金属学与热处理原理中的退火与再结晶
金属学与热处理名词解释汇总

金属学与热处理名词解释汇总热处理:在生产中,通过加热、保温和冷却,使钢发生固态相变,借此改变其内部组织结构,从而达到改善力学性能的目的的操作被称为热处理。
正火:将工件加热至Ac3(Ac是指加热时自由铁素体全部转变为奥氏体的终了温度,一般是从727℃到912℃之间)或Acm(Acm是实际加热中过共析钢完全奥氏体化的临界温度线)以上30~50℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。
淬火:将钢加热到Ac3或Ac1以上的某一温度,保温一定时间,然后取出进行水冷或油冷获得马氏体的热处理工艺。
等温淬火:将奥氏体化的工件淬入温度稍高于Ms的熔盐中,等温保持足够时间,使过冷奥氏体恒温发生贝氏体转变,待转变结束后取出在空气中冷却的处理方法称为等温淬火。
分级淬火:将奥氏体化的工件淬入温度稍高于或稍低于Ms的熔盐中,待工件内外温度均匀后,从熔盐中取出置于空气中冷却至室温,以获得马氏体组织,这种处理方法称为分级淬火。
单液淬火:将奥氏体化的工件投入一种淬火介质中,直至转变结束。
双液淬火:将奥氏体化的工件先放入一种冷却能力强的冷却介质冷却一定时间,当冷却至稍高于Ms后立即将工件取出并放入另外一种冷却能力缓一些的冷却介质冷却,使之转变为马氏体的热处理工艺。
回火:将淬火钢加热到低于临界点A1某一温度,保温一定时间,然后冷却到室温的一种热处理工艺。
回火索氏体:淬火碳钢500~650℃回火时,得到粗粒状渗碳体和多边形铁素体所构成的复相组织。
回火屈氏体:淬火碳钢350~500℃回火时,得到细粒状渗碳体和针状铁素体所构成的复相组织。
回火马氏体:淬火碳钢在250℃以下回火时,得到的过饱和的α固溶体和弥散分布的碳化物组成的复相组织。
退火:是将钢加热到临界点以上或以下的某一温度,保温一定时间后,随炉冷却的一种热处理工艺。
它是热处理工艺中应用最广、种类最多的一种工艺,不同种类的退火目的也各不相同。
等温退火:将亚共析钢工件加热到A3以上20〜30°C,保温一定时间,然后在Arl以下珠光体转变区间的某一温度进行等温,使之转变为珠光体后出炉空冷的一种热处理工艺。
金属学与热处理金属性质与合金回复与再结晶

M f(-50℃)为马氏体转变终了温度
共析钢的过冷奥氏体等温转变曲线
第九章 钢的热处理原理
问题: 如将一根直径5mm的热轧钢试样加热到650℃,等
温15s后淬火水中,问等温转变曲线可否用来分析最 后得到的组织?
不能
原因:等温转变曲线是描述过冷奥氏体的转变的。热轧 共析钢加热到650 ℃并未发生奥氏体化。
加热与冷却速度对临界点的影响
第九章 钢的热处理原理
扩散型
固态相变 类型
非扩散型
半扩散型
第九章 钢的热处理原理
1、奥氏体的结构 奥氏体是碳溶于γ-Fe所形成的固溶体。在合金钢中,
除了碳原子外,溶于γ-Fe中的还有合金元素原子。
共析钢奥氏体的形成过程
奥氏体的形成过程
形核 长大 残余渗碳体的溶解
均匀化
金属学与热处理 金属性质和合金的回复与再结晶
典型退火的过程,随着保温时间和延长和温度升高,
可分为和晶粒长大三个阶段。
回复、再结晶的定义及性能变化及应用。
再结晶形核机制
亚晶长大形核 (变形量较大时)
凸出形核:
再结晶温度
:T再=(0.25-0.35)Tm。 工业纯金属:T再=(0.35-0.45)Tm。 合金:T再=(0.4-0.9)Tm。
第九章 钢的热处理原理
奥氏体晶粒长大及控制
晶粒度
是表示晶粒大小的一种尺度。是以单位面积内 晶粒的个数或每个晶
本质晶粒度
默认
验刚的代互方指表指相法临在在接,对界某某触即温一钢一时将度条来热的钢以件说处晶加上下,理粒热奥,加大如到奥氏热小果(氏体条。9不体形件3成特0下的±刚别,1长刚0指所大)完得倾明摄成到向,氏,的,度一其晶通,般晶粒常保粒是尺采温边指寸用3界。-奥标5刚小准时实 后粒,钢测,定在氏其1体~奥4化级氏后者体的称晶实为粒本大际质小晶粗。粒晶晶大粒粒小钢度。。在5~8级者称为本质细晶
金属学与热处理第七章 金属及合金的回复与再结晶

五、亚晶粒尺寸
在回复阶段的前期,亚晶粒尺寸变化不大,但在 后期,尤其在接近再结晶温度时,亚晶粒尺寸显著增 大。
第二节 回 复
一、退火温度和时间对回复过程的影响
回复是指冷塑性变形的金属在加热时,在光学 显微组织发生改变前(即在再结晶晶粒形成前)所 产生的某些亚结构和性能的变化过程。通常指冷塑 性变形金属在退火处理时,其组织和性能变化的早 期阶段。
回复机制
冷变形后,晶体中同号的刃型位错处在同一滑移 面时它们的应变能是相加的,可能导致晶格弯曲(见 图7-5a);而多边化后,上下相邻的两个同号刃型位 错之间的区域内,上面位错的拉应变场正好与下面位 错的压应变场相叠加,互相部分地抵消,从而降低了 系统的应变能(见图7-5b)。
图7-5 多边化前、后刃型位错的排列情况 a)多边化前 b)多边化后
回复机制
图7-6 刃型位错的攀移和 滑移示意图 图7-7 刃型位错攀移示意图
三、亚结构的变化
金属材料经多滑移变形后形成胞状亚结构,胞内位 错密度较低,胞壁处集中着缠结位错,位错密度很高。 在回复退火阶段,当用光学显微镜观察其显微组织时, 看不到有明显的变化。但当用电子显微镜观察时,则可 看到胞状亚结构发生了显著地变化。图7-8为纯铝多晶 体进行回复退火时亚结构变化的电镜照片。
第七章 金属及合金的回复与再结晶
第一节 形变金属与合金在退火过程 中的变化
第二节 回 复 第三节 再 结 晶 第四节 晶粒长大 第五节 金属的热加工
第一节 程
形变金属与合金在退火过
中的变化
一、显微组织的变化
将塑性变形后的金属材料加热到0.5Tm温度附近,
进行保温,随着时间的延长,金属的组织将发生一系 列的变化,这种变化可以分为三个阶段,如图7-1所示。
金属材料的再结晶与再结晶退火探索材料晶粒细化的途径

金属材料的再结晶与再结晶退火探索材料晶粒细化的途径金属材料的再结晶和再结晶退火是金属加工中常用的工艺,通过调整材料的结构来改变其力学性能和微观组织。
本文将探讨金属材料再结晶与再结晶退火的原理以及几种常用的晶粒细化方法。
一、再结晶的原理再结晶是指在金属材料的冷变形过程中,通过升温和应力消除来改变材料的晶体结构和性能。
再结晶过程可以分为三个阶段,即原始晶体的奥氏体再结晶核心的产生、再结晶晶粒的长大和最终的后晶粒修饰。
再结晶退火则是指通过升温处理,使冷变形后的材料得以恢复和细化晶粒结构,增强材料的延展性和韧性。
再结晶退火是一种重要的热处理工艺,可以明显改善金属材料的力学性能。
二、晶粒细化的途径1. 冷变形与再结晶退火冷变形是指将金属材料在室温下通过压力或拉伸等形式进行加工,使其产生塑性变形。
冷变形能够引起材料中的位错密度增加,晶界能量的积累,从而促使晶界迁移与再结晶发生。
再结晶退火可以通过降低位错密度,细化晶粒结构,提高材料的延展性和韧性。
2. 粒度控制和晶界工程通过控制材料的晶粒大小,可以间接控制材料的性能。
通常情况下,晶粒尺寸越小,材料的塑性和强度越高。
晶界工程是一种通过控制晶界的类型和分布来调整材料性能的方法。
例如,在金属材料中加入适量的微合金元素,能够改变晶界的能量和迁移速度,从而实现细化晶粒的效果。
3. 弹塑性变形与细化弹塑性变形是指材料在应力作用下发生的弹性和塑性变形。
在变形过程中,应力会引起材料的位错运动和晶界迁移,从而促使晶粒的细化。
通过合理设计工艺参数,如应力应变状态和变形速率等,可以实现晶粒细化的效果。
同时,不同的金属材料具有不同的再结晶温度,通过合理选择合适的变形温度和退火温度,也可以实现晶粒细化。
总结:金属材料的再结晶和再结晶退火是调控材料晶粒细化的重要手段。
通过冷变形与再结晶退火、粒度控制和晶界工程、弹塑性变形与细化等途径,可以改变材料的晶体结构和性能。
在实际应用中,根据金属材料的具体情况和加工要求,选择合适的再结晶方法和工艺参数,能够获得理想的材料性能和微观结构。
金属晶体结构及再结晶退火的机理过程

第十八章金属晶体结构及再结晶退火的机理、过程在金属学中,组织这个概念是指用肉眼或借助于各种不同放大倍数的显微镜所观察到的金属材料内部的情景。
习惯上用放大几十倍的放大镜或用肉眼所观察到的组织,称为底倍组织或宏观组织;用放大1000-2000倍的显微镜所观察到的组织,称为高倍组织或显微组织;通过几千倍到几十万倍的电子显微镜所观察到的组织,称为电镜显微组织或精细组织。
通过照片看到的组织,其组织形态是多种多样,非常复杂的。
从照片观察分析组织具有一个共同的较普遍的特征,即它是由许多好象生物学的细胞似的小单元所组成的。
组织形态多样性是由于这些小单元的形态、大小、相对数量和相对分布不同而产生的,亚晶界晶粒严格说,晶体结构是指原子集合体中各原子的具体组合状态。
成分、结构和组织三者即相互区别,又相互渗透,并分别在不同程度相互制约着,它们的综合作用决定了金属材料的性能。
如A8079、H14、H18等。
Fe-C合金相同的成分由于不同的结构,却使用方式不同。
当然也有些性能对结构、组织的变化很不敏感,如密度、比热、热传导性电阻等。
什么是晶体?凡是原子(或离子、分子)在三维空间按一定规律呈周期性排列的固体均是晶体。
非晶体是什么?在三维空间没有按一定规律不呈周期性排列的固体为非晶体。
如:木料、玻璃、棉花等。
液态金属的原子排列无周期规律性,不为晶体。
晶体和非晶体物质在性质上的区别主要有:①前者熔化时具有固定的熔点,而后者却存在一个软化温度范围,没有明显的熔点;②前者具有各向异性,而后者为各向同性。
由于具有各向异性,晶粒的位向是任意的,互相抵消,因此在一般情况下整个晶粒不显示各向异性称之为伪等向性。
在外界给予力使其晶粒的位向大致相同,那么就表现出各向异性,这在工业生产中已得多晶体金属中晶粒位向示意图金属晶体结构:自然界中的晶体有成千上万种,它们的晶体结构各不相同,其中最典型最常见的晶体结构有体心立方结构:α-Fe、Cr、Mo、W等30多种三种类型面心立方结构如:Fe、Cu、Al、Ag、Ni等20种金属具有这种结构密排六方结构:Zn、Mg、α-Co等前两种属于立方晶体系,后一种属于六方晶系。
金属材料及热处理03回复与再结晶退火汇总资料

因此,起始晶粒度难以把握,难以控制。我们通常指的再结晶粒度实 实际上为退火后已经一定长大的实际晶粒度。
然而,晶粒度以及其均匀性是再结晶后的主要组织特征,直接影响材 料的工艺性能、使用性能以及制品表面质量。再结晶退火时,需控制 再结晶晶粒(实际晶粒大小),因此,研究其控制因素有重要意义。
冷变形33%
580℃×3sec
580℃×4sec
580℃×8sec
580℃×3min
580℃×15min
金属材料及热处理
回 复
4. 2 冷变形金属在加热退火过程中组织性能变化
再 结 晶
原
正
位 再
常 晶 粒
结
长
晶
大
晶粒长大
异常晶粒长大
非均匀、不连续长大
金属材料及热处理
4. 2 冷变形金属在加热退火过程中组织性能变化
这是一个较普遍的现象
4. 3 回复退火
成份高,Δσ 高; 冷变形程度高, Δσ 高; 冷变形软化,再退火硬化
机理:
说法很多,不同合金有不同说法,主要的有两种,
(1)变形材料中的可动位错和退火时由多边化产生的 位错壁中的可动位错发生闭锁;
(2)退火时,杂质及合金元素原子形成的气团(在位 错处或层错处产生偏聚,contrell气团、铃木气团 ),固 溶体中产生了短程有序等等,钉扎或阻碍位错。
金属材料及热处理
4. 4 再结晶退火
(2)影响再结晶晶粒大小的因素
总的来讲,晶粒尺寸与N/Gn (形核率/晶核生长速率)、 Gg(晶粒长
③回复与再结晶的关系 回复对再结晶的影响具有双重性, (1)空位下降,扩散慢,能量下降,驱动力下降,阻碍再 结晶; (2)多边化也是作为再结晶的开始阶段,有利于再结晶
金属学与热处理课后习题答案(崔忠圻版)-7-10章

金属学与热处理课后习题答案 (崔忠圻版 )第十章钢的热处理工艺10-1 何谓钢的退火?退火种类及用途如何?答:钢的退火:退火是将钢加热至临界点 AC1 以上或以下温度,保温一定时间以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。
退火种类:根据加热温度可以分为在临界温度 AC1 以上或以下的退火,前者包括完全退火、不完全退火、球化退火、均匀化退火,后者包括再结晶退火、去应力退火,根据冷却方式可以分为等温退火和连续冷却退火。
退火用途:1、完全退火:完全退火是将钢加热至AC3 以上 20-30℃,保温足够长时间,使组织完全奥氏体化后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。
其主要应用于亚共析钢,其目的是细化晶粒、消除内应力和加工硬化、提高塑韧性、均匀钢的化学成分和组织、改善钢的切削加工性能,消除中碳结构钢中的魏氏组织、带状组织等缺陷。
2、不完全退火:不完全退火是将钢加热至 AC1- AC3(亚共析钢)或 AC1-ACcm (过共析钢)之间,保温一定时间以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。
对于亚共析钢,如果钢的原始组织分布合适,则可采用不完全退火代替完全退火达到消除内应力、降低硬度的目的。
对于过共析钢,不完全退火主要是为了获得球状珠光体组织,以消除内应力、降低硬度,改善切削加工性能。
3、球化退火:球化退火是使钢中碳化物球化,获得粒状珠光体的热处理工艺。
主要用于共析钢、过共析钢和合金工具钢。
其目的是降低硬度、改善切削加工性能,均匀组织、为淬火做组织准备。
4、均匀化退火:又称扩散退火,它是将钢锭、铸件或锻轧坯加热至略低于固相线的温度下长时间保温,然后缓慢冷却至室温的热处理工艺。
其目的是消除铸锭或铸件在凝固过程中产生的枝晶偏析及区域偏析,使成分和组织均匀化。
5、再结晶退火:将冷变形后的金属加热到再结晶温度以上保持适当时间,然后缓慢冷却至室温的热处理工艺。
其目的是使变形晶粒重新转变为均匀等轴晶粒,同时消除加工硬化和残留内应力,使钢的组织和性能恢复到冷变形前的状态。
热处理加工再结晶退火和消除应力退火

经过冷变形后的金属加热到再结晶温度以上,保持适当时间,使形变晶粒重新转变为均匀的等轴晶粒,以消除形变强化和参与应力的热处理工艺,称为再结晶退火。
再结晶退火的目的是消除冷作硬化,提高延展性(塑性),改善切削性能及压延成型性能。
在结晶退火在高于再结晶温度下进行。
再结晶温度随着合金成分及冷塑性变形量而有所变化。
为产生再结晶所需的最小变形量称为临界变形量。
钢的临界变形量在6%—10%之间。
再结晶温度随着变形量增加而降低,到一定值时不再变化。
纯金属的再结晶温度为:铁的再结晶温度为:450℃铜的再结晶温度为:270℃铝的再结晶温度为:100℃铝合金再结晶温度为350—400℃铜合金再结晶温度为:600—700℃一般钢材再结晶退火温度为:650—700℃为了去除由于形变加工、锻造、焊接等所引起的及铸件内存在的残余应力(但不引起组织的变化)而进行的退火,称为去应力退火。
由于材料成分、加工方法、内应力大小及分布的不同,以及去除程度的不同,去应力退火的加热温度范围很宽,应根据具体情况决定。
例如低碳结构钢热锻后,如硬度不高,适于切削加工,可不进行正火,而在500℃左右进行去应力退火;中碳结构钢为避免调质时的淬火变形,需在切削加工活最终热处理前进行500—650℃的去应力退火;对切削加工量大,到头复杂而要求严格的道具、模具等,在粗加工及半精加工之间,淬火前,常进行600—700℃、2—4h的去应力退火;对经过索氏体话处理的弹簧钢丝,在盘制成弹簧后,虽不经淬火回火处理,但应进行去应力退火,以防止制成成品后因应力状态改变而产生变形,常用温度一般为250—350℃,此时还可产生时效作用,使强度有所提高。
铸件由于铸造应力的存在,可能发生集合形状不稳定,甚至开裂;尤其在机械加工后,由于应力平衡的破坏,常会造成变形超差,使工件报废,因此各类铸件在机械加工前应进行消除应力处理。
铸件去应力退火温度不应太高,否则造成珠光体的石墨化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属学与热处理原理中的退火与再结晶
在金属学与热处理原理中,退火与再结晶是常见的热处理方法,它们在改善金属材料的性能和微观结构方面起着重要的作用。
本文将对退火与再结晶的定义、过程和影响因素进行探讨。
一、退火的定义与过程
退火是指将金属材料加热到一定温度,然后通过恒温保温或缓慢冷却等方法使其达到平衡状态的一种热处理过程。
退火可以消除应力、提高材料的延展性和塑性,同时改善材料的晶体结构和性能。
1.1 固溶退火
固溶退火是指将金属材料加热到固溶温度,使溶质原子溶解在基体晶格中,然后经过恒温保温和缓慢冷却使其达到平衡状态。
固溶退火可以改善金属的塑性和韧性,提高其可加工性。
1.2 球化退火
球化退火是一种特殊的退火方式,主要用于去除冷加工后金属材料的组织应变能和应力集中。
球化退火通过高温加热和缓慢冷却,使金属材料的晶粒成长、边界迁移,从而使组织更加均匀、细致,并减少晶界的能量。
1.3 软化退火
软化退火是为了提高金属材料的延展性、韧性和塑性而进行的一种退火处理。
软化退火通过加热材料到高温,达到材料的再结晶温度,
然后缓慢冷却,使材料的晶粒重结晶,从而消除材料的应变硬化效应,使其恢复塑性。
二、再结晶的定义与过程
再结晶是指在退火过程中,材料的晶粒由不稳定的形态逐渐转变为
稳定的形态的过程。
再结晶可以改变金属材料的晶界结构,提高其延
展性和塑性。
2.1 动态再结晶
动态再结晶是在金属材料进行塑性变形时发生的再结晶过程。
在塑
性变形过程中,晶粒会发生位错堆积形成应变能,当达到一定程度时,再结晶核心在位错云区域形成,随着位错云的扩散和晶粒的重结晶,
最终形成新的细小晶粒。
2.2 静态再结晶
静态再结晶是在高温下进行的再结晶过程。
当金属材料处于高温下
保温一段时间后,原始晶粒逐渐长大,而大晶粒之间的晶界则变得更
加清晰。
静态再结晶可以通过调节退火温度、保温时间和形变量等参
数来控制。
三、退火与再结晶的影响因素
退火与再结晶过程受到多种因素的影响,包括温度、时间、形变量
和原始晶粒尺寸等。
3.1 温度
温度是控制退火与再结晶过程的重要因素。
不同金属材料的退火温度范围不同,一般需要达到金属的固溶温度或再结晶温度才能实现退火或再结晶效果。
3.2 时间
保温时间也是影响退火与再结晶的关键因素。
保温时间过短,无法使材料达到平衡状态;保温时间过长,则会导致晶粒长大,影响材料性能。
3.3 形变量
形变量是指金属材料在变形过程中发生的塑性变形程度。
形变量越大,固溶和再结晶的机会就越多。
然而,过大的形变量也会引起组织不均匀和晶粒长大过快等问题。
3.4 原始晶粒尺寸
原始晶粒尺寸是影响再结晶的另一个关键因素。
较大的原始晶粒尺寸通常意味着晶粒长大的机会更多,而较小的原始晶粒尺寸可以更容易地实现再结晶。
结论
退火与再结晶是金属学与热处理原理中重要的热处理方法之一。
了解退火与再结晶的定义、过程和影响因素对于改善金属材料的性能和微观结构具有重要意义。
通过合理控制退火与再结晶的参数,可以获得优良的金属材料性能,并满足不同工程需求。