计算二重积分的几种方法数学专业论文

合集下载

二重积分的简单计算

二重积分的简单计算

探秘二重积分的计算方法
二重积分是高等数学中的一个重要概念,用于求解平面上某个区域内的面积,也被称为二重积分面积公式。

下面,我们将探讨二重积分的简单计算方法。

首先,二重积分的计算需要先确定被积函数和积分区域。

假设被积函数为f(x,y),积分区域为D,其在直角坐标系下的边界可以用以下公式表示:
∬f(x,y)dxdy = ∫∫f(x,y)dA
接下来,我们需要根据积分区域D的形状来确定积分的范围。

当积分区域为直角坐标系下有界区域时,我们可以采用以下方法求解:
1. 积分区域为矩形时,通常采用先对x积分后对y积分的方法,即:
∫∫f(x,y)dA = ∫ab∫cd f(x,y)dxdy
其中,积分范围为a≤x≤b,c≤y≤d。

2. 积分区域为三角形时,可采用先对y积分后对x积分的方法,即:
∫∫f(x,y)dA=∫cd∫h1(x)h2(x) f(x,y)dydx
其中,积分范围为c≤y≤d,h1(x)≤y≤h2(x)。

3. 积分区域为梯形时,可采用换元法将积分区域转化为矩形的形式,即:
∫∫f(x,y)dA=∫ab∫g1(y)g2(y) f(x,y)dxdy
其中,积分范围为g1(y)≤x≤g2(y),a≤y≤b。

以上是二重积分计算的基本方法,希望能对您有所帮助。

二重积分的几种计算方法

二重积分的几种计算方法

二重积分的几种计算方法二重积分是数学分析的重要组成部分,二重积分是定积分的推广,是二元函数在一个平面的一个区域的积分。

计算二重积分的一般原则是将二重积分化为二次积分(即累次积分)加以计算。

求积的困难主要来自两个方面:一是被积函数的复杂性,二是积分区域的多样寻。

不同顺序二次积分计算的难易程度往往是不同的,又是错选积分顺序导致积分无法计算,有的二重积分必须通过换元才能求出。

计算二重积分的一般步骤如下:1) 画出积分区域D 的草图; 2) 求交点;3) 选择直角坐标系下计算,或极坐标系下计算; 4) 选择积分次序;5) 化二重积分为二次积分; 6) 计算。

一.二重积分的直接计算方法所谓连续函数(,)f x y 展步在有限封闭可求积二位域Ω内的二重积分乃是指数max 0max 0(,)lim(,)iji j x ijy f x y dxdy f x yx y ∆→Ω∆→=∆∆∑∑⎰⎰其中11,i i i j j j x x x y y y --∆=-∆=-,而其和为对所有j i ,,使Ω∈),(j i y x 的那些值来求的。

若域Ω有下面的不等式所给出,b x a ≤≤ )()(21x y y x y ≤≤其中)(1x y 和)(2x y 为闭区间[]b a ,上的连续函数,则对应的二重积分可按下面的公式计算⎰⎰⎰⎰Ω=bax y x y j i dy y x f dx dxdy y x f )()(21),(),(例1. 计算⎰⎰Dxydxdy,其中区域D 是由直线x y =与抛物线2x y =所围成的区域。

解: 积分区域D 如图1所示,有定义D 是简单区域,边界x y =与2x y =得交点为)0,0(和)1,1(。

若选择先对y 积分,则过x 轴上)1,0(内的任一点p 作y 轴的平行线,该线的与D 下边界交点在2x y =上,与D 上边界交点在x y =上,所求积分为2211002xxx x Dy xydxdy dx xydy x dx ⎡⎤==⋅⎢⎥⎣⎦⎰⎰⎰⎰⎰241)(211053=-=⎰dx x x 若选择先对x 积分,同理可得⎰⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡==1021021yyyyDy x xydx dy xydxdy241)(211053=-=⎰dx y y图1若求二重积分时,遇到复杂区域,应将复杂区域化成若干个简单区域,然后根据)(,),(),(),(2121D D D y x f y x f dxdy y x f D D D+=+=⎰⎰⎰⎰⎰⎰,来计算。

二重积分的计算方法

二重积分的计算方法

二重积分的计算方法在高等数学的学习中,二重积分是一个重要的概念和工具,它在解决许多实际问题和理论推导中都有着广泛的应用。

理解和掌握二重积分的计算方法对于我们深入学习数学以及解决相关的实际问题至关重要。

首先,让我们来明确一下二重积分的定义。

二重积分是在平面区域上对某个二元函数进行积分。

简单来说,就是把平面区域划分成许多小的区域,然后对每个小区域上的函数值乘以小区域的面积,再把这些乘积相加。

接下来,我们来介绍几种常见的二重积分计算方法。

一、直角坐标系下的计算方法在直角坐标系中,二重积分可以表示为两种形式:先对 x 积分再对y 积分,或者先对 y 积分再对 x 积分。

当我们选择先对 x 积分时,我们需要把积分区域投影到 x 轴上,确定 x 的积分限。

然后,对于每个固定的 x 值,在对应的垂直于 x 轴的线段上确定 y 的积分限。

例如,对于积分区域 D 是由直线 y = x ,y = 1 以及 x = 0 所围成的三角形,我们要计算二重积分∬D f(x,y)dxdy。

先对 x 积分,x 的积分限是从 0 到 y ,y 的积分限是从 0 到 1 。

则可以将二重积分化为累次积分:∫₀¹(∫₀ʸ f(x,y)dx)dy 。

同样,如果先对 y 积分,就把积分区域投影到 y 轴上,确定 y 的积分限,然后再确定每个固定 y 值对应的 x 的积分限。

二、极坐标系下的计算方法在某些情况下,使用极坐标系来计算二重积分会更加方便。

极坐标系中的坐标是(r,θ) ,其中 r 表示点到原点的距离,θ 表示极角。

在极坐标系下,二重积分的表达式为∬D f(r cosθ, r sinθ) r dr dθ 。

比如,对于圆形或者扇形的积分区域,使用极坐标系往往能简化计算。

例如,计算以原点为圆心,半径为 R 的圆上的二重积分,积分区域 D 为 x²+y² ≤ R² 。

在极坐标系中,r 的积分限是从 0 到 R ,θ 的积分限是从 0 到2π 。

二重积分计算与应用

二重积分计算与应用

二重积分计算与应用在数学中,二重积分是一种用于计算二维平面上曲线下的面积和体积的工具。

它是微积分学的重要分支,具有广泛的应用。

本文将介绍二重积分的概念、计算方法以及一些常见的应用。

一、二重积分的概念二重积分是对平面上的一块有界区域内的函数进行求和。

我们将二维平面分割成许多小矩形区域,并在每个小矩形区域内取一个点。

然后,将这些小矩形的面积相加,再将函数在该点的值与该小矩形的面积相乘,并对所有小矩形进行求和,即可得到二重积分的值。

二、二重积分的计算方法计算二重积分有两种主要的方法:定积分法和极坐标法。

1. 定积分法定积分法是最常用的计算二重积分的方法之一。

它将被积函数转化为两个变量的函数,然后通过重复使用一元定积分的方法进行计算。

具体步骤如下:步骤一:确定积分区域。

通常使用直角坐标系下的矩形或多边形来表示。

步骤二:确定被积函数。

将被积函数表示成两个变量的函数。

步骤三:将被积函数简化。

根据积分区域的特点,合理地设定积分的上下限。

步骤四:依次进行一元定积分。

先对内层变量进行积分,再对外层变量进行积分。

2. 极坐标法当被积函数在极坐标系下具有一定的对称性时,使用极坐标法可以简化计算过程。

具体步骤如下:步骤一:确定积分区域。

在极坐标系下,通常使用极坐标方程来表示。

步骤二:确定被积函数。

将被积函数转化为极坐标系下的函数。

步骤三:将被积函数简化。

根据极坐标系的特性,将函数表示成极坐标下的形式。

步骤四:直接进行一元定积分。

根据区域的特点,选取适当的积分上下限进行计算。

三、二重积分的应用二重积分在实际问题中有广泛的应用,包括计算面积、计算质心、计算物体的质量等等。

1. 计算面积二重积分可以用来计算平面上有界区域的面积。

通过将被积函数取为1,对给定的区域进行积分,即可得到该区域的面积。

2. 计算质心质心是物体的平衡点,是物体的几何中心。

二重积分可以用来计算物体的质心位置。

通过将被积函数取为物体的密度函数乘以相应的坐标值,对整个物体进行积分,即可得到物体的质心位置。

求二重积分的方法

求二重积分的方法

求二重积分的方法在数学中,二重积分是一种重要的计算方法,它在物理、工程、经济等领域都有着广泛的应用。

本文将介绍求解二重积分的方法,希望能够帮助读者更好地理解和掌握这一数学工具。

首先,我们来看一下如何通过定积分的方法来求解二重积分。

对于二维平面上的函数f(x, y),我们可以将其表示为关于x和y的积分形式:∬f(x, y)dA。

其中,dA表示面积元素,可以表示为dxdy或者dydx,具体取决于积分的顺序。

我们可以通过将二重积分转化为两次定积分的形式来求解,即:∬f(x, y)dA = ∫(∫f(x, y)dx)dy 或者∬f(x, y)dA =∫(∫f(x, y)dy)dx。

这样,我们就可以通过两次定积分的方法来求解二重积分,只需要按照给定的积分顺序进行计算即可。

其次,我们来介绍极坐标系下的二重积分求解方法。

在一些情况下,使用极坐标系可以简化二重积分的计算。

对于二维平面上的函数f(x, y),我们可以通过极坐标变换来表示:x = rcosθ。

y = rsinθ。

其中,r表示点(x, y)到原点的距离,θ表示点(x, y)与x轴正向的夹角。

通过极坐标变换,我们可以将二重积分表示为极坐标系下的形式:∬f(x, y)dA = ∬f(rcosθ, rsinθ)rdrdθ。

通过这种方式,我们可以将二重积分转化为极坐标系下的二次定积分,从而简化计算过程。

最后,我们介绍利用变量代换来求解二重积分的方法。

在一些复杂的情况下,可以通过变量代换来简化二重积分的计算。

对于二维平面上的函数f(x, y),我们可以通过变量代换来将其表示为新的变量u和v的函数:x = g(u, v)。

y = h(u, v)。

通过这种方式,我们可以将二重积分表示为关于u和v的形式,然后进行计算。

通过适当选择变量代换的方式,可以使得原来复杂的二重积分变得简单易解。

综上所述,我们介绍了三种常见的求解二重积分的方法,定积分法、极坐标系下的方法和变量代换法。

二重积分的计算方法

二重积分的计算方法

二重积分的计算方法二重积分是微积分中的重要内容,用于计算平面上的曲线与坐标轴所围成的面积或求平面上的散布点的平均性质等。

在实际运用中,可以通过直接计算、换元法、极坐标法等多种方法来进行二重积分的计算。

一、直接计算法直接计算法是最常用也是最基础的计算二重积分的方法。

其基本步骤是将所给的二重积分转化为累次积分,先对一个变量进行积分,再对另一个变量进行积分。

1.内部积分内部积分即对于每个固定的y值,对x进行积分。

可以根据具体的题目决定如何进行内部积分,常用的有定积分、不定积分和积分换元等方法。

2.外部积分外部积分即对内部积分的结果再进行一次积分,这一步是对y进行积分。

同样的,可以根据具体题目决定如何进行外部积分,可以选择定积分、不定积分和积分换元等方法。

需要注意的是,直接计算法在面对比较复杂的函数或曲线时计算量较大,需要进行复杂的代数计算,常常需要对整个积分范围进行划分,或者使用边界定理简化计算。

二、换元法换元法是将二重积分变换到坐标系上的简单区域。

换元法分为直角坐标系的变换和极坐标系的变换两种情况。

1.直角坐标系的变换直角坐标系的变换是指将原先的积分变为关于新的变量的积分,使得积分计算更加简化。

常见的直角坐标系变换有平移变换、旋转变换和放缩变换等。

例如,当变量的变化范围较大或边界不规则时,使用平移变换可以将积分范围变为一个更加简单的区域,从而简化计算。

2.极坐标系的变换极坐标系的变换是将原先的直角坐标系变为极坐标系,使得计算过程更加简单明了。

极坐标系变换常用于对称图形或圆形区域进行积分计算。

极坐标系变换需要通过变量替换来实现,通常需要将原函数和积分上下限由直角坐标形式转换为极坐标形式,再进行计算。

换元法可以大大简化积分计算过程,但需要选择合适的坐标变换,有时会引入更多的计算量。

需要根据具体问题的特点来决定选择哪种变换。

三、几何意义根据题目所给的条件,可以确定积分范围和被积函数形式,将二重积分转化为面积或长度的几何问题。

计算二重积分的几种简便方法

计算二重积分的几种简便方法

计算二重积分的几种简便方法作者:***来源:《赤峰学院学报·自然科学版》2019年第05期摘要:在二重积分的计算中,常用的方法是利用直角坐标或极坐标把二重积分化成二次积分计算.然而对于某些二重积分,可以利用二重积分的对称性、两个定积分相乘、二重积分的分部积分公式等简便方法计算.通过几个实例说明方法的实用性.关键词:二重积分;二次积分;对称性;定积分;分部积分公式中图分类号:O13 ;文献标识码:A ;文章编号:1673-260X(2019)05-0007-03二重积分是高等数学中非常重要的内容,二重积分的计算主要有两种方法:一是利用直角坐标,积分区域D表示成x-型区域,二重积分化成先对y后对x的二次积分;或者积分区域D表示成y-型区域,二重积分化成先对x后对y的二次积分.二是利用极坐标,由积分区域D找到r和?兹的上下限,二重积分化成r和?兹的二次积分.除了上述常规计算方法外,是否还有其他比较简便的计算方法呢?下面一起来探讨二重积分的几种简便计算.4 结语计算一个二重积分,最重要、也是最常用的方法是利用直角坐标或极坐标,把二重积分化成二次积分,然后再计算二次积分.但是,在计算某些二重积分时,常常可以利用二重积分的对称性、利用两个定积分的乘积或利用二重积分的分部积分公式简化计算.只是,在简便计算时,一定要注意使用条件或前提.同时,讨论二重积分的简便计算可以帮助学生更好地理解二重积分,掌握二重积分,真正学好用好二重积分.除此之外,关于二重积分的其他简便计算方法还有待进一步研究.参考文献:〔1〕吴坚.高等数学[M].北京:中国农业出版社,2006.〔2〕孙兰敏,岳亚楠.关于直线对称区域上二重积分的计算[J].衡水学院学报,2015,17(1):8-11.〔3〕葛淑梅.對称区域上二重积分的简化计算方法[J].焦作大学学报,2018(1):101-103.〔4〕孙卫卫,杜美华.巧用分部积分法求解二重积分[J].牡丹江师范学院学报(自然科学版),2014,89(4):1-2.〔5〕钟煜妮,林文贤.分部积分在重积分中的应用[J].高师理科学刊,2011(1):11-11.。

二重积分的解法技巧及应用研究

二重积分的解法技巧及应用研究

二重积分的解法技巧及应用研究二重积分是高等数学中的重要概念和计算工具,在不同的数学领域和实际问题中都有广泛的应用。

掌握二重积分的解法技巧和应用研究对于深入理解数学概念和解决实际问题是非常重要的。

下面将从解法技巧和应用研究两个方面进行探讨。

一、二重积分的解法技巧1.应用定积分的基本性质:二重积分可以看作是对二元函数在一个有界区域上的定积分。

因此,可以直接应用定积分的性质来求解二重积分。

比如,可以利用二重积分的可加性、线性性质等简化计算过程。

2.构造适当的积分上下限:由于二重积分是对二元函数在一个有界区域上的定积分,因此,可以通过调整积分的上下限来简化计算。

比如,可以通过代换变量、对称性等方法来选择合适的积分上下限,使得被积函数具有简单的形式。

3.利用极坐标系进行计算:对于具有极坐标对称性的问题,可以通过转换为极坐标系来简化计算。

极坐标系中,可以利用极坐标转换公式将二重积分转化为一重积分,从而简化计算过程。

4.利用对称性简化计算:如果二元函数具有其中一种对称性,比如轴对称性、中心对称性等,可以利用对称性来简化二重积分的计算。

具体方法包括通过分区间计算、减少积分上限等手段简化计算过程。

5.利用积分的性质和公式:在具体计算二重积分的过程中,可以利用一些常用的积分性质和公式来简化计算。

比如,可以利用换序积分、分部积分、积分限变换等方法来简化计算过程。

二、二重积分的应用研究1.几何应用:二重积分在几何学中有广泛的应用。

主要包括计算面积、计算质心、计算体积等。

比如,可以利用二重积分计算曲线包围的面积、平面图形的面积、立体图形的体积等。

2.物理应用:二重积分在物理学中也有重要的应用。

比如,可以利用二重积分计算质点系的质量、重心位置、转动惯量等;还可以利用二重积分计算电荷分布的电荷量、电场强度等。

3.经济学应用:二重积分在经济学中也有一定的应用。

比如,可以利用二重积分计算需求曲线和供给曲线之间的区域代表的消费者剩余和生产者剩余等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算二重积分的几种方法数学专业论文计算二重积分的几种方法摘要二重积分的计算是数学分析中一个重要的内容,其计算方法多样、灵活,本文总结了二重积分的一般计算方法和特殊计算方法.其中,一般计算方法包括化二重积分为累次积分和换元法,特殊计算方法包括应用函数的对称性、奇偶性求二重积分以及分部积分法.关键词二重积分累次积分法对称性分部积分法1 引言本人在家里的职业教育高中实习,发现这里有些专业的的学生要计算很多面积或者体积问题,已经略微涉及到大学的积分问题,如曲顶柱体的体积,他们用最普遍的求面积/体积的方法求解,而用二重积分进行计算求解就会更容易理解,方法和步骤也带给学生一个新的认知领域。

职业教育的学生在大学知识中解决实际问题应用积分的方法更频繁。

在解决一些几何、物理等的实际问题时,我们常常需要各种不同的多元实值函数的积分,而二重积分又是基本的、常见的多元函数积分,我针对自己在《数学分析》这门课程中的学习,总结了累次积分、根据函数对称性积分、元素法、分部积分法、极坐标下的积分等内容,以下是我对二重积分方法的总结。

2 积分的计算方法2.1化二重积分为两次定积分或累次积分法定理 1 若函数(),f x y 在闭矩形域(),R a x b c y d ≤≤≤≤可积,且[],x a b ∀∈,定积分()(),d cI x f x y dy=⎰存在,则累次积分(),bda c f x y dy dx ⎡⎤⎢⎥⎣⎦⎰⎰也存在,且(,)(,)b d ac Rf x y dxdy f x y dy dx⎡⎤=⎢⎥⎣⎦⎰⎰⎰⎰证明 设区间[],a b 与[],c d 的分点分别是011011i i n k kma x x x x x bc y y y y yd --=<<⋅⋅⋅<<<⋅⋅⋅<==<<⋅⋅⋅<<<⋅⋅⋅<=这个分法记为T .于是,分法将T 闭矩形域R 分成m n ⨯个小闭矩形,小闭矩形记为 11(,),1,2,,;1,2,,.ik i i k k R x x x y y y i n k m --≤≤≤≤=⋅⋅⋅=⋅⋅⋅ 设(){}(){}[]1sup ,,inf ,.,ik ik i i i M f x y m f x y x x ξ-==∀∈,有()1,,ik i ik k km f y M y y y ξ-≤≤≤<.已知一元函数(),if y ξ在[]1,k k yy -可积,有()11,,kikki ik k k k k k m y f y dy M y y y y ξ--∆≤≤∆∆=-⎰.将此不等式对1,2,k m=…相加,有()1111,k k mmmy ikki ik ky k k k m y f y dy M y ξ-===∆≤≤∆∑∑∑⎰,其中()()()11,,k k my di i i y ck f y dy f y dy I ξξξ-===∑⎰⎰,即()11mmikki ik kk k m yI M y ξ==∆≤≤∆∑∑.再将此不等式乘以ix ∆,然后对1,2,i n=…相加,有()11111n mn n miki k i i ik i ki k i i k mx y I x M x y ξ=====∆∆≤∆≤∆∆∑∑∑∑∑.此不等式的左右两端分别是分法T 的小和()s T 与大和()S T ,即 ()()()1ni i i s T I x S T ξ=≤∆≤∑.(1) 已知函数(),f x y 在R可积,根据定理有()()0lim lim (,),T T RS T s T f x y dxdy →→==⎰⎰又不等式(1),有()()01lim ,niiT i RI x f x y dxdy ξ→=∆=∑⎰⎰,即()()(),,.bbdaa c Rf x y dxdy I x dx f x y dy dx ⎡⎤==⎢⎥⎣⎦⎰⎰⎰⎰⎰类似地,若(),f x y 在闭矩形域(),R a x b c y d ≤≤≤≤可积,且[],,y c d ∀∈定积分存在,则累次积分(),d b caf x y dx dy⎡⎤⎢⎥⎣⎦⎰⎰,也存在,且()(),,dbcaRf x y dxdy f x y dx dy⎡⎤=⎢⎥⎣⎦⎰⎰⎰⎰.也可将累次积分(),b dacf x y dy dx⎡⎤⎢⎥⎣⎦⎰⎰与(),d bcaf x y dx dy⎡⎤⎢⎥⎣⎦⎰⎰分别记为(),b dac dx f x y dy⎰⎰和(),dbcadx f x y dy ⎰⎰. 定义 1 设函数()()12,x x ϕϕ在闭区间[],a b 连续;函数()()12,y y ψψ在闭区间[],c d 连续,则区域()()()[]{}12,,,x y x y x x a b ϕϕ≤≤∈和()()()[]{}12,,,x y y x y y c d ψψ≤≤∈分别称为x 型区域和y 型区域.如下图(1)和(2)所示 .定理2 设有界闭区域R 是x 型区域,若函数(),f x y 在R 可积,且[],x a b ∀∈,定积分()()()21,x xf x y dy ϕϕ⎰存在,则累次积分()()()21,bxaxdx f x y dy ϕϕ⎰⎰也存在,且()()()()21,,bxaxRf x y dxdy dx f x y dy ϕϕ=⎰⎰⎰⎰.利用极坐标计算二重积分公式:()(),cos ,sin RRf x y dxdy f r r rdrd ϕϕϕ=⎰⎰⎰⎰例 1 计算二重积分()sin Rx y dxdy +⎰⎰,其中0,0.22R x y ππ⎛⎫≤≤≤≤ ⎪⎝⎭解 被积函数()cos x y +在R 连续,则有()cos Rx y dxdy +⎰⎰=()220cos dy x y dxππ+⎰⎰=220(cos cos sin sin )dy x y x y dxππ-⎰⎰=()20cos sin y y dy π+⎰= 1+01-例2 计算二重积分22Dxdxdyy⎰⎰,其中D是由直线2,x y x==和双曲线1xy=所围成,D既是x型区域又是y 型区域,如图(3)所示.解先对y积分,后对x积分.将D投影在x轴上,得闭区间[]1,2.[]1,2x∀∈,关于y积分,在D内y的积分限是1yx=到y x=,然后在投影区间[]1,2上关于x积分,即()222231221194xxDx xdxdy dx dy x x dxy y==-=⎰⎰⎰⎰⎰.先对x积分,后对y积分.因为D的左侧边界不是由一个解析式给出,而是由两个解析式1xy=和y x=给出的,所以必须将图(3)所示的区域D分成两个区域()1D PRS与()2D PRQ,分别在其上求二重积分,然后再相加,即2122222122211222221294yyD D Dx x x x xdxdy dxdy dxdy dy dx dy dxy y y y y=+=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰.例3 设函数()f x在[]0,1上连续,并设()2,f x dx B=⎰求()()22.xI dx f x f y dy=⎰⎰解因为()()()()222yxI dx f x f y dy dy f x f y dx==⎰⎰⎰⎰ ()()()()22yxf y dy f x dx f x dx f y dy==⎰⎰⎰⎰所以()()()()()()2222222x xI f x dx f y dy f x dx f y dy f x dx f y dy B =+==⎰⎰⎰⎰⎰⎰所以22B I =.2.2 换元法求二重积分,由于某些积分区域的边界曲线比较复杂,仅仅将二重积分化为累次积分并不能得到计算结果.如果经过适当的换元或变换可将给定的积分区域变为简单的区域,从而简化了重积分的计算. 定理3若函数(),f x y 在有界闭区域R 连续,函数组()(),,,x x u v y y u v == (2)将uv 平面上区域'R 变换为xy 平面上区域R .且函数组(2)在'R 上对u 与对v 存在连续偏导数,(),'u v R ∀∈, 有()(),0,,x y J u v ∂=≠∂则()()()()',,,,,RR f x y dxdy f x u v y u v J u v dudv =⎡⎤⎣⎦⎰⎰⎰⎰ (3)证明 用任意分法T 将区域R 分成n 个小区域:12,,,nR R R ⋅⋅⋅.设其面积分别是12,,,nσσσ∆∆⋅⋅⋅∆.于是,在'R 上有对应的分法'T ,它将'R 对应地分成n 个小区域12',',,'nR R R ⋅⋅⋅.设其面积分别是12',',,'n σσσ∆∆⋅⋅⋅∆.根据定理可得(),'ku v R ∀∈,有()()(),','.,k k k x y J u v u v σσσ∂∆≈∆=∆∂(),k k kR ξη∀∈,在'kR 对应唯一一点(),kkαβ,而()(),,,k k k k k k x y ξαβηαβ==.于是,()()()()11,,,,,'.nnkkkkkk k k k k k k f f x y J ξησαβαβαβσ==∆≈∆⎡⎤⎣⎦∑∑(4)因为函数组(2)在有界闭区域R 上存在反函数组()(),,,u u x y v v x y ==,并且此函数组在R 一致连续,所以当T →时,也有'0T →.对(4)取极限()0T→,有()()()()',,,,,RR f x y dxdy f x u v y u v J u v dudv =⎡⎤⎣⎦⎰⎰⎰⎰.例4 计算两条抛物线2y mx=与2ynx=和两条直线y xα=与y x β=所围成R 区域的面积()0,0R m n αβ<<<<,如图(4)所示.解 已知区域R 的面积RR dxdy =⎰⎰.设2,.y yu v x x==这个函数将xy 平面上的区域R 变换为uv 平面上的区域'R ,'R 是由直线,u m u n ==和,v v αβ==所围成的矩形域.()()()()43224222,11.,,2,1x y x y x uu v u v y x y v y yx y x xy x x∂⎛⎫===== ⎪∂∂⎝⎭-∂-由定理3可知,()()4',,n m RR x y u R dxdy dudv dv duu v v βα∂===∂⎰⎰⎰⎰⎰⎰()()223322433.26n m n m dv v βαβααβ---==⎰本题是典型的运用换元法解决二重积分求面积的问题。

相关文档
最新文档