑料(如PET、PVC、PS等)相媲美。透明PP更为优越的是热变形温度高,壹般可高于110℃,有的甚至可达135℃,而上述三种透明塑料的热变形温度都低于90℃。由于透明PP的性能优势明显,近年来在全球都得以迅速发展,应用领域从家庭日用品到医疗器械,从包装用品到耐热器皿(微波炉加热用),都在大量使用。 PP的透明性提高可通过以下三种途径: (1)采用茂金属催化剂聚合出具有透明性的PP; (2)通过无规共聚得到透明性PP; (3)在普通聚丙烯中加入透明改性剂(主要是成核剂)提高其透明性。 4.1.1国内外发展态势 据日本理化株式会社介绍,日本7%的PP为透明PP,透明PP的产量在400kt/a之上。日本透明PP市场以微波炉炊具及家具俩方面的消耗量最大。日本出光化学X公司制造出和PVC具有同样透明性和光泽性的透明PP,当下能够广泛替代普通透明PVC制作文具、笔记本壹类的包装物,价格只相当于PVC的20%-30%,1999年出售了1200t透明PP。

聚丙烯PP改性料的收缩率综述

聚丙烯改性料的收缩率控制是聚丙烯改性的一个重要方面。收缩率控制的好对聚丙烯改性料的推广使用有重要意义,同时也是保证产品质量的一个重要方面。特别是利用改性聚丙烯取代传统的工程塑料,收缩率这一点显得十分重要。聚丙烯改性在国内已经有成熟的技术,对聚丙烯改性理化性能的研究报导也很多,但对收缩率问题则很少有专门的报导。本人集多年的实践经验就聚丙烯改性料的收缩率控制问题做了一些探讨。 1. 试验部分 1.1 试验原料聚丙烯(PP)辽阳石油化纤总公司;高密度聚乙烯(HDPE)辽阳石油化纤总公司 POE 美国杜邦公司; EPDM 荷兰DSM公司; SBS 岳阳石化总厂玻纤上海耀华;碳酸钙营口大石桥;滑石粉海城金新云母粉河北;助剂市售;低密度聚乙烯(LDPE)燕山石化 1.2 试验设备及仪器挤出机 TM40MVC/D-40 意大利MARIS; 注塑机 TP120T 北京信冠机械设备制造有限公司熔融指数仪μPXRZ-400C 吉林大学科教仪器厂; 卡尺; 检测方法: ASTM D955 1.3 试样制备和检测方法原料混合----挤出造粒----注塑打样(放置24h)----收缩率检测(环境温度为23℃)注塑条件:温度170℃---190℃压力80 2. 结果讨论聚丙烯的收缩成型大是聚丙烯本身的一大缺点,这主要是由于聚丙烯的高结晶度所致。结晶后的聚丙烯比重增大、体积缩小。结晶度为0%和100%时其比重分别为0.851和0.936。因此纯PP的成型收缩一般在1.7---2.2之间。控制聚丙烯的成型收缩率主要是控制其原料成型时的结晶度:结晶度越小其成型收缩率也越小;反之,结晶度越高则成型收缩率也越大。在聚丙烯改性塑料中,由于各种改性剂的加入都不同程度的破坏了聚丙烯原有的结晶度,从而改变了聚丙烯原有的成型收缩率。 2.1 橡胶对聚丙烯收缩率的影响图1所示橡胶对PP改性料成型收缩率的影响。从图中可以看出随橡胶含量的增大,成型收缩率呈下降趋势。这主要是由于橡胶的加入破坏了聚丙烯自身的结晶度,从而导致成型收缩率的下降,而且三种弹性体POE、EPDM、SBS对成型收缩率影响也有差异。 a: POE b:EPDM c:SBS a:滑石粉 b:CaCO3 c:云母粉 2.2 矿物填充对聚丙烯改性料成型收缩率的影响聚丙烯用的矿物填加剂主要有碳酸钙、滑石粉、云母粉等。各种矿物填加剂对聚丙烯成型收缩率的影响如图2所示,从图中可以看出矿物填加剂对PP改性料成型收缩率的影响比较明显。矿物填加剂对聚丙烯改性料成型收缩率的影响主要有三个方面:一是矿物填加剂本身不

聚丙烯酸酯

聚丙烯酸酯 以丙烯酸酯类为单体的均聚物或共聚物。R、R'为取代基,取代基不同,聚合物性质也不同。丙烯酸酯在光、热及引发剂作用下非常容易聚合。 基本信息: ?中文名称聚丙烯酸酯 ?外文名称polyacrylate ?性状无色或微黄色透明粘稠液体 ?毒性无毒 性质应用: 聚丙烯酸酯易溶于丙酮、乙酸乙酯、苯及二氯乙烷,而不溶于水。由于其高分子链的柔顺性,它们的玻璃化温度(T g)较低,并随酯基的碳原子数及其支化情况而异,当碳原子数为8时最低。在相同碳原子数的酯基中,支化者玻璃化温度较高(见表)。 玻璃化温度聚丙烯酸酯能形成光泽好而耐水的膜,粘合牢固,不易剥落,在室温下柔韧而有弹性,耐候性好,但抗拉强度不高。可做高级装饰涂料。 聚丙烯酸酯有粘合性,可用作压敏性胶粘剂和热敏性胶粘剂。由于它的耐老化性能好,粘结污染小,使用方便,其产量增加较快。在纺织工业方面,聚丙烯酸酯可用于浆纱、印花和后整理,用它整理过的纺织品,挺括美观,手感好;它还可用作无纺布和植绒、植毛产品的粘合剂。聚丙烯酸酯可用于鞣制皮革,可增加皮革的光泽、防水性和弹性。 类型: 最简单的丙烯酸酯是丙烯酸甲酯,可由丙烯酸与甲醇酯化,或由氰乙醇与甲醇在浓硫酸作用下反应而得。它是具有异臭的液体,其沸点为80℃,密度为0.950

克/厘米(25℃)。聚丙烯酸甲酯PMA在室温下是完全没有粘性的物质,强韧,略具弹性,硬度中等,能形成可挠性膜,其断裂伸长约为750%。 聚丙烯酸乙酯较聚丙烯酸甲酯柔软,伸长率为1800%。聚丙烯酸丁酯就更柔软,伸长率为2000%,并且在室温下具有很大的粘合性。酯基有8个碳原子的聚丙烯酸-2-乙基己酯的粘合性又大很多。所以,用聚丙烯酸酯作胶粘剂时,多通过这些酯的共聚合来综合调节其弹性、粘合性和可挠性等。 丙烯酸酯与丙烯酸的失水甘油酯、羟烷基酯或丙烯酸等反应性单体的共聚物,经加热固化后可得到表面硬度高、耐污染性和光泽良好的涂膜。 丙烯酸甲酯与季戊四醇、三羟甲基丙烷等反应,可得到多官能性交联剂,可用于光敏涂料、光敏油墨和感光树脂印刷版等方面。 α-氰代丙烯酸酯的-CN基的极性强,渗透性能又好,聚合后的粘合强度很高,是金属、玻璃、皮革、木材等的良好胶粘剂。α-氰代丙烯酸酯胶粘剂是以单体状态保存的胶粘剂,滴至粘合部位后很快就能聚合而粘合,称为瞬间胶粘剂。 聚丙烯酸酯乳液的改性 以丙烯酸或丙烯酸酯类为主要原料合成的丙烯酸酯乳液具有优异的光稳定性和耐候性,良好的耐水、耐碱、耐化学品性能和粘接性能,因此广泛地用作胶粘剂、涂料成膜剂以及日用化工、化学电源、功能膜、医用高分子、纳米材料以及水处理等方面。但是丙烯酸酯乳液存在着低温变脆、高温变黏失强、易回黏等缺点,限制了它的应用范围和使用价值。近年来,随着聚合技术的不断完善和发展,以及人们对环保产品的重视,丙烯酸酯乳液的改性受到了人们的广泛关注。一般来说,主要从两个方面对丙烯酸酯乳液进行改性:一是引入新的功能性单体;二是采用新的乳液聚合技术。 1.有机硅改性 丙烯酸酯聚合物具有优良的成膜性、粘接性、保光性、耐候性、耐腐烛性和柔韧性。但其本身是热塑性的,线性分子上又缺少交联点,难以形成三维网状交联胶膜,因此其耐水性、耐沾污性差,低温易变脆、高温易发黏。而有机硅树脂中的Si-O 键能(450kJ/mol)远大于C-C键能(351kJ/mol),内旋转能垒低,分子摩尔体积大,表面能小,具有良好的耐紫外光、耐候性、耐沾污性和耐化学介质性等特性。用有机桂改性丙烯酸酯乳液,可以综合二者的优点,改善丙稀酸酯乳液"热黏冷脆"、耐候、耐水等性能,将其应用范围扩大至胶粘剂、外墙涂料、皮革涂饰剂、织物整理剂和印花等领域。 有机硅改性聚丙稀酸酯分为物理改性和化学改性两种方法。其中,用有机硅氧烷对丙烯酸酯类乳液进行物理改性的方法通常有两种:一是有机硅氧烷单体作为粘附力促进剂和偶联剂直接加入到丙烯酸酯类乳液中进行改性;二是先将有机硅氧烷制成有机乳液,再将它与丙烯酸酯类乳液冷拼共混进行改性。化学改性法是基于聚硅氧烷和聚丙烯酸酯之间的化学反应,从而将有机硅分子和聚丙烯酸酯有机

聚丙烯增韧改性的方法及机理

聚丙烯增韧改性的方法及机理

聚丙烯增韧改性的方法及机理 PP本身脆性(尤其是低温脆性)较大,用于对韧性要求较高的产品(特别是结构材料)时必须对PP进行增韧改性。 1 无规共聚改性 采用生产等规PP的工艺路线和方法,使丙烯和乙烯的混合气体进行共聚,即可制得主链中无规则分布丙烯和乙烯链节的共聚物。共聚物中乙烯的质量分数一般为1%~7%。乙烯链节的无规引入降低了PP的结晶度,乙烯含量为20%时结晶变得困难,含量为30%时几乎完全不能结晶。 与等规PP相比,无规共聚PP结晶度和熔点低,较柔软,透明,温度低于0℃时仍具有良好的冲击强度,一20%时才达到应用极限,但其刚性、硬度、耐蠕变性等要比均聚PP低10%~15%。 无规共聚PP主要用于生产透明度和冲击强度好的薄膜、中空吹塑和注塑制品。其初始热合温度较低,乙烯含量高的共聚物在共挤出薄膜或复合薄膜中作为特殊热合层得到了广泛应用 2 嵌段共聚改性 乙丙嵌段共聚技术在20世纪60年代即已出现,其后很快得到推广。美国从1962年开始工业化规模生产(丙烯/乙烯)嵌段共聚物,该共聚物含有65%一85%的等规PP、10%一30%的乙丙共聚物和5%的无规PP 。(丙烯/乙烯)嵌段共聚物与无规共聚PP一样,也可以在制造等规PP的设备中生产,有连续法和间歇法两种工艺路线。(丙烯/乙烯)嵌段共聚物具有与等规PP及高密度聚乙烯(HDPE)相似的高结晶度及相应特征,其具体性能取决于乙烯含量、嵌段结构、分子量大小及分布等。共聚物的嵌段结构有多种形式,如有嵌段的无规共聚物、分段嵌段共聚物、末端嵌段共聚物等。目前工业生产的主要是末端嵌段共聚物以及PP、聚乙烯、末端嵌段共聚物三者的混合物。通常(丙烯/乙烯)嵌段共聚物中乙烯质量分数为5%一20%。(丙烯/乙烯)嵌段共聚物既有较好的刚性,又有好的低温韧性,其增韧效果比无规共聚物要好。其主要用途为制造大型容器、周转箱、中空吹塑容器、机械零件、电线电缆包覆制品,也可用于生产薄膜等产品 3 接枝共聚改性 PP接枝共聚物是在PP主链的某些原子上接枝化学结构与主链不同的大分子链段,以赋予聚合物优良的特性。在PP分子链上接枝弹性链段有助于提高PP的冲击强度和低温性能。接枝共聚的方法有溶液接枝、悬浮接枝、熔融接枝和固相接枝。PP接枝共聚物经常用作PP与其它聚合物或无机填料之间的增容剂。单独用作PP增韧剂的例子也有报道,如Xu Gang等通过紫外线照射得到了高接枝率的PP一丙烯酰亚胺接枝共聚物,发现它对PP有很好的增韧效果。单独用做塑料的例子几乎没有 4 改变立体结构 工业上所用的PP通常都是等规立构PP。近年来采用间规选择性茂金属催化剂合成了间规立构PP。与等规立构PP相比,间规立构PP具有较低的结晶度和弯曲强度、较高的熔体粘度和弯曲弹性模量、良好的透明性和热密封性、优异的抗冲击性和压延性等。另外选用对称性好的单点茂金属催化剂可以合成具有良好弹性的高相对分子质量的无规立构PP和无规一等规立体嵌段的弹性PP。特别是后者,由于等规链段的物理交联作用,使之具有良好的弹性和力学性能,属于一种新型的热塑性弹性体。

聚丙烯的透明改性

聚丙烯的透明改性 魏苗苗 (湖南科技职业学院,湖南长沙 410118) 摘要:针对聚丙烯(PP)透明性差的缺点,分别用添加透明改性剂、共混透明改性、双向拉伸透明改性、控制加工工艺条件、直接合成透明PP等方法来提高PP的透明性,并分别对各种改性方法的优缺点进行总结,为进一步研究PP的透明改性提供依据。 关键词:聚丙烯;结晶度;透明改性; Modification of T ransparence of Polypropylene W eiMiaomiao (Hunan Vocational College of Science and Technology, Changsha 410118,China) Abstract:aiming at the polypropylene (PP) the poor quality of transparency, respectively for add transparent modifier blending modified two-way stretch transparent transparent modified control processing condition the direct synthesis of transparent PP etc a method to improve the transparency of the PP, and separately to all sorts of advantages and disadvantages of the modification methods to carry on the summary, for further research of the modification of PP transparent provides the basis. Key words :Polypropylene;;crystallinity;Transparent modification 0 引言 聚丙烯(PP)具有良好的机械性能、无毒、相对密度低、耐热、耐化学药品、容易加工成型等优良特性,且性能价格比高,已成为五大通用合成树脂中增长速度最快、新品开发最为活跃的品种。但PP的结晶性使其制品的光泽和透明性差,外观缺少美感,使其在透明包装、日用品等应用领域的发展受到制约。而PP经过

聚丙烯增韧改性

聚丙烯增韧 1.聚丙烯的发展历程 自1957年意大利蒙科卡迪公司首次实现工业化以来,聚丙烯(PP)树脂及其制品发展速度一直位于各种塑料之首。在1978年PP的世界产量超过了400万吨/年,仅次于聚乙烯、聚氯乙烯和聚苯乙烯,位居世界第四位;1995年PP的世界产量达1910万吨/年,超过聚苯乙烯位居第三;2000年PP的世界产量为2820万吨/年,超过聚氯乙烯的2600万吨/年上升为世界第二;目前聚丙烯的世界产量达到了3838万吨/年。在此同时,我国聚丙烯工业发展迅猛,1995年产量为万吨,2000年已经突破300万吨,2004年产量迅猛增至万吨。初步估计到2006年底,我国PP 的年总生产能力已经超过650万吨,在一定程度上缓解我国PP的供需紧张。 聚丙烯由于其优异的使用潜能,广泛应用于注塑成型、薄膜薄片、单丝、纤维、中空成型、挤出成型等制品,普及及工农业及生活日用品的各个方面。如此迅速的增长速度主要归因于其可以替代其它塑料树脂以及能够开发应用各种新型的塑料、橡胶和纤维的优异性能:原料来源丰富,价格低廉并且无毒无害;相对密度小,透光性好,有较好的耐热性等。 但是PP有个很明显的缺点就是韧性较差,对缺口十分敏感,这在很大程度上限制了其在工程领域的应用空间。因此近些年来,国内外众多学者专家在PP改性的理论基础和应用研究中展开了众多的研究取得一定成效的工作,通过共混、填充和增强等方法改性之后的聚丙烯复合材料也已经成功地运用到了实际生产中,扩大了材料的使用范围,在家电、汽车、仪表等工业各领域占据了重要地位。 近十多年来,在我国经济高速增长的带动下,聚丙烯的应用技术不断进步。但是我国的聚丙烯进展与国外相比,在聚合技术、工业化成本、产品数量、品种类别等方面都存在着很明显的差距。根据我国发展中国家的国情,大力开展聚丙烯多元复合材料改性研究是解决上述问题最有效的途径。采用塑料的高性能化合成本不断的降低来推动PP的发展,因此目前是聚丙烯快速发展的良好机会。通过各种手段改善PP性能,最终使得PP几乎可以与某些工程塑料相媲美,从而增加PP 和其它热塑性塑料树脂甚至是某些工程塑料的竞争能力。 2. 聚丙烯的性能及其改性

聚丙烯改性

聚丙烯改性 李健 (烟台大学化学生物理工学院化064-1 烟台264000) 摘要由于聚丙烯突出的物化性能,其树脂得到了越来越广泛的应用,但聚丙烯树脂仍有许多缺点,克服这些缺点的方法就是对其进行改性。本文主要通过POE对聚丙烯改性以提高其韧性和硬度,以及通过Mg(OH)2改性聚丙烯提高其阻燃性能。 关键词PP 共混改性韧性阻燃性 增韧剂POE是茂金属催化的乙烯-辛烯共聚物,其特点是相对分子质量分布窄,密度低,各项性能均衡,易加工,赋予制品高韧、高透明性和高流动性。特别是对PP的增韧改性效果更加明显,对传统增韧剂EPDM、EPR构成了有力竟争。因此POE增韧PP引起广泛关注,近几年国内李蕴能、张金柱等陆续发表了POE具有较高剪切敏感性,加工时与PP相容性好,其表观切变粘度对温度的依赖性更接近PP,与P共混时更容易得到较小的弱性体料径和较窄的粒径分布,因而增韧效果更好。无论是对普通PP、共聚PP还是高流动性PP,POE的增韧效果都优于EPDM或EPR。由于POE不仅具有橡胶的弹性,同时又具有塑料的刚性,因此在增韧PP的同时还能保持较高的模量、拉伸强度及良好的加工流动性。另外,POE不含不饱和双键,耐候性也优于EPDM、EPR、SBS等。 与其他阻燃剂相比,在对聚丙烯的阻燃改性中,氢氧化镁等属于无机阻燃剂,阻燃机理是燃烧时释放出结合的水,同时高填充量也降低了有机材料的可燃性。用氢氧化镁等阻燃优点是环保性好,不释放烟雾,不产生有害和有争议的气体,成本低廉。近年来氢氧化镁类阻燃剂受到广泛关注,朱磊等研究了用不同表面活性剂改性氢氧化镁(Mg(OH)2)阻燃剂的用量对复合材料阻燃性能和力学性能的影响。结果明,硅烷偶联剂表面改性后Mg(OH)2能更好改善复合材料的力学性能,显著提高聚丙烯的阻燃性能,在用量为65%,氧指数达到32.4%,垂直燃烧特性可达UL-94V.0级。 1.实验部分 1.1实验原料及仪器 1.1.1实验原料:聚丙烯,LDPE,抗氧剂1010,POE,Mg(OH)2等 1.1.2 实验仪器:GRH-10D型系列高速加热混合机,SHJ-30同向双螺杆挤出机,JPH-80四缸全液压注射机,XHR-150型塑料硬度计,XJC-250D悬、简组合冲击试验机,XZT-100氧指数测定仪 1.2聚丙烯标准样条的制备 按照实验前确定的配方进行称量,总重量500g,具体配方见表一。按照实验设计的工艺条件升温高速混合机、双螺杆挤出机和注射机。利用高速混合机混合均匀,混好的物料加入双螺杆挤出机中挤出造粒,粒料干燥后采用注射机注射标准样条,待测。 1.3聚丙烯标准样条的性能测试 1.3.1硬度测试:采用厚度均匀、表面光滑、平整、无气泡、无机械损伤及杂质的样条,厚度不小于4mm,试样大小应保证每个测量点的中心与试样边缘距离不小于10mm,各测量点之间的距离不小于10mm。利用XHR-150型塑料硬度计测定其硬度值,具体数据见表二。

聚丙烯改性 555

聚丙烯改性 【摘要】聚丙烯是一种综合性能良好的通用塑料,在日常用品,包装材料,家用电器,汽车工业,建筑施工等行业得到广泛应用,是目前增长速度最快的通用型热塑性塑料。但聚丙烯树脂仍存在许多缺点,克服这些缺点的方法就是对其进行改性。本文主要通过POE对聚丙烯改性以提高其韧性和硬度,以及通过氢氧化镁改性聚丙烯提高其阻燃性能。 【关键词】聚丙烯共混改性增韧阻燃 前言 聚丙烯(PP)是五大通用塑料之一,具有密度小、刚性好、强度高、耐挠曲、耐化学腐蚀、绝缘性好等优点,但聚丙烯熔点较低,热变形温度低,低温脆性,抗冲击强度较低等缺点,很大程度上限制了其在工程中的应用。 本实验是对聚丙烯进行改性,提高阻燃性和韧性。聚丙烯是一种性能优良的塑料,它的耐腐蚀性、耐折叠性和电绝缘性好,耐热性和机械强度优于聚乙烯,而且价格低廉,容易加工,故应用较广。但是聚丙烯的抗冲击强度不够高,低温下发脆。为了提高它的韧性,常常将聚丙烯和POE共混改善它的韧性。增韧剂POE是茂金属催化的乙烯-辛烯共聚物,其特点是相对分子质量分布窄,密度低,各项性能均衡,易加工,赋予制品高韧、高透明性和高流动性。特别是对聚丙烯的增韧改性效果更加明显,对传统增韧剂EPDM、EPR构成了有力竟争。近几年国内李蕴能、张金柱等陆续发表了POE具有较高剪切敏感性,加工时与PP相容性好,其表观切变粘度对温度的依赖性更接近PP,与P共混时更容易得到较小的弱性体料径和较窄的粒径分布,因而增韧效果更好。无论是对普通PP、共聚PP还是高流动性PP,POE的增韧效果都优于EPDM或EPR。由于POE不仅具有橡胶的弹性,同时又具有塑料的刚性,因此在增韧PP的同时还能保持较高的模量、拉伸强度及良好的加工流动性。另外,POE不含不饱和双键,耐候性也优于EPDM、EPR、SBS等。 同其它塑料一样,聚丙烯容易燃烧,对其进行阻燃改性最常用的方法是把无机阻燃剂填充到聚合物基体中赋予聚合物以阻燃性。无机阻燃剂,氢氧化镁在高温下通过分解吸收大量热量,生成的水蒸气可以稀释空气中氧的浓度,从而延缓聚合物的热降解速度,减慢或抑制火对聚合物的燃烧,促进炭化、抑制烟雾的形

聚丙烯材料的透明改性

课程名称:高分子材料设计与实践指导老师:成绩:__________________ 实验名称:聚丙烯材料的透明改性实验类型: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1、了解聚丙烯结晶的成核机理; 2、理解双螺杆挤出机和注塑机的基本工作原理,并掌握其操作方法。 3、了解高分子共混改性的制备过程。 4、了解加工工艺条件对聚合物材料结构性能的影响。 二、实验原理 聚丙烯作为一种结晶性高聚物,其晶核的生成既可以均相成核,也可以异相成核。均相成核是高分子链本身聚集体的取向,通过熔体的热涨落导致高分子链段的局部有序不断形成与消失,当有序区尺寸超过临界尺寸时才能形成晶核,而这类晶核在较高温度下易被分子链的热运动所破坏,故只有在较低温度下才能保持。异相成核是分子链依附于体系内的不纯物进行有序排列,可在较高的温度下成核结晶。无论是均相成核还是异相成核,在熔体状态时,聚丙烯的结晶速度较慢,易形成大球晶。这些球晶具备光散射的两个条件:尺寸大于光的波长,与非景区的折光指数差异较大。要提高聚丙烯的透明性需降低光散射,即提高聚丙烯晶型的均匀性并缩小球晶的尺寸。 根据聚丙烯结晶的成核机理,可以采用以下几类方法来控制聚丙烯的形态结构,达到降低结晶度、控制结晶质量、降低光散射作用等目的,以实现聚丙烯的透明改性。 1.加工工艺控制改性 2.直接聚合 3.共混透明改性 4.添加透明成核剂 三、仪器与试剂 仪器:双螺杆挤出机水槽吹风机切粒机电子天平压片机差示扫描量热仪(DSC)差热分析仪(DTA)热台显微镜拉伸试验机透光率雾度测试仪(WGT-S 申光) 试剂:聚丙烯(PP)聚乙烯(PE)乙烯丙烯共聚物(EPM)成核剂抗氧化剂 四、操作方法和实验步骤 操作方法:设计配方,选择合适的聚合物共混或添加合适的透明成核剂,采用双螺杆挤出机制备聚丙烯粒料,并通过模压成型,测试材料的透光性能和拉伸性能,以考察配方对聚丙烯材料透明性及力学性能的影 响。

塑料材料-聚丙烯(PP)的基本物理化学特性及典型应用介绍

聚丙烯(PP)的介绍 聚丙烯概述 聚丙烯采用齐格勒-纳塔催化剂使丙烯催化聚合而得,它是分子链节排列得很规整的结晶形等规聚合物。聚丙烯的英文名称为Polypropylene,简称PP,俗称百折胶。聚丙烯按其结晶度可以分为等规聚丙烯和无规聚丙烯,等规聚丙烯为高度结晶的热塑性树脂,结晶度高达95%以上,分子量在8~15万之间,以下介绍的聚丙烯主要为等规聚丙烯。而无规聚丙烯在室温下是一种非结晶的、微带粘性的白色蜡状物,分子量低(3000~10000),结构不规整缺乏内聚力,应用较少。 聚丙烯(PP)作为热塑塑料聚合物在塑料领域内有十分广泛的应用,因所用催化剂和聚合工艺不同,所得聚合物性能,用途也不同。PP有很多有用的性能,但还缺乏固有的韧性,特别是在低于其玻璃化温度的条件下。然而,通过添加冲击改性剂,可以提高其抗冲击性能。 一、聚丙烯的特性 (1)物理性能:聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~.091g/cm3,是目前所有塑料中最轻的品种之一。它对水特别稳定,在水中24h的吸水率仅为0.01%,分子量约8~15万之间。成型性好,但因收缩率大,厚壁制品易凹陷。制品表面光泽好,易于着色。(2)力学性能:聚丙烯的结晶度高,结构规整,因而具有优良的力学性能,其强度和硬度、弹性都比HDPE高,但在室温和低温下,由于本身的分子结构规整度高,所以冲击强度较差,分子量增加的时候,冲击强度也增大,但成型加工性能变差。PP最突出的性能就是抗弯曲疲劳性,如用PP注塑一体活动铰链,能承受7×107次开闭的折迭弯曲而无损坏痕迹,干摩擦系数与尼龙

相似,但在油润滑下,不如尼龙。 (3)热性能:PP具有良好的耐热性,熔点在164~170℃,制品能在100℃以上温度进行消毒灭菌,在不受外力的,150℃也不变形。脆化温度为-35℃,在低于-35℃会发生脆化,耐寒性不如聚乙烯。 (4)化学稳定性:聚丙烯的化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它各种化学试剂都比较稳定,但低分子量的脂肪烃、芳香烃和氯化烃等能使PP软化和溶胀,同时它的化学稳定性随结晶度的增加还有所提高,所以聚丙烯适合制作各种化工管道和配件,防腐蚀效果良好。(5)电性能:聚丙烯的高频绝缘性能优良,由于它几乎不吸水,故绝缘性能不受湿度的影响。它有较高的介电系数,且随温度的上升,可以用来制作受热的电气绝缘制品,它的击穿电压也很高,适合用作电气配件等。抗电压、耐电弧性好,但静电度高,与铜接触易老化。 (6)耐候性:聚丙烯对紫外线很敏感,加入氧化锌、硫代丙酸二月桂酯、碳黑或类似的乳白填料等可以改善其耐老化性能。 二、聚丙烯的用途 (1)薄膜制品:聚丙烯薄膜制品透明而有光泽,对水蒸汽和空气的渗透性小,它分为吹膜薄膜、流延薄膜(CPP)、双向拉伸薄膜(BOPP)等。 (2)注塑制品:可用于汽车、电气、机械、仪表、无线电、纺织、国防等工程配件,日用品,周转箱,医疗卫生器材,建筑材料。 (3)挤塑制品:可做管材、型材、单丝、渔用绳索。打包带、捆扎绳、编织袋,纤维,复合涂层,片材,板材等。吹塑中空成型制品各种小型容器等。 (4)其它:低发泡、钙塑板,合成木材,层压板,合成纸,高发泡可作结构泡沫体。 三、聚丙烯的成型加工 聚丙烯的成型加工性好,成型的方法很多,如注塑、吹塑、真空热成型、涂覆、旋转成型、熔接、机加工、电镀和发泡等,并可在金属表面喷涂。其中注塑成型的比例大,注塑温度在180~200 之间,注塑压力在68.6~137.2MPa,模具温度为40~60℃。预干燥温度在80℃左右。应避免PP 长时间与金属壁接触。 聚丙烯的二次加工性很好,其印刷性比聚乙烯好,照相凸版,胶版、平凹板等印刷方法均可使用,要获得良好的良好的耐热、耐油、耐水等要求的印刷性能,须经电晕放电处理等再行印刷。 四、聚丙烯的改性 聚丙烯可通过填充、增强、共混、共聚、交联来改性。如添加碳酸钙、滑石粉、无机矿物质等填料,可提高刚性、硬度、耐热性和尺寸稳定性;添加玻璃纤维、石棉纤维、云母、玻璃微珠等可提高拉伸强度,并可改善抗蠕变性、低温抗冲击性;添加弹性体和橡胶等可提高冲击性能、透明性等等。 均聚PP和共聚PP的介绍 1. PP均聚物 聚丙烯(PP)作为热塑塑料聚合物于1957年开始商品化生产,是有规立构聚合物中的第一个。其历史意义更体现在,它一直是增长最快的主要热塑性塑料,2004年它的全国总产量达到300万吨。它在热塑性塑料领域内有十分广泛的应用,特别是在纤维和长丝、薄膜挤压、注塑加工等方面。 1.1 化学和性质

PP增韧改性

塑料增韧配方设计 一、塑料的韧性 塑料的韧性是指抗御外来冲击力的能力,常用冲击强度之大小来表示。 冲击强度是指试样受到冲击破坏断裂时,单位面积上所消耗的功。它可用于评价材料的脆性或韧性强度,材料的冲击强度越高,说明其韧性越好;反之说明材料的脆性越大。 可用于测定材料冲击强度的方法很多,已见报道的不下十五种,但比较常用的有如下三种。 (1)悬臂梁冲击强度也称为Izod试验法,适用于韧性较好的材料。它将冲击样条的一端固定而另一段悬臂,用摆锤冲击式样的方法。其计算方法为冲击破坏过程中所吸收的能量与试样原始截面积之比,单位kj/m2。对于韧性好的材料,因难以冲断往往在试样上开一小口,所以悬臂梁冲击强度常常需要标注有缺口或无缺口。 (2)简支梁冲击强度也称为Charpy法,适用于脆性材料。它将试样条的两端放在两个支点上,用摆锤冲击式样的方法。其计算方法为冲击破坏过程中所吸收的能量与试样原始截面积之比,单位kj/m2。此法有时也在试样上开口。 (3)落球冲击强度在规定的条件下,用规定形状和质量的落球(锤),在某一高度上自由落下对制品进行冲击,通过改变球的高度和质量,直至塑料制品被破坏为止。测定此时落球的高度和质量,可计算出制品在此高度下被破坏时所需能量,单位J/m2。 由于塑料制品的冲击强度对温度依赖性很大,所以测试时必须规定温度值。一般设置两种温度,常温为23,低温为-30. 同一种塑料制品,用不同的方法测定其冲击强度,会得到不同的结果,并无可比性,甚至会出现相反的结果。因此,要对韧性大小进行比较,必须用同一种测试方法。

在我们接触的塑料中,其韧性相差很大,常用塑料的落球冲击强度值见表1-1所以。 在不同应用场合中,对塑料制品的冲击强度要求不同。如汽车保险杠要求落球冲击强度大于400J/m,如此高的冲击强度要求,对大部分塑料而言都需要增韧改性方可使用。传统的增韧方法为在树脂中共混弹性体材料,其增韧效果很好,但不足之处为刚性降低,近年来开发出了新的刚性增韧方法,增韧和增强同时进行。 二、塑料弹性体增韧配方设计 1、塑料弹性体增韧机理 弹性体增韧的机理很多,目前最成熟的为银纹-剪切带理论。该理论的核心思路为在基体树脂内加入弹性体后,在外来冲击力的作用下,弹性体可引发大量裂纹,树脂则产生剪切屈服,靠银纹-剪切带吸收冲击能量。对于不同类型的树脂,银纹和剪切屈服对抗冲击的贡献不一样, 以脆性树脂为基体的弹性体增韧体系,外来冲击能主要靠银纹来消耗;如PS属于脆性材料,银纹对增韧的贡献大。要求弹性体的尺寸要与银纹的尺寸一致才有效,加入的弹性体要高浓度、大颗粒。 以韧性树脂为基体的弹性体增韧体系,外来冲击能主要靠剪切屈服来消耗;

马来酸酐等离子体聚合改性聚丙烯多孔膜的表面结构与亲水性

第25卷第1期高分子材料科学与工程 Vol.25,No.1 2009年1月 POL YM ER MA TERIAL S SCIENCE AND EN GIN EERIN G Jan.2009 马来酸酐等离子体聚合改性聚丙烯多孔膜的表面结构与亲水性 马 骏1,王 伟1,黄 健1,王晓琳2 (1.南京工业大学材料学院,江苏南京210009; 2.清华大学化学工程系,北京100084) 摘要:以马来酸酐为单体,采用低温等离子体聚合的方法对聚丙烯(PP )多孔膜的表面进行改性。红外光谱(FT 2IR )和扫描电镜(SEM )等结果表明,马来酸酐以双键聚合,同时伴随着酸酐的开环。低处理功率时以表面聚合为主,酸酐结构破坏较轻,延长聚合时间可以提高聚合量;高处理功率时以气相聚合为主,酸酐结构的破坏加剧,易产生交联结构。马来酸酐等离子体聚合物水解后可产生羧基,但水解作用并不完全,膜表面的亲水性与等离子体聚合条件及聚合物结构紧密相关。 关键词:等离子体聚合;马来酸酐;聚丙烯多孔膜;亲水化改性 中图分类号:TB383 文献标识码:A 文章编号:100027555(2009)0120016203 收稿日期:2007212212 基金项目:973资助项目(2003CB615701);国家自然科学基金资助项目(20476045)通讯联系人:黄 健,主要从事功能高分子材料研究, E 2mail :jhuang @https://www.360docs.net/doc/9d13831374.html, 对于疏水性的聚合物多孔膜,水不容易通过膜的微孔通道,同时膜表面还易受到有机物的污染,这些因素限制了膜在水体系中的应用,因此有必要对其表面进行亲水化改性[1]。低温等离子体表面处理技术操作简便、经济、环保,只在材料的表面几个纳米至100nm 的区域产生物理或化学变化[2]。近年来发现等离子体处理作用能够深入多孔膜的膜孔[3],等离子体技术已成为聚合物多孔膜表面改性的重要手段。马来酸酐富含极性基团,适合于材料表面的亲水化处理[4]。本文以马来酸酐为单体,用低温等离子体聚合的方法,对聚丙烯多孔膜进行了表面改性。研究了等离子体聚合的时间、功率等工艺参数对改性表面的化学结构、形态结构及表面亲水性能的影响。1 实验部分 1.1 实验原料 聚丙烯(PP )中空纤维膜:浙江大学,外径290μm , 内径240μm ,孔隙率40%~50%,平均孔径0107μm ; 马来酸酐(MAH ):分析纯,上海凌峰化学试剂有限公司,减压蒸馏精制。1.2 膜表面的马来酸酐等离子体聚合 采用自制的低温等离子体发生器,频率13156MHz ,电容偶合式。反应器长15cm ,内径215cm 。在反应器底部放置固体的马来酸酐单体,中部放置聚丙 烯多孔膜,间断抽真空,将反应器置换为马来酸酐气氛。在3Pa 条件下对聚丙烯多孔膜进行表面改性。1.3 改性膜的表面分析 在美国Nicolet 公司的N EXUS670型红外光谱仪(F T 2IR )上,用表面衰减全反射(A TR )技术对改性膜表面进行红外分析,分辨率4cm -1,波数范围4000cm -1~400cm -1。改性膜表面经喷金处理,在日本电子公司的J SM 25900型扫描电镜仪(SEM )上观察改性膜的表面形态。聚丙烯多孔膜经热熔压片后进行类似的等离子体表面处理,在美国Ram é2Hart 公司的100200230型接触角仪上测试水接触角,结果取5次平均值。 2 结果与讨论 2.1 改性膜表面的FT 2IR 分析 Fig.1为马来酸酐等离子体处理条件对改性表面 化学结构的影响。与谱图1的原始膜比较,改性膜在1850cm -1、1780cm -1、1730cm -1、1290cm -1、1240cm -1和1060cm -1等处出现了新峰。对比谱图7的马来酸酐单体红外谱图,1850cm -1为酸酐不对称C =O 的伸缩振动峰,1780cm -1为酸酐对称C =O 的伸缩振动峰,1290cm -1为酸酐C -O 的伸缩振动峰,1240cm -1和1060cm -1为酸酐C 2H 的变形振动峰[5],表明膜表面沉积了马来酸酐聚合物。另外马来酸酐单体在

聚丙烯塑料的改性及应用(三).doc

据日本理化株式会社介绍,日本7%的PP为透明PP,透明PP的产量在400kt/a以上。日本透明PP市场以微波炉炊具及家具两方面的消耗量最大。日本出光化学公司制造出与PVC具有同样透明性和光泽性的透明PP,现在可以广泛替代普通透明PVC制作文具、笔记本一类的包装物,价格只相当于PVC的20%-30%,1999年出售了1200 t透明PP。 韩国LG Caitex公司将透明PP作为PET的替代品推向市场,应用于水瓶、洗涤剂瓶、个人护理品的包装等方面。Fina公司市场部声称,他们的透明PP新产品将打人具有300kt/a市场容量的PS食品包装。 德国BASF公司的PP无规共聚物Novolen3248 TC,具有高流动性(熔体流动速率为48g/l0min)、低翘曲性,透明度达90%,雾度10%,适用于薄壁包装与日用品。Solvay公司研制的PP无规共聚物EltexPKLl76,含有乙烯和透明剂,主要用于制造单层透明瓶和挤压片材,片材可热压成型各种容器及装饰品。其产品具有玻璃般的光泽、很好的化学稳定性、耐环境应力开裂性和冲击强度。 德国Schneioler公司和Klein公司用透明聚丙烯替代PVC用于透明硬包装。 美国Amoco公司用透明改性剂生产的聚丙烯树脂经注、拉、吹工艺加工而成的水瓶可替代聚酯水瓶。 Montell Polyolefins公司最近推出了α烯烃改性PP树脂,牌号分别为273RCXP 和276RCXP,主要用于注塑成型。两种牌号的树脂都没有添加成核剂和透明助剂,其中 273RCXP树脂的熔体速率为14g/10min,表现出低的气味性以及好的耐应力发白性能。该树脂的透光性能相当于最好的PP无规共聚物,具有较高的光泽度,可制作成母粒形状用于生产固体或类似于用尼龙做成的半透明色母粒。276RCXP树脂的熔体流动速率为16g/l0min,透光性和光泽度稍差些,但该树脂却展示出极佳的低温冲击性能,在低温下储藏后能经反复加热且耐冲击,可制作放于微波炉中的容器。品级为721RCW的树脂,熔体指数为 l0g/l0min,主要用于挤吹成型或浇铸成型,树脂具有极佳的透明度、光泽度和低的雾度、宽的热粘着区域以及118~120℃的封合温度。该树脂用于单层薄膜或在共挤塑结构中的粘接层。 日本Idemitsu Petrochemical有限公司采用加工技术于1985年研制开发出透明PP 片材。该技术是使PP树脂在熔融状态下挤出后,通过快速冷却结晶、改进热处理技术以及Idemitsu公司的结晶控制技术和高温表面处理技术来大大提高PP片材的透明度。该技术已获得发明专利。 随着透明PP的开发和不断改进,市场需求量在快速上升,据悉,世界2001年市场容量总计达1500~1600kt/a,预计2005年市场需求量可达2000-2500kt/a。 国内透明PP的研制及其开发应用较为滞后,但发展却非常迅速。据初步调研,目前国内透明PP已广泛应用于薄膜、片材、塑杯、微波炉及其他的注塑制品等方面。使用透明PP的厂家主要集中在东南沿海城市。1996年我国对透明PP的需求量为5kt,且全部依赖进口,2000年市场需求量在100kt/a左右,随着应用领域的进一步开拓,到2005年国内需求量达到200~300kt/a。透明PP需求量的不断扩大刺激了国内PP生产厂家的开发热情。扬子石油化工股份有限公司研究院以PPF401及其相近牌号的PP为基料,采用DBS系列成核剂进行了透明PP制备技术开发和市场推广应用工作,取得了较好的进展,相关产品已进入市场。另外,基于本公司生产的普通PP,通过添加适量的透明剂及其他相关助剂,优化配方设计,调整加工工艺,在工业装置上生产透明PP专用料PPJ301G,该专用料不仅具有普通PP质轻、耐高温、易加工成型等特点,其透明性、表面光泽度可与其他一些透明高分子材料相媲美,而且热变形温度、弯曲弹性模量等力学性能指标也明显提高。2001年,扬子石化又开发出PIYF680、PFF700两种透明专用料。洛阳石化总厂研究所以均聚聚丙烯PPF401为基础树脂,通过添加透明剂和自制母粒A、B,制得了透明PP片材专用料。实验

聚丙烯酸酯压敏胶

聚丙烯酸酯压敏胶 聚丙烯酸酯压敏胶制品 聚丙烯酸酯压敏胶具有不饱和双键的单体在催化剂作用下进行自由基聚合反应制得的丙烯酸酯树脂。聚丙烯酸酯压敏胶具有较好的耐低温、耐高温,可凝挥发物和质量损失率低,并且无有害气体逸出的特性,制成的各类压敏胶带,可方便对薄膜的粘贴。 丙烯酸酯型压敏胶的基体 聚丙烯酸酯压敏胶具有较好的耐低温、耐高温,可凝挥发物和质量损失率低,并且无有害气体逸出的特性,制成的各类压敏胶带,可方便对薄膜的粘贴。聚合时所采用的单体可分为三类: 1、粘性单体. 它是碳原子数为4-12的丙烯酸烷基酯,具有粘性作用,聚合物的玻璃化温度为-20——70°C ,常用的有丙烯酸异辛酯和丙烯酸丁酯等。 2、内聚单体 这是一些玻璃化温度较高的单体,它不仅能提高胶液的内聚力,而且对耐水性、胶接强度、透明性等也明显改善。 3、改性单体 主要是一些带有反应性官能团的含有双急需的单体,如含羧基、羟基、酰胺基等的丙烯酸衍生物。它能与其它单体起交联作用,促进聚合反应,加快聚合速度,提高胶液的稳定性。 表十七列举了上述三种单体的种类及玻璃化温度 表十七丙烯酸酯型压敏胶的单体及玻璃化温度 单体类别单体各称玻璃化温度(°C ) 粘性单体丙烯酸乙酯 -22 丙烯酸丁酯 -55 丙烯酸异辛酯 -70 内聚单体醋酸乙烯酯 22 丙烯腈 97 丙烯酰胺 165

苯乙烯 80 甲基丙烯酸甲酯 105 丙烯酸甲酯 8 改性单体甲基丙烯酸 228 丙烯酸 106 甲基丙烯酸羟乙酯 86 甲基丙烯酸羟丙酯 76 二胺基乙基甲基丙烯酸酯 13 丙烯酸酯型压敏胶的基体总 由上述三类单体聚合物属热塑性树脂,内聚力不够理想,为了进一步提高内聚力和胶接强度,可加入能与改性单体发生化学反应的交联剂,使它们在加热情况下产生交联结构,从而大大改善胶液的性能。表十八列举了改性单体打官能团及其发生反应的交联剂种类。 加入交联剂的压敏胶的耐候性和耐热性大幅度提高,耐油性和耐溶剂性优良,粘附力和内聚力高,透明性好,在长期应力作用下耐蠕变性能也优良。表十九列举了丙烯酸酯型压敏胶的典型配方及其性能。 表十八改性单体的官能团及交联剂种类 官能团改性单体交联剂 -COOH 丙烯酸、甲基丙烯酸、依康酸、马来酸环氧树脂、异氰酸酯、三聚氰胺树脂、尿素树脂、多价金属盐 -CONH2 丙烯酰胺、甲基丙烯酰胺羟甲基化环氧树脂、三聚氰胺树脂、尿素树脂 -CH2ON N-羟甲基丙烯酰胺环氧树脂、异氰酸酯、醚化氨基树脂、含有羧酸基聚合物 -CH2OR N-丁氧基甲基丙烯酰胺环氧树脂、醚化氨基树脂 -OH 丙烯酸羟乙酯、甲基丙烯酸羟丙酯醚化氨基树脂、异氰酸酯 -CH-CH2\O/ 甲基丙烯酸缩水甘油酯酸、酸酐、胺 -C2H4-N/R\R 二甲氨基乙基甲基丙烯酸酯、二乙氨基乙基甲基丙烯酸酯环氧树脂、二异氰酸酯、二元醛 表十九丙烯酸酯型压敏胶的典型配方及其性能 配方性能 1 丙烯酸丁酯 112.5 具有优良的粘附性和很高的内聚力 常态剥离强度14N/2.5cm 老化试验后剥离强度 13.5N/2.5cm

聚丙烯表面改性技术及应用

聚丙烯表面改性技术与应用 0. 引言 聚丙烯(PP)作为通用塑料,以产量大、应用面广以及物美价廉而著称,但聚丙烯具有非极性和结晶性,表面与极性聚合物、无机填料及增强材料等相容性差,导致其染色性、粘接性、抗静电性、亲水性也较差,这些缺点制约了聚丙烯的进一步推广和应用。 聚丙烯的表面改性和功能化处理技术是一种重要的改性方法,研究主要集中在接枝极性单体,如马来酸酐和丙烯酸等,以及带有第二官能团单体,如甲基丙烯酸缩水甘油脂等;是改善PP表面性状性的主要手段,可以提高PP材料与其他极性的界面作用力,增强其亲水性、染色性能、黏结性能和共混高聚物之间的相容性等。本文主要就聚丙烯材料的表面处理方法以及改性聚丙烯的应用作简单地介绍。 1. 高能辐照表面处理法 辐照接枝法是用高能射线照射产生自由基,自由基再与活性单体反应生成接枝共聚物。与其它接枝法比较,辐照接枝法的优点在于适合各种化学、物理性质稳定的树脂,能够快速且均一地产生活性自由基,而且不需加化学引发剂,不过该方法成本较高。根据利用辐照获得接枝活性点的方式可以将其分为同时辐照和预辐照两种方法,同时辐照法是将反应单体和PP接枝基体同时放置在辐照环境中,这样在基体上形成活性点的同时就可以进行接枝反应。预辐照法就是首先辐照PP,使其表面带有活性点,然后再和单体反应。比较两种方法,预辐照技术更能减少单体均聚物的生成。辐照接枝法在改善膜或纤维的表面极性方面应用广泛[1]。 除了对基材进行辐照引发接枝反应外,通过异相引发接枝[2]还有学者研究出利用预辐照对聚乙烯进行处理,再使用经过辐照处理的聚乙烯作为聚丙烯的熔融接枝反应的引发剂来引发聚丙烯接枝丙烯酸,经反应挤出制备出高性能的聚丙烯接枝丙烯酸共聚物。这种异相引发接枝反应很好的控制了聚丙烯在熔融接枝中的降解副反应,极大的保存了基材优异的力学性能。

相关文档
最新文档