金属学与热处理基础知识
金属学及热处理

时效处理工艺
总结词
时效处理是一种通过长时间放置或加热使金属内部发生沉淀 或析出反应的过程,主要用于提高金属的强度和稳定性。
详细描述
时效处理工艺通常将金属加热至较低的温度,并保持一定时 间,使金属内部的原子或分子的分布发生变化,形成更加稳 定的结构。通过时效处理,金属的强度和稳定性可以得到提 高。
表面热处理工艺
总结词
表面热处理是一种仅对金属表面进行 加热和冷却的过程,主要用于改善金 属表面的耐磨性、耐腐蚀性和抗氧化 性等。
详细描述
表面热处理工艺通常仅对金属表面进行加热 和冷却,而内部保持不变。通过表面热处理 ,可以改变金属表面的晶格结构、化学成分 和组织结构等,从而改善其表面的性能。
04 热处理设备与工具
热处理炉应定期进行维护和保养,确保设备的正常运行 和使用寿命。
在操作过程中,应定期检查炉温和炉压是否正常,防止 超温或超压。
在使用过程中,应保持炉膛的清洁,防止杂物和积炭对 加热元件和金属材料的影响。
热处理工具的选择与使用
01
02
03
04
根据不同的热处理工艺和金属 材料,选择合适的热处理工具
。
在使用过程中,应注意工具的 材质和尺寸是否符合要求,防 止工具损坏或金属材料表面损
金属学及热处理
contents
目录
• 金属学基础 • 热处理原理 • 热处理工艺技术 • 热处理设备与工具 • 热处理的应用与发展趋势
01 金属学基础
金属材料的分类与特性
钢铁材料
根据碳含量和用途,钢铁材料可分为生铁、铸铁和钢 材。其特性包括高强度、耐磨性和耐腐蚀性。
有色金属
如铜、铝、锌等,具有良好的导电性、导热性和延展 性。
金属学及热处理基本知识

金属学及热处理基本知识一、金属晶体结构的一般知识众所周知,世界上的物质都是由化学元素组成的,这些化学元素按性质可分成两大类:第一大类是金属,化学元素中有83种是金属元素。
固态金属具有不透明、有光泽、有延展性、有良好的导电性和导热性等特性,并且随着温度的升高,金属的导电性降低,电阻率增大,这是金属独具的一个特点。
常见的金属元素有铁、铝、铜、铬、镍、钨等。
第二大类是非金属,化学元素中有22种,非金属元素不具备金属元素的特征。
而且与金属相反,随着温度的升高,非金属的电阻率减小,导电性提高。
常见的非金属元素有碳、氧、氢、氮、硫、磷等。
我们所焊接的材料主要是金属,尤其是钢材,钢材的性能不仅取决于钢材的化学成分,而且取决于钢材的组织,为了了解钢材的组织及对性能的影响,我们必须先从晶体结构讲起。
(一)晶体的特点对于晶体,大家并不生疏。
食盐、水结成的冰,都是晶体。
一般的固态金属及合金也都是晶体。
并非所有固态物质都是晶体。
如玻璃、松香之类就不是晶体,而属于非晶体。
晶体与非晶体的区别不在外形,而在内部的原子排列。
在晶体中,原子按一定规律排列得很整齐。
而在非晶体中,原子则是散乱分布着,至多有些局部的短程规则排列。
由于晶体与非晶体中原子排列不同,因此性能也不相同。
(二)典型的金属晶体结构金属的原子按一定方式有规则地排列成一定空间几何形状的结晶格子,称为晶格。
金属的晶格常见的有体心立方晶格和面心立方晶格,如图1—4所示。
体心立方晶格的立方体的中心和八个顶点各有一个铁原子,而面心立方晶格的立方体的八个顶点和六个面的中心各有一个铁原子。
图1—4 典型的金属晶体结构(a)体心立方晶格 (b)面心立方晶格铁属于立方晶格,随着温度的变化,铁可以由一种晶格转变为另一种晶格。
这种晶格的转变,称为同素异晶转变。
纯铁在常温下是体心立方晶格(称为α-Fe);当温度升高到910℃时,纯铁的晶格由体心立方晶格转变为面心立方晶格(称为γ-Fe);再升温到1390℃时,面心立方晶格又重新转变为体心立方晶格(称为δ-Fe),然后一直保持到纯铁的熔化温度。
金属材料及热处理基础知识.ppt

2 .洛氏硬度
以顶角为120度的金刚石圆锥体或直径1.588mm的淬火 钢球作为压头,以一定的压力使其压入材料表面,测量压痕 深度来确定其硬度,即为洛氏硬度。被测材料硬度,可直接 在硬度计刻盘读出。
洛氏硬度常用的有三种,分别以HRA、HRB、HRC来表示。 洛氏硬度符号、试验条件和应用表
下贝氏体:无方向性的针状铁素体上弥散分布着细小颗粒的 渗碳体
7、魏氏组织
魏氏组织是在比较大的过冷度下形成的。奥氏体过冷到这 一温度区内,便会形成魏氏组织。魏氏组织铁索体是以切变机 理形成的其生长往往都是由晶界网状铁索体分枝,许多铁赢体 片平行地向晶粒内部长大。铁素体片之间的奥氏体随后变成珠 光体。魏氏组织会降低钢的塑性和韧性,尤其是冲击韧性。
3.维氏硬度 测定维氏硬度的原理基本上和布氏硬度相同,区别在于压头
采用锥面夹角为136度的金刚石正四棱锥体,压痕是四方锥形。 维氏硬度值用HV表示。
压痕面
4. 里氏硬度
原理:当材料被一个冲击体撞击时,较硬材料使冲击体产生 的反弹速度大于较软者。
5. 硬度与强度值的对应关系 由于硬度值综合反映了材料在局部范围内对塑性变形等 的抵抗能力,故它与强度值也有一定关系。 工程上:
冷却速度对晶粒大小的影响
快速冷却,形核点多,晶粒细小 冷却速度慢,均匀长大,晶粒粗大
1.2.2 铁碳合金的基本组织 铁 碳含量>2%--弱而脆
铁碳合金
铁素体—碳熔于α铁或δ铁中的固溶体 F
钢 奥氏体—碳熔于γ铁中的固溶体 A 强而韧 碳含量 0.02%-2%
渗碳体—铁碳金属化合物含碳6.67% Fe3C
许用应力 o
n
安全系数
金属学与热处理复习资料(本)

金属学与热处理复习资料一、名词解释1、晶体:原子在三维空间做有规则的周期性重复排列的物质。
2、非晶体:指原子呈不规则排列的固态物质。
3、晶格:一个能反映原子排列规律的空间格架。
4、晶胞:构成晶格的最基本单元。
5、晶界:晶粒和晶粒之间的界面。
6、单晶体:只有一个晶粒组成的晶体。
7、合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。
8、组元:组成合金最基本的、独立的物质称为组元。
9、相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。
10、固熔体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相。
11、结晶:纯金属或合金由液体转变为固态的过程。
12、重结晶:金属从一种固体晶态改变了晶体结构转变为另一种固体晶态的过程。
13、过冷度:理论结晶温度(T0)和实际结晶温度(T1)之间存在的温度差。
14、铁素体:碳溶解于α-Fe中形成的间隙固溶体。
15、渗碳体:是铁与碳形成的质量分数为6.69%的金属化合物。
16、奥氏体:碳溶解于γ-Fe中形成的间隙固溶体。
17、珠光体:是由铁素体与渗碳体组成的机械化合物。
18、莱氏体:奥氏体与渗碳体的混合物为莱氏体。
19、同素异构转变:一些金属,在固态下随温度或压力的改变,还会发生晶体结构变化,即由一种晶格转变为另一种晶格的变化,称为同素异构转变。
20、实际晶粒度:某一具体热处理或热加工条件下的奥氏体的晶粒度叫实际晶粒度,它决定钢冷却后的组织和性能。
21、马氏体:碳在α-Fe 中的过饱和间隙固溶体,具有很大的晶格畸变,强度很高。
22、贝氏体:渗碳体分布在含碳过饱和的铁素体基体上或的两相混合物。
根据形貌不同又可分为上贝氏体和下贝氏体。
23、淬透性:淬透性是指在规定条件下,钢在淬火冷却时获得马氏体组织的能力。
24、淬硬性:淬硬性是指钢在理想的淬火条件下,获得马氏体所能达到的最高硬度。
25、调质处理:淬火后高温回火的热处理工艺组合。
金属学及热处理基础知识

第一章金属学及热处理基础知识一、金属的基本结构金属材料的化学成分不同,其性能也不同。
但是对于同一种成分的金属材料,通过不同的加工处理工艺,改变材料内部的组织结构,也可以使其性能发生极大的变化,可见,金属的内部结构和组织状态也是决定金属材料性能的重要因素。
金属和合金在固态下通常都是晶体,因此首先要了解其晶体结构。
1、金属的原子结构及原子的结合方式(1)金属原子的结构特点最外层的电子数很少,一般为1~2个,最多不超过4个,这些外层电子与原子核的结合力很弱,很容易脱离原子核的束缚而变成自由电子,此时的原子即变为正离子,而对于过渡族金属元素来说,除具有以上金属原子的特点外,还有一个特点,即在次外层尚未填满电子的情况下,最外层就先填充了电子。
因此,过渡族金属的原子不仅容易丢失最外层电子,而且还容易丢失次外层的1~2个电子,这就出现了过渡族金属化合价可变的现象。
当过渡族金属的原子彼此相互结合时,不仅最外层电子参与结合,而且次外层电子也参与结合。
因此,过渡族金属的原子间结合力特别强,宏观表现为熔点高。
强度高。
由此可见,原子外层参与结合的电子数目,不仅决定着原子间结合键的本质,而且对其化学性能和强度等特性也具有重要影响。
(2)金属键处以集聚状态的金属原子,全部或大部将它们的价电子贡献出来,为其整个原子集体所公有,称之为电子云或电子气。
这些价电子或自由电子,已不再只围绕自己的原子核转动,而是与所有的价电子一起在所有原子核周围按量子力学规律运动着。
贡献出价电子的原子,则变为正离子,沉浸在电子云中,它们依靠运动于其间的公有化的自由电子的静电作用而结合起来,这种结合方式叫做金属键,它没有饱和性和方向性。
(3)结合力与结合能固态金属中两原子之间的相互作用力包括:正离子与周围自由电子间的吸引力,正离子与正离子以及电子与电子间的排斥力。
结合能是吸引能与排斥能的代数和,当形成原子集团比分散孤立的原子更稳定,即势能更低时,在吸引力的作用下把远处的原子移近所做的功是使原子的势能降低,所以吸引能是负值,相反,排斥能作用下把远处的原子移近平衡距离d 0时,其结合能最低,原子最稳定。
《金属学与热处理》课件

本课程将介绍金属学基础、金属热力学、金属相变、金属缺陷与强化、金属 热处理以及金属表面处理,让您掌握金属材料与加工的基本知识。
第一章 金属学基础
1
金属的组成
金属是由原子或离子通过共用自由电子结合而成,是导热、导电、延展、可塑性 极强的物质。
2
金属的晶体结构
金属是具有整齐排列、具有规律性的晶体结构。晶格是六面体密排结构。
3
金属的晶界和位错
晶界是晶体内部不同晶粒相交界面。位错是晶粒中原子或离子排列存在的缺陷。
第二章 金属热力学
热力学第一定律
能量可以从一种形式转换成 另一种形式,但能量总量不 变。
热力学第二定律
热量不会自己从低温转移到 高温物体,只有在做功或吸 收外界热量的情况下才可以。
热力学第三定律
在温度绝对零度的情况下, 能量变为零。
2 热处理设备
有固体加热炉、电阻炉、气体加热炉、水加热炉等。
3 热处理工艺控制
包括加热速度、加热温度、保温时间、冷却速度等控制参数。
第六章 金属表面处理
金属表面处理方法
包括化学处理、机械加工、电 化学处理、热处理、电镀等多 种方法。
金属表面处理工艺流程
表面清洁、表面活化、表面处 理、表面涂装等环节组成。
产生于晶体生长、切割、变形等过程中。
包括薄亚晶带、位错、蠕变加工硬化带。
3
面缺陷
是金属晶体的缺陷,其形状是哑铃、孔
强化机理
4
等。表现为晶界、裂纹等。
金属材料经过不同的加工或处理过程, 可以获得不同的强度、硬度、延展性等
性能。
第五章 金属的热处理
1 热处理工艺
是在一定的加热、保温和冷却条件下,对金属材料进行组织和性能控制的工艺。
《金属学与热处理》课件

举例说明
电子器件中的微型线圈需要采用真空 热处理来确保其导电性能和稳定性; 而医疗器械中常用的钛合金则需要通 过特殊的化学热处理来提高其耐腐蚀 性和生物相容性。
05
热处理设备与工艺控 制
热处理设备的分类与选择
热处理设备的分类
根据加热方式、用途和特点,热处理设备可分为多种类型,如电炉、燃气炉、 真空炉、感应炉等。
举例说明
飞机发动机中的涡轮叶片需要采用特 殊的热处理工艺来提高其高温强度和 抗疲劳性能;而医疗器械中常用的钛 合金则需要通过精细的热处理来确保 其生物相容性和力学性能。
功能金属材料的热处理
总结词
详细描述
功能金属材料具有特殊的物理和化学 性能,其热处理工艺对材料的性能具 有重要影响。
功能金属材料的热处理主要包括真空 热处理、化学热处理和磁场热处理等 工艺。这些工艺能够改变金属的表面 组织结构和化学成分,从而赋予材料 特殊的物理和化学性能。例如,磁性 材料需要进行磁场热处理来提高其磁 导率和磁感应强度;而超导材料则需 要通过真空热处理和化学热处理来确 保其超导性能。
气氛控制
对于某些热处理工艺,如渗碳、 渗氮等,需要控制炉内的气氛, 包括气体组成、压力和流量等, 以确保工件表面的质量。
热处理过程中的环境保护
减少能源消耗
采用先进的热处理技术和设备,提高能源利用率 ,减少能源浪费。
降低污染物排放
通过改进工艺和设备,降低热处理过程中产生的 有害物质排放,如废气、废水和固体废弃物等。
热处理过程中的相变
相变概念
金属在加热和冷却过程中发生的组织结构变 化,包括晶体结构的变化和相的分离。
相变机理
固态相变、液态相变和气态相变等。
相变类型
共析转变、包晶转变、固溶体脱溶等。
金属材料和热处理基本知识(培训内容)

第四章金属材料的基础知识和热处理的基本知识1、钢的分类:|(1)-碳钢:含碳量低于2%的铁碳合金;-合金钢:在钢中特意加入一种或几种其它合金元素组成的钢;-生铁:含碳量高于2%的铁碳合金.,可通过铸造方法制造零件,所以又称铸铁.(2)按化学成分分类:碳钢-低碳钢:含碳量小于0.25%;-中碳钢:含碳量为0.25~0.55%;-高碳钢:含碳量大于0.55%.合金钢-低合金钢:合金元素总含量小于3.5%;-中合金钢:合金元素总含量 3.5~10%;-高合金钢:合金元素总含量大于10%;2、洛氏硬度与布氏硬度值近似关系:HRC≈1/10HB3、热处理及其常用工艺方法热处理的定义-利用钢在固态下的组织转变,通过加热和冷却获得不同组织结构,从而得到所需性能的工艺方法统称热处理.常用热处理工艺方法:退火-将钢加热到一定温度,保温一段时间,然后随炉一起缓慢冷却下来,以期得到接近平衡状态组织的一种热处理方法.4、完全退火:AC3以上30~50℃,用于消除钢的某些组织缺陷和应力,改善切削加工性能;等温退火:加热到AC3,以上30~50℃,较快的冷却到略低于Ar1的温度,并在此温度下等温到奥氏体全部分解为止,然后出炉空冷.适用于亚共析钢、共析钢,尤其广泛用于合金钢的退火。
优点是周期短,组织和硬度均匀。
5、正火-正火和退火加热方法相似,只是冷却速度比退火稍快(空冷),得到的是细片状珠光体(索氏体),强度、硬度比退火的高,与退火相比,工艺周期短,设备利用率高。
主要用于低碳钢获得满意的机械性能和切削性能、过共析工具钢消除网状渗碳体、中碳钢代替退火或作为淬火前的预先热处理。
6、淬火-将钢加热到AC1以上30~50℃(共析钢、过共析钢)或AC3以上30~50℃(亚共析钢),保温一段时间,然后快冷得到高硬度的马氏体组织的工艺方法。
用以提高工件的耐磨性。
7、回火-将淬火后的工件加热到A1以下某一温度,保温一段时间,然后以一定的方式冷却(炉冷、空冷、油冷、水冷等)-目的:1)降低淬火工件的脆性,消除内应力(热应力和组织应力),使淬火组织趋于稳定,同时也使工件尺寸趋于稳定;2)获得所需的硬度和综合机械性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、结晶结束(所有 的晶粒长大到相 互接触)
二 纯铁的同素异构转变
同一种元素在不同条件下 具有不同的晶体结构。当 温度等外界条件变化时, 晶格类型会发生转变, 称为同素异构转变
图1-29 纯铁的冷却曲线及晶体结构变化
• 实际使用的金属是 由许多晶粒组成的, 叫做多晶体。每一 晶粒相当于一个单 晶体,晶粒内的原 子排列是相同的, 但不同晶粒的原子 排列的位向是不同 的,如图 1-12 所示。 品粒之间的界面称 为晶界。
• 晶格缺陷使材料 的物理、化学性 质发生改变,
• 例如空位隙原子、 置代原子的存在 引起周围晶格畸 变(图 1-13) , 使金属屈服点和 抗拉强度增高,
金属学与热处理基本知识
一. 金属的晶体结构
• 物质是由原子构成的。根据原子在物质内 部的排列方式不同,可将物质分为晶体和 非晶体两大类。凡内部原子呈规则排列的 物质称为晶体,凡内部原子呈不规则排列 的物质称为非晶体,所有固态金属都是晶 体。
• 晶体内部原子的排列方式称为晶体结构。 常见的晶体结构有:
• 但实际上,液态金属只有冷却到低于 To 的某一温 度时才开始结晶。也就是说,实际结晶温度 Tn 总是低于理治结晶温度 To。
• 两者之差称为过冷度,用 Δ T 表示,
• 即 Δ T= To –Tn。
• 结晶过程:(图 115)
1、生成晶核(晶核 通常依附于液态 金属中的固态微 粒杂质而形成。
• (图 1-14)
• 高温的液态金属冷却转变为固态金属的过程是一 个结晶过程,即原子由不规则状态(液态)过渡到 规则状态(固态)的过程。
• 过冷是金属结晶的必要条件。
• 每一种金属都有一定的结晶温度,例如铁的结晶 温度为 1538℃ ,铜的结晶温度为 1 083 ℃ ,这 种结晶温度称为理论结晶温度或平均结晶温度, 用有To表示。
三、金属的结构及铁碳合金
1、铁碳合金的基本组织 ⑴、钢和铁 ①、含碳量小于2.06的铁碳合金叫钢。 ②、含碳量大于2.06的铁碳合金叫铁(铸铁 或生铁)。 ⑵、钢材的性能不仅取决于钢材的化学成份, 而且与钢材组织有关。 ⑶、纯铁的晶体结构 ①.15380C~13940C—α-Fe(体心立方晶体) ②.13940C~9120C—γ-Fe(面心立方晶体
④.S点(共析点):对应于含碳量=0.8%的 钢。在S点以上为单一的奥氏体,低于S点为珠 光体。
⑤.E点:钢和铸铁的分界点(含碳量2.06%)。
⑷、共析
①.共析反应:钢冷却到7230C时,从奥氏体 中同时析出铁素体和渗碳体,此反应称共析反 应,产物为珠光体。
②.共析钢:含碳量等于0.8%的钢称为共析 钢。共析钢在7230C以上为单一的奥氏体; 7230C以下为单一的珠光体。
③.9120C以下—α-Fe(体心立方晶体)
⑶、铁碳合金的基本组织 ①、铁素体(F)—铁素体是碳溶解于α-Fe中 的固溶体。铁素体含碳量低(室温下溶解度为 0.006%),塑性、韧性好,强度、硬度低,在 770℃ 以下具有铁磁性,超过 770 ℃ 则丧失铁 磁性。 性能是②熔、点渗高碳,体硬(而Fe脆3C。)— 钢中铁含和碳碳量的增化加合,物渗。碳其 体增加,硬度强度提高,塑性韧性下降。渗碳体 在 217 ℃ 以下具有铁磁性。 ③、珠光体(P)—铁素体和渗碳体体的机械 混合物。强度较高,硬度适中,有一定的塑性。 ④、奥氏体(A)—奥氏体是碳在γ-Fe中形成 的间隙固溶体。碳钢加热到723 ℃以上组织发生 转变时才有奥氏体组织产生。强度硬度较铁素体 高,塑性良好。奥氏体不具有铁磁性。
加热、保温和冷却,以改变钢的内部组织结构 从而改变钢的性能的一种工艺方法。
(2)、主要的热处理方法: a.普通热处理: 淬火、正火、回火、退火、调质。 b.表面热处理: 表面淬火、化学热处理。
(3)、热处理工艺 三大工艺参数: 加热、保温和冷却。
(4)、钢的加热和冷却状态图
2、钢在加热和冷却时的组织转变 ⑴、钢在加热时的转变过程(以共析钢为例): ①.奥氏体晶核产生(铁素体与渗碳体交界
处); ②.奥氏体晶粒长大(碳的扩散); ③.殘余渗碳体溶解; ④.奥氏体成份均匀化。
⑵、钢在冷却时的转变 ①.高温转变区: 723-5500C之间,依转变温度高,转变产物低
⑶、两点(E、S)、三线(GS、ES、PSK)
①.PSK线(A1线)—表示钢在缓慢冷却时, 奥氏体开始转变为珠光体或钢在缓慢加热时珠 光体转变为奥氏体的温度线(7230C)。
②.GS线(A3线)—表示钢在缓慢冷却时, 奥氏体开始析出铁素体的温度线或钢在缓慢加 热时铁素体转变为奥氏体的终止温度线。
③.ES线(Acm线)—表示钢在缓慢冷却时由 奥氏体开始析出渗碳体的温度线,即含碳量大 于0.8%的钢冷却时析出二次渗碳体的起始线。
③.亚共析钢:含碳量小于0.8%的钢称为亚 共析钢。共析钢在7230C以上为铁素体+奥氏 体; 7230C以下为铁素体+珠光体。
④.过共析钢:含碳量大于0.8%的钢称为过 共析钢。共析钢在7230C以上为奥氏体+二次 渗碳体; 7230C以下为珠光体+二次渗碳体。
四、钢的热处理
1、基本概念 (1)、定义:钢的热处理是指对钢在固态下
• 1.体心立方晶格,如图 l-11a 所示。属于此 类的金属有α-铁, δ-铁, Cr , V,β-Ti 等。
• 2. 面心立方晶格,如图 l-11b 所示。属于此 类的金属有 γ一铁, Al , Cu ,Ni等。
• 3. 密排六方品格,如医11-11c 所示。属于 此类的金属有 Mg , Zn , α-Ti 等。
2、铁碳合金状态图
⑴、铁碳合金状态图—表示在平衡状态下不 同含碳量的铁碳合金在不同温度下所处的状态、 晶体结构和显微组织特征的图。
⑵、图中的主要特征线
①、ACD线—液相线。此线以上全部为液体。 钢加热到此线全部转化为液体,冷却到此线开 始结晶。
②、AECF线—固相线。钢冷却到到此线以下 全部结晶为固体,加热到此线开始出现液体。