脉冲功率电源超大电流测试技术研究

合集下载

亚毫秒脉冲功率开关RSD的大电流放电试验

亚毫秒脉冲功率开关RSD的大电流放电试验
反 向预 充 电容 , 可 饱 和 电感 ( 开关 ) £为 磁 , 载 ,c K 为预充 回路 开关 。
当 , 充 电 至 工 作 电压 , 合 K , 开 关 处 闭 磁
为 负
速半 导 体 开关 反 向开 关 晶体 管 (e esl w t e R vre S i h d y c
ya.e. 究 方 向为 脉 冲功 率 器 件 及 应 用 。 ehn t 研
图 1 S 器 件 结构 R D
1 4




总第 3 6期
充 时 间为 l 2 s ~ 。磁 开关 L饱 和后 ,主 回路 放 电 ,
脉 冲变 压器 升 压 预充 电路 如 图 3所 示 , 本 概 基 念 是 由小直径 R D( S 预充 大直 径 R D( S 。。 S RD) S R D )
D ns rR D 基 于 可控 等离 子体 层换 流 原理 , y i o, S 1 t 采用 反 向预 充 方 式 . 实 现 芯 片 全 面积 均 匀 导 通 , 论 可 理 上可无 限串联 , 只 R D器件 串并联 组成 的开 关共 多 S 用 一个 预 充 电路 。 可实 现 R D 同步开通 。 国 内相 S
第 4期 21 0 1年 7月




No. 4
J r a fPo rSu l ou n lo we pp y
J l.01 uy2 1
亚毫秒脉冲功率开关 R D的大电流放 电试验 S
彭亚斌 , 梁 琳 , 岳 辉 余
( 中科 技 大 学 电子 科 学与技 术 系 , 华 武汉 市 4 0 7 ) 3 0 4
立 了 R D器 件 仿 真模 型 I 分 析 了预充 电荷 对 R D S 9 J , S

大电流脉冲测试的方法与设计方案

大电流脉冲测试的方法与设计方案
附图说明
图1 为原有FH544功率运算放大器输出短路电流测试原理图;图2 为脉冲激励测试法框图; 图3为功率运算放大器脉冲激励的测试原理图;图4为FX2110驱动器测试原理图,图5为功率 运算放大器测试原理图;图6为功率MOSFET测试原理图。
具体实施方式
通过下列实施例详细说明本技术的具体实施方式:
采用双路功率电压电流源提供虚地。
功率运算放大器改进后的测试原理是:PVI可提供50V浮动源以及虚地,AWG可提供精度 10ns的脉冲激励;考虑所有功率器件以及设备供电、激励源的延迟时间后,设定脉冲时间为 500us,占空比2% ,这既满足器件能够正常瞬态工作,又满足器件不会发热;这些条件量化
以后,能满足绝大部分功率器件的输出电流的测试。
这一类产品的测试,不同产品之间测试只需要更改电源电压及脉冲幅度即可完成。
通过以上三种不同类型产品的大电流测试分析,可以确定脉冲时间(500uS)及占空比 (2%),量化后的测试条件,可以覆盖绝大部分产品的电流测试,同一类产品的测试只需
开发一次测试板及测试测试程序,很大程度上降低测试成本。
接脉冲信号,脉冲幅度大于阈值电压,从数据手册中可以了解到这种器件的开启时间均较
短,2%的占空比、500uS的脉冲时间足够器件开启工作并且完成漏极电流的测试。该类器件 的漏极电流不属于短路电流,而是器件开启工作的输出电流,没有烧毁器件的风险。图6为 FX9024测试原理图,从图中看出,测试原理较为简单,设计的测试板及测试程序可以覆盖
技术领域
本技术涉及电流的测试,具体来说,涉及大电流脉冲的测试方法。
技术背景
大电流脉冲测试法是为了避免在测量时由于器件发热引起测量误差而提出的一种分立器件测
试方法,原测试方法中规定脉冲时间不大于10ms,占空比最大为2%,在此范围内,脉冲必

5.1脉冲功率测量技术

5.1脉冲功率测量技术

两级电阻分压器
两级电阻分压器
假如被测电压很高、前沿很快,如数MV、几ns,则 可能两级分压器的响应仍不能达到使用要求。可以考虑对 分压器的响应进行补偿。 补偿的方法就是抵消一部分电容的作用。
两级电阻分压器第一级一般用水电阻构成,高低压臂 连通以克服温度变化对分压比的影响,因此不便在第一级 使用补偿电感。
纳秒级测量技术
纳秒级高压脉冲的特点: 一、被测脉冲前沿快。被测脉冲前沿通常约在10ns量级, 有时可低达亚纳秒,即响应带宽可高达1GHz。为了使测量 系统上升时间不应超过被测波形上升时间的1/3。因此,通常 要求纳秒级高电压大电流脉冲测量系统的上升时间为亚纳秒 到十纳秒范围,而根据上述规律用于标定测量系统的方波脉 冲的上升时间应与之相当或者更小。 对于这样的上升时间要求,即使测量和标定系统中存在 很微小的杂散参数或不连续性,都可能对测量标定结果产生 显著的影响,因此测量和标定系统的设计都必须非常仔细地 考虑杂散参数和不连续性的影响。
罗柯线圈
罗柯线圈实际上是一种原边为单匝线圈、副边为多匝线圈的 无磁芯电流互感器,其典型布臵方式是载流导体或带电粒子束流 作为原边与弯成圆环状的无磁芯线圈的中心轴线重合,它的优点 是使用方便灵活,测量范围较宽。
罗柯线圈
分流器
分流器实际上是串联在被测电流回路中的一个小电阻, 通过测量其上的电压信号推知被测电流。 设计分流器需要考虑: 尽可能减小测量电阻的杂散电感、电容,例如可将电 阻设计为同轴形的(管式分流器)并与测量电缆的阻抗匹 配,同时确保牢靠的电接触。 还要保证测量电阻的峰值功率处于电阻能够长期可靠压器
电阻分压器
两级电阻分压器
两级电阻分压器在低压臂电阻较高时使用。假如低压 臂电阻选取为50欧,为了得到1000倍的分压比,则分压器 电阻将达到50千欧,即使分压器对地电容为1PF,其上升 时间也将达到11ns,因此,这时一级分压将很难达到使用 要求,所以考虑用两级分压。

一种基于低频补偿的脉冲大电流测试方法研究的开题报告

一种基于低频补偿的脉冲大电流测试方法研究的开题报告

一种基于低频补偿的脉冲大电流测试方法研究的开题报告一、研究背景与意义随着电力系统的快速发展,对电力设备进行保护和检测的需求也越来越迫切。

脉冲大电流测试技术是一种常用的电力设备试验方法,可用于测量设备的电阻、电感、电容等参数,同时可以检测设备的耐电压和耐雷电冲击能力。

然而,实际应用中脉冲大电流测试技术面临着很多问题,如灵敏度不足、测试精度较低等,影响了测试结果的准确性和可靠性。

因此,本研究旨在提出一种基于低频补偿的脉冲大电流测试方法,以提高测试精度和灵敏度,为电力系统设备的保护和检测提供一种可靠的技术手段。

二、研究内容和方法1. 研究现有脉冲大电流测试技术的特点和不足之处,分析其存在的问题和原因。

2. 探究低频补偿技术的理论基础和实现原理,研究其在脉冲大电流测试中的应用机制和作用机理。

3. 设计并建立基于低频补偿的脉冲大电流测试系统,包括脉冲发生器、放大器、测量电路等部分,探究系统中各部分的设计和优化方法。

4. 开展实验研究,比较基于低频补偿的脉冲大电流测试方法和传统测试方法的差异和优劣,分析低频补偿技术对测试精度和灵敏度的影响。

5. 将实验结果与理论分析相结合,总结出基于低频补偿的脉冲大电流测试方法的优化方案和应用技巧,为其实际应用提供指导和支持。

三、研究预期成果1. 探究脉冲大电流测试技术中存在的问题和挑战,为解决实际问题提供思路和方法。

2. 提出基于低频补偿的脉冲大电流测试方法,以提高测试精度和灵敏度,增强测试结果的可靠性和准确性。

3. 设计并建立基于低频补偿的脉冲大电流测试系统,探究其性能和功能特点。

4. 开展实验验证,比较不同测试方法的差异和优劣,分析低频补偿技术的实际应用价值和前景。

5. 总结出基于低频补偿的脉冲大电流测试方法的优化方案和应用技巧,为电力设备试验和保护提供一种可靠的技术手段。

四、研究进度安排本研究计划为期2年,具体工作进度安排如下:第一年:文献调研,问题分析,低频补偿技术理论研究。

电快速脉冲群试验大型电器试验方法

电快速脉冲群试验大型电器试验方法

电快速脉冲群试验大型电器试验方法以电快速脉冲群试验大型电器试验方法为标题,我们将介绍一种用于大型电器试验的电快速脉冲群试验方法。

该方法是一种常用的电器试验方法,用于测试大型电器在电快速脉冲群作用下的耐受能力。

本文将详细介绍该试验方法的原理、步骤和应用。

电快速脉冲群试验是一种电器试验方法,用于模拟大型电器在电快速脉冲群作用下的工作环境。

该试验方法可以评估电器的耐受能力,并验证其设计和制造是否符合标准要求。

该方法在电气工程、电力系统和电子设备等领域得到广泛应用。

该试验方法的原理是通过施加电快速脉冲群到待测电器上,观察其对脉冲群的耐受程度。

电快速脉冲群是由高压脉冲组成的,其特点是脉冲间隔时间短、脉冲幅值高、脉冲上升时间和下降时间快。

通过改变脉冲群的参数,可以模拟不同的工作环境和故障情况。

该试验方法的步骤如下:1. 准备试验设备:包括电快速脉冲群发生器、高压电源、电流测量仪等。

确保设备能够提供稳定的电压和电流。

2. 设定脉冲参数:根据试验要求和标准要求,设定脉冲群的参数,如脉冲幅值、脉冲间隔时间、脉冲上升时间和下降时间等。

3. 连接测试电路:将待测电器与电快速脉冲群发生器和电流测量仪连接起来,确保电路连接正确。

4. 施加脉冲群:通过电快速脉冲群发生器,将设定好的脉冲群施加到待测电器上。

观察待测电器在脉冲群作用下的电流变化和电器的工作状态。

5. 观察和记录结果:根据试验要求,观察待测电器在脉冲群作用下的工作状态。

记录电流变化、电器的工作状态和任何异常现象。

该试验方法的应用范围广泛。

例如,在电力系统中,可以使用该方法测试变压器、断路器、隔离开关等设备的耐受能力。

在电子设备中,可以使用该方法测试电源、开关电源等设备的稳定性和可靠性。

该方法还可以用于评估电器的抗干扰能力和电磁兼容性。

电快速脉冲群试验是一种常用的大型电器试验方法,用于评估电器在电快速脉冲群作用下的耐受能力。

该方法的原理简单,步骤清晰,应用范围广泛。

高精度高压脉冲电源原理与实验研究_但果

高精度高压脉冲电源原理与实验研究_但果

第43卷第5期2003年9月大连理工大学学报Journa l of Da l i an Un iversity of TechnologyVol.43,No .5Sept 12003文章编号:100028608(2003)0520623204收稿日期:2002204218; 修回日期:2003205210.作者简介:但 果(19752),男,博士生;邹积岩3(19542),男,教授,博士生导师.高精度高压脉冲电源原理与实验研究但 果1, 邹积岩31, 丛吉远1, 刘 凯2(1.大连理工大学电气工程与应用电子技术系,辽宁大连 116024;2.信息产业部合肥38所,合肥 230088)摘要:在脉冲电场非热效应应用中,高精度高压脉冲电源是关键技术之一.利用大功率开关器件(IGBT )配合脉冲升压变压器可以得到高精度高压脉冲电源.该电源通过复杂可编程逻辑器件(CPLD )来产生脉冲触发信号,经大功率IGBT 专用驱动模块驱动,可以实现脉冲电压在0~10kV ,脉冲频率在10H z ~5kH z,脉冲宽度在2~30Λs 以及脉冲个数在1~100内的精确控制,并可实现脉冲宽度以1Λs 为步长增减,可以满足脉冲电场非热效应应用的参数要求.关键词:高压脉冲电源;复杂可编程逻辑器件;非热效应中图分类号:TM 832文献标识码:A0 引 言非热效应是目前生物电磁学研究的热点之一,利用脉冲电场非热效应对液态食品灭菌不会破坏其营养成分(蛋白质、氨基酸和维生素等).在非热食品处理技术中,脉冲电场(PEF )是目前效果最好的、最有工业前景的技术[1].研究表明:上升沿小于1Λs,脉宽为5~15Λs,场强为10~50kV c m 的脉冲电场就可用来对液态食品进行非热效应灭菌[2].电场强度、处理时间及频率是脉冲电场非热灭菌电气上的关键参数[3],因此为了详细研究脉冲电场非热灭菌的机理与各主要参数之间的关系,就必须研制一高精度高压脉冲电源.脉冲电场非热液态灭菌处理系统主要由脉冲电源和处理室构成,其中脉冲电源是其核心部分.以往研制的脉冲电源中主要有:利用L 2C 脉冲成型网络产生的脉冲高压[4];利用脉冲电容储能、触发放电产生的脉冲高压[5];或者是利用逆变,串联谐振来产生脉冲高压[6].这几种高压脉冲电源虽然能够产生较高的电压幅值,但脉冲波形得不到精确控制,波形较差,基本上没有平顶,而且重复频率低,脉冲的个数较难控制.近年来,国外用大功率电力电子器件的串并联实现高压脉冲电源, 控制方便,波形及负载适应能力均可达到很高水平,但高压电力电子器件成本高,可靠性也难以得到保证[7].本文把传统变压器的方法与电力电子器件的应用结合起来,提出了新的电源结构设计.1 系统设计1.1 系统的原理电路为了得到良好的高压脉冲波形,而且脉冲频率、脉冲宽度和脉冲个数可控,选择了如图1所示的IGB T 集电极输出的主电路拓扑结构.其中平板电极电容器为负载,可以等效为电阻和电容的并联;具体参数的计算见1.2.利用普通工频变压器一次升压,采用全桥可控整流,即使输入在一定范围内变化,输出能够得到稳定直流1000V (一般电力电子器件的上限工作电压);开关器件选用绝缘栅双极晶体管IGB T.IGBT 的工作特性有陡峭的上升沿和下降沿,而且较容易控制.利用脉冲升压变压器对IGB T 输出的高精度脉冲波形进行升压,使加在平板电极处理室上的脉冲电压达到10kV 以上.对上述电路稍加变化,增加电容,利用半桥拓扑结构可获得双极性的高压脉冲;或者增加IGB T ,利用全桥拓扑结构亦可获得双极性高压脉 冲.在相同输入电压下,利用全桥实现的双极性脉冲电压是利用半桥实现的双极性脉冲电压的2倍,但使用开关管多,成本较贵.图1 高压脉冲电源主电路拓扑结构图F ig 11 M ain circuit topo logy of h igh vo ltage pulsegenerato r1.2 主要元件的典型参数选取元件参数主要取决于负载.该电源的负载为装有液态食品的平板电极处理室,其等效电容可由下式表达:C =Εs d(1)式中:Ε为平板电极中液体的介电常数;s 为平板电极与液体接触的面积(m 2);d 为平板电极两电极板间的距离(m ).等效电阻可表示为R =Θd s(2)式中:Θ为液体的电阻率.结合本研究的实验装置,平板电极与液体接触的面积最大为2.5×10-3m 2,电极间距离为1c m.当电极处理室中装有细菌培养液时,由公式(1)、(2)可计算出其等效电容和电阻分别为C c =0.35nF,R c =1808(水的相对介电常数和电阻率分别取为80和908 m ),用高级电桥测量得到C m =57nF,R m =2408.其中等效电容的计算值和测量值差别较大,原因主要在于对处理液的介电常数取值的误差(通常不同的水的介电常数能相差几到几十倍)上,以及平板电极的边缘效应上.由于不同液态食品的电阻率差别很大,在设计中要考虑适合多种液态食品的处理.液态食品的电阻与电容需由实验测取,电阻须大于上述值,电容须小于上述值.考虑到不同处理介质的电阻率和介电常数差别较大,将脉冲变压器次级的脉冲电流定为100A ,初级的电流设为1000A ,选择日本东芝公司M G1200V 1U S51(1200A ,1700V )的IGB T.1.3 控制电路及实现控制脉冲频率、宽度和个数,就是产生频率、宽度和个数可控的驱动波形.为了能用于不同处理对象,要求脉冲电源的宽度以1Λs 为步长增加或减少.由于用普通的模拟器件无法得到准确稳定的脉冲驱动波形,本设计采用复杂可编程逻辑器件(CPLD ),型号为A ltera 公司生产的EPM 7128SL C84.此种芯片为数字可编程,很容易通过单片机和上位机进行通信,其处理的速度根据外加时钟频率而定,最高可达150M H z .具体控制电路如图2所示,在确定了脉冲的频率、宽度和每次作用的个数后,以CPLD 的时钟频率为参考,通过编程或者组合逻辑设计,在CPLD 内部实现所需要的触发信号;此触发信号经隔离、放大后作为IGB T 专用驱动模块的输入、输出控制IGB T.该电源所使用的时钟频率为2M H z,周期为0.5Λs,通过编程或设计完全可以实现以1Λs 为步长增减.图2 控制系统结构示意图F ig 12 Constructi on draw ing of con tro l system 为了使电源能够长时间稳定工作,增加了保护检测部分,因为脉冲上升沿要小于1Λs,因此保护检测部分必须具有ns 级的响应速度.1.4 脉冲变压器脉冲变压器的设计主要考虑响应特性,保证波形失真小.首先是变压器铁芯,选用超薄取向冷轧硅钢片,厚度为0.08mm.要获得陡峭的上升沿,脉冲变压器就必须有小的分布电容和漏感.可采取减少次级匝数来获得较小的漏感和分布电容,但是这样会增加脉冲的顶降和铁芯的体积.综合考虑各种因素,试验取带厚为0.08mm ,带宽为16mm ,导磁率为1.6T 的薄硅钢片做磁芯.为了减小漏感和高频趋肤效应,变压器的初级及次级均采取并联绕制形式[7].加之其他严格的工艺保证,试品达到了亚Λs 级的响应速度.脉冲变压器输入为单极性脉冲波时,铁芯中会产生剩余磁感应强度.为了使其能够正常工作,必须减小剩余磁感应强度.可以采用在铁芯中增加气隙的方法,但是此方法存在一些明显的缺点[7].最有效的方法是对脉冲变压器铁芯施加去磁磁场,当去磁磁场强度H q =-(1~2)H c (Hc为铁芯额定磁场强度)时,能显著提高磁感应增量和脉冲磁导率[7].本文取直流电流去磁,使H q =-2H c ,在放电周期之间达到了完全去磁的效果.426大连理工大学学报第43卷 2 试验结果及讨论图3~6是利用美国泰克TD S300M 示波器,P6015A (1000∶1)高压探头测得的负载上的电压波形,脉冲宽度分别为4、5、8、10Λs.图3 脉冲宽度为4Λs 的试验波形F ig 13 4Λs V o ltage pu lse w avefo rm图4 脉冲宽度为5Λs 的试验波形F ig 14 5Λs V o ltage pulse w avefo rm图5 脉冲宽度为8Λs 的试验波形F ig 15 8Λs V o ltage pu lse w avefo rm图6 脉冲宽度为10Λs 的试验波形F ig 16 10Λs V o ltage pulse w avefo rm 从图3~6可以看出,该脉冲电源实现了以1Λs 步长增减的功能,并且在所设计的脉冲宽度内都能获得良好的脉冲波形.由于脉冲变压器存在漏感和杂散电感,在IGB T 高速开启和关断时会产生较大的d I d t 和d V d t ,容易损坏IGBT ,必须添加吸收电路网络和构建脉冲变压器的续流回路.因为该脉冲电源的占空比很小,可采用简单适用的RCD 吸收网络,如图7所示.但参数必须满足公式(3)、(4)所列的条件[8].其中C ≥i c md V ce d t(3)V ce I cr m ≤R ≤t fg m in4 C s(4)式中:i c m 为集电极最大电流;d V ce d t 为关断时电压变化率;V ce 为最大集电极2发射极电压;I cr m 为集电极允许通过最大电流;t fg m in 为基极、发射级最小导通时间.为了改善脉冲波形,在精确设计吸收电路的同时,还需在脉冲变压器输入端反向并联一大电流二极管,关断后可以形成续流回路,最大限度地减小IGB T 关断后产生的反冲电压.为了降低当IGB T 关断后变压器内部的电流,使变压器铁芯正常工作,减小噪声,反向二极管应串联一电阻和无感电容的并联单元,电阻的大小依据电压的高低和脉冲占空比来确定.图7 系统的吸收回路、续流回路和抑制电感F ig 17 Supp ressive,aux iliary circu its of pulsegenerato r526 第5期 但 果等:高精度高压脉冲电源原理与实验研究 由于负载等效为一电阻和电容的并联,在IGB T导通瞬间,电容短路,整个电源回路中电压就全部承受在电源的内阻和接线电阻上,因此有很大的d I d t.在回路中必须添加一限流电感,从前面的脉冲前沿的计算中可知,脉冲上升沿还留有一定的裕量,添加电感的大小需在满足脉冲波形上升沿的要求和有效减小d I d t两者中实验选择一最优值,该电源中选用铁氧体磁环绕制的值为50ΛH的电感.3 结 论综上所述,采用IGB T配合脉冲升压变压器这种技术路线,利用CPLD产生触发信号,可准确控制脉冲电源的频率、脉宽及每一次作用到处理室的脉冲个数,在一定范围内完全可以实现高压脉冲波形随驱动波形的控制,能够满足脉冲电场非热液态食品处理技术的理论和实验研究的需要.参考文献:[1]JEYAM KONDAN S,JA YA S D S,HOLL EY R A.Pu lsed electric field p rocessing of foods:a review[J].J Food Protect,1999,62(9):108821096. [2]BA R SO T T I L,M ERL E P,CH EFT EL J C.Foodp rocessing by pu lsed electric fields[J].PhysA spects,Food Rev I n t,1999,15(2):1632180.[3]BA RBO SA2C A′NOVA S G,GO′N GORA2N IETO, M arcela M,et a l.Pu lsed electric pow er in food p reservati on[A].Conference of Food Eng i neer i n g[C].R eno:[s n],2001.[4]ZHAN G Q ing2hua,BA RBO SA2CA′NOVA S G, S W AN SON B G.Engineering aspects of pu lsed electric field pasteurizati on[J].J Food Eng,1995, 25(2):2612281.[5]吴为民,李树杰,许东卫.脉冲高压液体灭菌技术的研究[J].高电压技术,1994,20(4):326.[6]王艳玲,周平安,回容德.脉冲高压电源的研制[J].电测与仪表,1997,34(11):8210.[7]王瑞华.脉冲变压器设计[M].成都:成都电子科技大学出版社,1988.[8]PENDHA R KA R S,TR I V ED I M,SH ENA I K.E lectro ther m al si m ulati ons in punch th rough andnonpunch th rough IGBT′s[J].I EEE Tran s on ElectrD ev ices,1998,45(10):222222231.Pr i nc iple of h igh prec ise h igh voltagepulse power and its exper i m en ta l researchDAN G uo1, ZOU J i2ya n31, CONG J i2yua n1, L I U Ka i2(1.D e p t.of Ele c tr.a nd Ele c tron Eng.,D a lia n Univ.of Te chno l.,D a lia n116024,C hina;2.No.38I ns t.of M inis t.of I nf.I nd.,He fe i230088,C hina)Abstract:A h igh2p recisi on and h igh2vo ltage p u lse generato r,w h ich is m ade up of h igh2pow er s w itch apparatu s,is p ropo sed.It u tilizes com p lex p rogramm ab le logic device(CPLD)to generate trigger signals and to be driven by special driven2m odu le.T h is h igh2vo ltage pu lse generato r can con tro l pu lse vo ltage from0to10kV,p u lse frequency from10H z to5kH z,pu lse w idth from2to30Λs w ith the step length1Λs,and pu lse num bers from1to100.T he pow er is satisfied w ith the app licati on of non2therm al effect under p u lsed electric fields.Key words:h igh2vo ltage pu lse generato r;CPLD;non2ther m al effect626大连理工大学学报第43卷 。

(完整)高功率脉冲电源

(完整)高功率脉冲电源

HK系列高功率脉冲电源一.概括所谓高功率其实不是指电源的输出功率大,而是指将低功率存贮压缩后,在瞬时开释出大能量脉冲。

该项技术主假如用在拥有激发性质的负载上,用以在瞬时获取更高的激发成效。

因为功率在储存时期不用耗能量,所以电源效率获取大大加强,电能利用率比传统电源高 1 个甚至几个量级,负载上几乎不会产生热量消耗。

因为实现原理复杂,对原器件要求苛刻等原由,当前国内几乎没有商业化产品,只限在大功率微波源、激光器、电磁轨道炮、电子对撞机等军事科技领域。

但小型化产品已经开始出此刻有关院校和各样实验室中。

我们就是在这类状况下开发出近似功能的适用化脉冲电源。

所谓近似是因为我们采纳的是前级压缩技术,用压缩后的脉冲驱动功率元件,比直接末级压缩仍有必定的差距,因为末级压缩技术需要更高地研发成本。

还有就是我们针对的应用对象不具备那样高的价值。

自然与传统电源对比它仍旧拥有很高的效率,各项指标超出 1 倍以上。

仍属于高功率电源范围。

二.电路构成1、办理器微办理器是采纳意法半导体(ST)企业生产的STM32F系列Cortex-M3 内核的 32 位产品。

办理器主用来产生基准时钟频次和各样信号的收集和运算。

依据收集到的各样包含键盘输入、运行中的电压、电流、频次、占空比、主元件运转中的温度等信号,判断电源的工作状态,依据运算结果指挥整个电路达成保护、跟踪调整等工作,并将结果显示在控制面板上。

2、控制电路控制电路经过两个控制面板达成对电源的控制和参数读取。

主控制面板包含 5 个按键,分别是占空比+、占空比 - 、频次 +、频次 - 和频次位选择。

分别用来调整占空比和频次,此中频次位选择是用来选择调整个位、十位、百位、千位或万位的哪一位来调整,以节俭调整时间。

副控制面板包含上下两个翻页,分别用来翻阅运转中的电流、电压、有功功率、无功功率、视在功率等运转参数。

3、显示电路显示电路经过 2 个显示面板来显示运转中的参数。

主显示面板用来显示运转频次和占空比、副显示面板用来显示运转中的电气参数。

用于大功率led测试的脉冲式程控电源设计

用于大功率led测试的脉冲式程控电源设计

2019年第18卷第20期产业与科技论坛用于大功率LED测试的脉冲式程控电源设计□吕健滔【内容摘要】大功率LED在普通照明和工业应用中都有取代传统光源的趋势,因此对其制造技术的要求也越来越高。

在大功率LED的制造流程中,需要对其进行电性能测试,并根据测试结果进行分选。

测试设备的核心是恒流源,目前的恒流源普遍存在电流过冲和恒流上升沿过长的缺点。

本文设计一种基于嵌入式系统和独有的电流上升算法的测试电路,可在几十微秒的时间内达到恒流状态,并采用过流保护机制防止过冲对LED造成损坏。

新的测试方法可有效提高大功率LED的测试效率,并减小由于过冲电流损伤LED芯片所带来的经济损失。

【关键词】程控电源;脉冲式;大功率LED【基金项目】本文为佛山科学技术学院物理与光电工程学院创新人才培养教改/科研基金项目研究成果。

【作者简介】吕健滔(1980.5 ),男,广东佛山人;佛山科学技术学院物理与光电工程学院副教授,博士;研究方向:光电子技术一、大功率LED测试问题的提出节能环保是目前人类社会发展的重要课题之一,而大功率LED由于具有较高的发光效率,有望在照明等领域全面取代传统光源。

我国在大功率LED的生产行业一直占据着较大的份额,并且有逐年上升的发展趋势。

大功率LED的生产环节主要包括芯片制作和封装两个重要的方面,而封装环节的后段环节,则需要对LED灯珠进行全面的测试,包括电学性能、光色参数以及热学性能三个主要部分[1 3]。

第一,电性能测试尤为重要,它将决定着LED灯珠的基本工作特性。

在电性能的测试中,一般需要大功率的恒流电源为LED供电,并要求恒流源有较好的可重复性和稳定性。

第二,由于大功率LED测试一般是在自动化产线上完成,测试速度也是一个与经济效益密切相关的参数,因此要求电源有较快地达到稳定电流输出的爬升速度。

第三,由于传统的脉冲电源在工作过程中都不可避免地会出现电流过冲现象,并在测试过程中损坏待测LED灯珠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

脉冲功率电源超大电流测试技术研究
随着脉冲功率技术的进步与发展,以及国防、工业等众多领域对高功率、大电流的迫切需求,高功率脉冲电源系统得到了广泛的应用,因此,对大电流测试技术的要求也就越来越高。

目前,电流测试领域常用的测试方法由于稳定性不足、量程有限、测量精度不高等缺陷,无法满足具有兆安级放电电流的高功率脉冲电源的测试需求。

因此,提出了一种基于罗氏线圈的超大电流测试技术。

针对脉冲电源系统在充放电过程中的强电磁干扰,通过COMSOL有限元分析软件的AC/DC
磁场模块建立模型对该电磁环境进行仿真分析,以确定采集系统在该电磁环境中的安全测试距离;分析比较了目前几种比较常用的大电流测试方法的优缺点,选择了适合脉冲电源系统的罗氏线圈电流测试技术,并设计了完整的电流测试系统,包括罗氏线圈、积分器和数据采集存储电路;为确保试验人员在充放电试验中的安全,提出了远程无线控制功能以实现对采集系统的远程监控。

采集系统以FPGA作为主控单元,完成对A/D转换、Flash存储、远程无线控制及USB数据回读的逻辑控制,并对各时序逻辑设计进行了仿真。

最后对电流采集系统进行了功能测试与验证,各功能均满足设计要求。

在脉冲功率电源的充放电试验中,电流采集装置成功完成了脉冲超大电流的测试工作。

测试试验结果表明,基于罗氏线圈的电流测试技术切实可行,可用于高功率脉冲电源系统的电流检测中。

相关文档
最新文档