函数项级数非一致收敛判别方法的归纳分析

合集下载

函数项级数不一致收敛的判别方法

函数项级数不一致收敛的判别方法

2020年8月第29卷第3期中央民族大学学报(自然科学版)Journal of MUC( Natural Sciences Edition)Aug., 2020Vol. 29 No. 3函数项级数不一致收敛的判别方法党红,王飞(长治学院数学系,山西长治046011)摘要:函数项级数不一致收敛的判别是数学分析课程中比较难理解的一部分内容,本文主要介绍了函数项级数不一致收敛常见的5种判别方法,指出了每种判别方法的特点并加以应用。

关键词:函数项级数;不一致收敛;判别法中图分类号:〇173.丨文献标识码:A 文章编号= 1005-8036 (20201 03-0042-041函数项级数收敛性判定函数项级数一致收敛的判别方法和不一致收敛的判别方法是数学分析课程中比较难理解和掌握的一部分内容,关于函数项级数一致收敛的判别方法,本人已经在其他文章中做过相关说明m,现将常用 的5种判别函数项级数不一致收敛的方法加以总结并应用,以帮助学生更好地理解和掌握该部分知识。

1.1定义法[2]函数项级数在区域£>上不一致收敛于> 〇,v w,当〜> yv时,3%e />,有n -1I、(丨!))_ S U o)I2占0。

其中,S…U) = h U)+…“…(幻称为部分和函数列,S(x) = limS…U)称为和函数。

n—》〇〇应用定义法判别函数项级数的不一致收敛性时,不但需要求出弋(幻和S(*),而且要找到满足上述条件的^,化,*。

,但在很多情况下,和函数s(幻及部分和函数列S…u)不容易求出来,而且满足条件的不易得到,如文中的例3、例4、例5。

一般情况下,定义法重在解释不一致收敛的概念,对于函数项级数的不一致收敛的讨论与证明问题,定义法通常不是首选方法。

1.2 D i n i 判别法[3]设函数项级数的每一项在区间[a,6]上是连续的,但S U)在闭区间[a,6]上是不连续n= I的,则函数项级数在区间[a,6]上不一致收敛。

函数项级数一致收敛性判别法归纳

函数项级数一致收敛性判别法归纳

函数项级数的一致收敛性与非一致收敛性判别法归纳一定义引言设函数列{}n f 与函数f 定义在同一数集D 上,若对任给的正数ε,总存在某一正数N ,使得当N n >时,对一切D x ∈,都有()()ε<-x f x f n 则称函数列{}n f 在上一致收敛于()x f ,记作()()x f x f n→→()∞→n ,Dx ∈设()x u n 是定义在数集E 上的一个函数列,表达式()()(),21 ++++x u x u x u n Ex ∈)1(称为定义在E 上的函数项级数,简记为()x u n n ∑∞=1或()x u n ∑;称()()x u x S nk k n ∑==1,E x ∈, ,2,1=n )2(为函数项级数)1(的部分和函数列.设数集D 为函数项级数∑∞=1)(n n x u 的收敛域,则对每个D x ∈,记∑∞==1)()(n n x u x S ,即D x x S x S n n ∈=∞→),()(lim ,称)(x S 为函数项级数∑∞=1)(n n x u 的和函数,称)()()(x S x S x R n n -=为函数项级数∑)(x u n 的余项.定义1]1[设{})(x S n 是函数项级数∑)(x u n 的部分和函数列,若{})(x S n 在数集D 上一致收敛于函数)(x S ,或称函数项级数∑)(x u n 在D 上一致收敛于)(x S ,或称∑)(x u n 在D 上一致收敛.由于函数项级数的一致收敛性是由它的部分和函数列来确定,所以可以根据函数列一致收敛性定义得到等价定义.定义2]1[设{})(x S n 是函数项级数∑)(x u n 的部分和函数列,函数列{})(x S n ,和函数)(x S 都是定义在同一数集D 上,若对于任给的正数ε,总存在某一正整数N ,使得当Nn >时,对一切D x ∈,都有ε<-)()(x S x S n ,则称函数项级数∑)(x u n 在D 上一致收敛于函数)(x S ,或称∑)(x u n 在D 上一致收敛.同时由ε<-=)()()(x S x S x R n n ,故)(x R n 在D x ∈上一致收敛于0.定义3设函数项级数∑)(x u n 在区间D 上收敛,其和函数为∑∞==1)()(n n x u x S ,部分和函数列∑==nk n n x u x S 1)()(,若0>∃o ε,+∈∀N N ,N n o >∃及D x ∈'∃,使得o n x s x s o ε≥'-)()(,则函数项级数∑)(x u n 在区间D 上非一致收敛.例1试证∑∞=1n n x 在[]r r ,-)10(<<r 上一致收敛,但在)1,1(-内不一致收敛.证明显然∑∞=1n n x 在)1,1(-内收敛于xx-1.对任意的0>ε,欲使当N n >和r x r ≤≤-时,恒有ε<-=--+=∑xxx xx n nk k 1111成立,只要当N n >时,恒有ε<-+rr n 11成立,只要当N n >时,恒有()rr n lg 1lg 1ε->+成立,只要当N n >时,恒有()rr n lg 1lg ε->成立,只要取()⎥⎦⎤⎢⎣⎡-=r r N lg 1lg ε即可.依定义,∑∞=1n nx 在[]r r ,-上一致收敛于x x -1.存在e o 2=ε,对任意自然数N ,都存在N N n o >+=1和()1,121-∈++=N N x o ,使ε2111111111>⎪⎭⎫⎝⎛+++=-=--++=∑N o n o o o n k k oN N x x x x xo o成立,依定义,∑∞=1n n x 在)1,1(-内不一致收敛.二函数项级数一致收敛性的判定方法定理1Cauchy 一致收敛准则]1[函数项级数()∑x u n 在数集D 上一致敛的充要条件为:对0>∀ε,总+∈∃N N ,使得当N n >时,对一切D x ∈和一切正整数p ,都有()()ε<-+x S x S n p n 或()()()ε<++++++x u x u x u p n n n 21或()ε<∑++=pn n k kx u 1特别地,当1=p 时,得到函数项级数一致收敛的一个必要条件:推论1函数项级数在()∑x u n 在数集D 上一致收敛的必要条件是函数列(){}x u n 在D上一致收敛于0.定理2]2[函数项级数()x u n n ∑∞=1在点集D 上一致收敛于)(x S 的充分必要条件是:()()0:sup lim 1=⎭⎬⎫⎩⎨⎧∈-∑=∞→D x x S x u n k n n .定理3放大法]3[(){}x S n 是函数项级数()∑x u n 的部分和函数列,和函数)(x S ,都是定义在同一数集D 上,对于任意的n ,存在数列{}n a ()0>n a ,使得对于D x ∈∀,有()()()n n n a x S x S x R <-=,且0lim =∞→n n a ,则称函数列(){}x S n 一致收敛于)(x S ,即函数项级数()∑x u n 在D 上一致收敛于函数)(x S .证明因0lim =∞→n n a ,故对任给的0>ε,+∈∃N N (与x 无关),使得当N n >时,对一切D x ∈,都有()()()ε<≤-=n n n a x S x S x R .由定义2得函数列(){}x S n 一致收敛于)(x S ,即函数项级数()∑x u n 在D 上一致收敛于)(x S .注:用放大法判定函数项级数()∑x u n 一致收敛性时,需要知道)(x S .定理4确界法函数项级数在数集D 上一致收敛于)(x S 的充要条件是()()()0sup lim sup lim =-=∈∞→∈∞→x S x S x R n Dx n n Dx n 证明充分性设(){}x S n 是函数项级数()∑x u n 的部分和函数列,)(x S 为和函数,则有()()()x S x s x R n n -=,并令()x R a n Dx n ∈=sup ,而()0sup lim =∈∞→x R n Dx n ,即0lim 0=→n n a ,由定理3(放大法)得知函数项级数()∑x u n 一致收敛于函数)(x S .必要性注:实质上是用极值的方法把一致收敛问题转化为求数列极限的问题.定理5若()∑x u n 在区间D 上收敛,则()∑x u n 在D 上一致收敛的充要条件是{}D x n ⊂∀,有()0lim =∞→x R n n .证明充分性假设()∑x u n 在D 上不一致收敛,则0>∃o ε,{}D x n ⊂∃,使得()()o n x S x S ε≥-,如此得到{}D x n ⊂,但()0lim ≠∞→n n n x R ,这与已知条件矛盾.必要性因已知()∑x u n 在D 上一致收敛,所以N ∃>∀,0ε,使得当N n >时,对一切D x ∈,都有()()ε<-x S x S n ,对于{}D x n ⊂∀,则有()()ε<-n n n x S x S ,即()ε<n n x R ,得()0lim =∞→n n n x R .例2设()0≥x u n , 2,1=n ,在[]b a ,上连续,又()x u n ∑在[]b a ,收敛于连续函数()x f ,则()x u n ∑在[]b a ,一致收敛于()x f .证明已知()()()x S x f x R n n -=(其中()()∑==nk k n x u x S 1)是单调递减且趋于0,所以[]b a x N n ,,∈∀∈∀有()0≥x R n ,且[]ε∀∈∀,,0b a x >0,()εε,),(00,0x x N n N ≥>∃时,有()ε<≤00x R n .将n 固定,令()ε,00x N N n ==,因为()()()x S x f x R n n -=在[]b a ,上连续,既然()ε<x R n ,所以00>∃δ,当()0000,δδ+-∈x x x 时,()ε<0x R n .从而0N n >时更有()ε<x R n 即()ε<x R n ,仅当()0000,δδ+-∈x x x .如上所述,对每个点[]b a x ,∈λ,可找到相应的领域()λλλλδδ+-x x ,及相应的λN ,使得λN n >时,对∈x ()λλλλδδ+-x x ,恒有()ε<x R n .如此{()λλλλδδ+-x x ,:[]b a x ,∈λ}构成[]b a ,的一个开覆盖,从而必存在有限子覆盖,不妨记为{()()r r r r x x x x δδδδ+-+-,,,1111 },于是[]b a x ,∈∀,总{}r i ,2,1∈使得i i i i x x x δδ+-∈,(),取{}r N N N N ,,max 21=,那么N n >时,恒有()ε<x R n ,由定理5得()x u n∑在[]b a ,一致收敛于()x f .定理6M 判别法或优先级判别法或Weierstrass 判别法]1[设函数项级数()x u n ∑定义在数集D 上,∑n M 为收敛的正项级数,若对一切D x ∈,有2,1,)(=≤n M x u n x )3(则函数项级数()x u n ∑在D 上一致收敛.证明由假设正项级数()x u n ∑收敛,根据函数项级数的Cauchy 准则,∀0>ε,∃某正整数N ,使得当N n >及任何正整数p ,有ε<+=++++++p n n p n n M M M M 11又由(3)对一切D x ∈,有()≤+≤++++++x u x u x u x u p n n p n n )()()(11ε<+++p n n M M 1根据函数项级数一致收敛的Cauchy 准则,级数()x u n ∑在D 上一致收敛.注:若能用从判定()∑∞=1n n x u 一致收敛,则()∑∞=1n n x u 必是绝对收敛,故M 判别法对条件收敛的函数项级数失效.例3函数项级数∑∑22cos ,sin nnxn nx 在()+∞∞-,上一致收敛,因为对一切∈x ()+∞∞-,有22221cos ,1sin n n nx n n nx ≤≤,而正项级数∑21n是收敛的.推论2设有函数项级数()x u n ∑,存在一收敛的正项级数∑∞=1n n a ,使得对于,I x ∈∀有()()+∞<≤=∞→k k a x u nn n 0lim,则函数项级数()∑∞=1n n x u 在区间I 一致收敛证明已知()()+∞<≤=∞→k k a x u nn n 0lim,即,,,,00I x N n N N ∈∀>∀∈∃>∃+ε有()0ε<-k a x u n n 即()k a x u n n +<0ε,从而()()n n a k x u +<0ε,又因为∑∞=1n n a 收敛,则()n n a k ∑∞=+10ε也收敛,由M 判别法得函数项级数()∑∞=1n n x u 在区间I 一致收敛.由广义调和级数∑∞=11n p n ,当1>p 时收敛,故当n a =pn 1时,有推论2'设有函数项级数()∑∞=1n n x u ,若存在极限k x u n n p n =∞→)(lim 且1,0>+∞<≤p k ,则函数项级数()x u n ∑在区间I 一致收敛.例4证明函数项级数∑∞=+++1)1)((1n n x n x 在[)∞,0是一致收敛的.证明对于∑∞=+++1)1)((1n n x n x ,存在收敛的正项级数∑∞=121n n,且=+++⋅∞→)1)((1lim 2n x n x n n 1)1)((lim2=+++∞→n x n x n n 由的推论2与推论2'得,∑∞=+++1)1)((1n n x n x 在[)∞,0一致收敛.定理7比较判别法[]4两个函数项级数()∑x u n 与()x v n ∑,若N N ∈∃0,当I x N n ∈∀>∀,0有()x v c x u n n <)((其中c 为正常数),且函数项级数()x v n ∑在区间I 绝对一致收敛,则函数()x u n∑区间I 绝对一致收敛.证明已知()x v n ∑在区间I 绝对一致收敛,即对cε∀0>(其中c 为正常数),11,N n N N >∀∈∃及I x N p ∈∈,,有()()()cx v x v x v p n n n ε<++++++ 21;又由条件知I x N n N ∈>∀∃,,00有()x v c x u n n <)(;取{},,max 01N N N =当I x N p N n ∈∈∀>∀,,,有()()()<++++++x u x u x u p n n n 21()()()()εε=⋅<++++++cc x v x v x v c p n n n 21.由收敛级数一致收敛Cauchy 准则知,函数项级数∑)(x u n 在区间I 一致收敛,从而函数项级数()x u n ∑在区间I 绝对一致收敛.定理8[]4若有函数级数()∑x u n 与()x v n ∑,N N ∈∃0,I x N n ∈∀>∀,0有()x cv x u n n <)((其中c 为正常数),且函数项级数()∑∞=1n n x v 在区间I 一致收敛,则函数()∑∞=1n n x u 区间I 绝对一致收敛.证明已知I x N n N ∈>∀∃,,00,有()x v c x u n n <)((其中c 为正常数).又函数项级数()∑∞=1n n x v 在区间I 绝对一致收敛,即I x N p N n N N c ∈∈>∀∈∃>∀,,,,011ε,有()()()()cx v x v x v x v x v p n n p n n n ε<+=++++++++ 121)(;取{},,max 10N N N =当I x N p N n ∈∈>∀,,有()()()()()()x u x u x u x u x u x u p n n n p n n n +++++++++≤++ 2121()()()x v x v c p n n ++++< 1εε=⋅<cc 从而函数项级数()x u n ∑在区间I 绝对一致收敛.推论3比较极限法若有两个函数级数()∑∞=1n n x u 与()())0(1≠∑∞=x v x v n n n ,且有()()k x v x u nn n =∞→lim且+∞<≤k 0,若级数()x v n ∑在区间I 绝对一致收敛,则函数()∑x u n 在区间I 也绝对一致收敛.证明由()()k x v x u nn n =∞→lim且+∞<≤k 0,即,,00N n ∈∃>∀ε当I x N n ∈>,有()()0ε<-k x v x u n n 使()()c k x v x u n n =+<0ε且00>+=εk c .即N n >∀及I x ∈有()()x v c x u n n <,又级数()x v n ∑在区间I 绝对一致收敛,由比较判别法定理7知级数()∑∞=1n n x u 在区间I 绝对一致收敛.推论4[]4有函数列(){}x u n 在区间I 上一致有界,且函数级数()∑∞=1n n x v 在区间I 绝对一致收敛,则函数级数()()x v x u n n ∑在区间I 上也绝对一致收敛.证明由已知函数列(){}x u n 在区间I 上一致有界,即I x N n M ∈∈∀>∃,,0有()M x u n ≤,使当I x N n ∈∈∀,有()()()x v M x v x u n n n ≤⋅,又因函数级数()∑x v n 在区间I 绝对一致收敛,由比较判法定理7知,函数级数()()x v x u n n ∑在区间I 上绝对一致收敛.例5若函数级数()()x c x a n n ∑∑,在区间I 一致收敛,且I x N n ∈∈∀,,有()()()x c x b x a n n n ≤≤,则函数项级数()x b n ∑在区间I 上一致收敛.证明由条件函数()()x c x a n n ∑∑,在区间I 一致收敛,则级数()()()∑-x a x c n n 在区间I 上一致收敛.又I x N n ∈∈∀,有()()()x c x b x a n n n ≤≤,故()()()()x a x c x a x b n n n n -≤-≤0且级数()()()∑-x a x c n n 在区间I 绝对一致收敛,由定理8知,级数()()()∑-x a x b n n 在区间I 上一致收敛.又已知()x a n ∑在区间I 一直收敛,从而级数()()()()()[]()()()()x a x a x b x a x a x b x b nnnnnnn∑∑∑∑+-=+-=在区间I 上一致收敛.推论5设函数项级数()∑x u n 定义在数集]2[上,()∑x v n 在上一致收敛且()0>x v n ,若对一切D x ∈,有()()x v x u n n ≥, ,2,1则函数项级数()∑x u n 在D 上一致收敛.定理9逼近法[]5若对任意的自然数n 和D x ∈,都有()()()x w x u x v n n n ≤≤成立,又()x v n ∑和()x w n ∑都在数集D 上一致收敛于)(x S ,则()x u n ∑也在D 上一致收敛于)(x S .证明设()()x v x V nk k n ∑==1,()()x u x U nk k n ∑==1,()()x w x W nk k n ∑==1因为D x N n ∈∀∈∀+,都有()()()x w x u x v n n n ≤≤,所以D x N n ∈∀∈∀+,有()()()x W x U x V n n n ≤≤.又()x v n ∑,()x w n ∑在区间D 上一致收敛于)(x S ,即+∈∃>∀N N ,0ε,当N n >时,对一切D x ∈∀有()()()εε+<<-x S x V x S n 及()()()εε+<<-x S x W x S n ;所以+∈∃>∀N N ,0ε,当N n >时,对一切D x ∈∀有()()()()()εε+<≤≤<-x S x W x U x V x S n n n .由函数项级数一致收敛定义知,()x u n n∑∞=1在D 上也一致收敛于)(x S .定理10由有性质判别若()x u n ∑和()x v n ∑在点集D 上一致收敛,则[]∑±)()(x v x u n n 在D 上也一致收敛证明由()x u n ∑和()x v n ∑均在点集D 上一致收敛知,对N ∃>∀,0ε(自然数),使得当N n ≥时,对∀自然数p 和x 有()()()ε<+++++x u x u x u p n n n 21()()ε<++++++x v x v x v p n n n 21)(所以()()()()()())()()(2211x v x u x v x u x v x u p n p n n n n n ++++++++++++ ()()()+++≤+++x u x u x u p n n n 21()()x v x v x v p n n n ++++++ 21)(εεε2=+<由函数项级数一致收敛的Cauchy 收敛准则知,[]∑±)()(x v x u n n 在D 上也一致收敛定理11Dini 定理设()()()() ,2,10,0=≤≥n x u x u n n 在[]b a D ,=上连续,又()x u n ∑在[]b a ,上收敛于连续函数,则函数项级数()x u n ∑在[]b a ,一致收敛.使用步骤:⑴判定()0≥x u n 且连续;⑵求和函数)(x S ;⑶判定求和函数)(x S 在[]b a ,上连续.Abel 引理定理12Abel 判别法[]1证明推论6设函数项级数()x u n ∑在D 上一致收敛,函数()x g 在D 上有界,则()()x u x g n ∑在D 上一致收敛.证明因为()x g 在D 上有界,所以,0>∃M 使()M x g ≤,对D x ∈∀成立.因()x u n ∑在D 上一致收敛,,0,,0>∃>∀∴p N ε使当N n >,时有()Mx u p n nk k ε<∑+=,对D x ∈∀成立,此式表明()()()()εε=⋅<<∑∑+=+=MM x u x g x u x g pn nk k p n nk k .由Cauchy 准则知()()x u x g n ∑在D 上一致收敛.定理13Dirichlet 判别法[]1设(i )()x u n ∑的部分和函数列()()x u x s nk k n ∑==1在I 上一直致有界;(ii )对每一个I x ∈,()x v n 单调;(ⅲ)在I 上()()∞→→n x v n 0,则级数和()()x u x v n n ∑在I 上一致收敛.证明充分性由(i )∃正数M ,对一切I x ∈,有()M x s n ≤,因此当为任何正整数p n ,时()()()()()M x s x s x u x u x u n p n p n n n 221≤-=++++++ ,对任何一个I x ∈,再由(ii )及Abel 引理,得到()()()()()x v x v M x v x v x v p n n p n n n ++++++≤+++22)(121 .再由(ⅲ)对,0,0>∃>∀N ε当N n >时,对一切I x ∈,有()ε<x v n ;所以()()()()εεεM M x v x u x v x u p n p n n n 6)2(211=+<++++++ 于是由一致收敛的Cauchy 准则级数()()x u x v n n ∑在I 上一致收敛.注:事实上必要性也成立,即已知()()x u x v n n ∑在I 上一致收敛,可推出(i )(ii )(ⅲ)成立,这里不再赘述.例6若数列{}n a 单调且收敛于0,则级数∑nx a n cos 在[]()πααπα<<-02,上一致收敛.证明由()π2,0,2sin221sin cos 211∈⎪⎭⎫ ⎝⎛+=+∑=x x x n kx nk 得在[]απα-2,上有212sin 21212sin21212sin 221sin cos 1+≤+≤-⎪⎭⎫ ⎝⎛+=∑=αx x x n kx nk ,所以级数∑nx cos 的部分和函数列在[]απα-2,上一致有界,于是令()()nnnax v nx x u ==,cos ,则由Dirichlet 判别法可得级数∑nx a n cos 在[]()πααπα<<-02,上一致收敛.定理14积分判别法[]4设()y x f ,为区域(){}+∞<≤∈=y D x y x R 1,|,上的非负函数,()x u n∑是定义在数集D 上的正项函数级()()n x f x u n ,=,如果()y x f ,在[)+∞,1上关于y 为单调减函数,若含参变量反常积分()⎰+∞1,dy y x f 在数集D 上一致收敛,则()x u n ∑在数集D 上一致收敛.证明由()⎰+∞1,dy y x f 在数集D 上一致收敛,对0>∀ε,∃一个N ,当N n >时,对一切自然数p 和一切D x ∈,有()ε<⎰+pn ndy y x f ,.由()()()<+++++x u x u x u p n n n 21()ε<⎰+pn ndy y x f ,,所以()x u n ∑在数集D 上一致收敛.例7设()∑∞=-⋅=1n nx e n x S ,证明()x S 在区间()+∞,0连续.证明首先对任意取定一点()+∞∈,00x ,都存在0>δ,使得[)+∞∈,0δx ,我们只要证明()x S 在0x 即可.令()yx e y y x f -⋅=,,[)+∞∈,δx ,由()δy yx e y e y y x f --⋅<⋅=,,[)+∞∈,δx ,并且无穷级数dy ey y ⎰+∞-⋅δδ1收敛,所以含参积分dy e y y ⎰+∞-⋅δδ1在[)+∞∈,δx 上一致收敛.又因为()()()()⎭⎫⎩⎨⎧>+∞<≤=∈<-=-δ1,0|,,,01,y x y x R y x yx e y x f yx y 即对任意固定[)+∞∈,δx ,()yx e y y x f -⋅=,关于y 在区间⎪⎭⎫⎢⎣⎡+∞,1δ上是单调递减的,由定理14知,函数级数∑∞+⎥⎦⎤⎢⎣⎡=-⋅11δn nxen 在区间[)+∞∈,δx 上是一致收敛的.利用函数项级数的性质可得,()∑∞+⎥⎦⎤⎢⎣⎡=-⋅=11*δn nxen x S 在区间[)+∞∈,δx 连续,从而()()x S e n x S n nx *11+⋅=∑=-δ在区间[)+∞∈,δx 也连续,所以()x S 在0x 连续,由0x 在()+∞,0的任意性可知,()x S 在()+∞,0上连续.含参变量无穷积分与函数项级数都是对函数求和的问题,前者连续作和,后者离散作和,因此它们的一致收敛性定义及判别法都是平行的,而且所表示的函数分析性质(如连续、可微、可积性)也一致,在此不在赘述.由定理14,我们可利用积分的便利条件判断某些数项级数的一致收敛,也可用函数项级数的一致收敛性判别某些含参变量积分一致收敛.定理15函数列(){}x u n 在[]b a ,上连续且单调,级数()∑a u n 和级数()||b u n 收敛,则级数()x u n ∑在[]b a ,上一致收敛.证明级数()∑a u n 和()∑b u n 收敛.则()∑a u n +()∑b u n 收敛.由(){}x u n 在[]b a ,上连续且单调,则()||x u n <()||a u n +()||b u n ,由M 判别法知,级数()x u n ∑在[]b a ,上一致收敛.定理16[]6设函数()x u n ,() ,2,1=n 在[]b a ,上可微(其中b a ,为有限数),且满足如下条件:(i )函数项级数()x u pn n k k∑++=1在[]b a ,上收敛;(ii )存在常数M ,使得对任意的自然树1≥m ,任意的实数[]b a x ,∈,恒有()M x u n<∑/,则函数项级数()x u n n∑∞=1在[]b a ,上一致收敛.证明对0>∀ε,因为b a ,为有限数,所以存在自然数k ,使得()εεk a b k a +≤≤-+1,我们在闭区间[]b a ,上插入分点i a x a x i ε+==,0,()1,2,1-=k i ,b x k =,于是,闭区间被分成k 个小区间[]i i x x ,1-,()k i ,2,1=.从而有[]b a ,=[]i i ki x x U ,11-=.又因为函数项级()x u n n ∑∞=1在[]b a ,上是收敛的,故对任意i x ()1,2,1-=k i ,存在自然数()i x N ,ε,使得()i x N n ,ε>时,对任意p ,有()ε<∑++=pn n j ijx u 1.于是,对任意[]i i x x x ,1-∈,在自然数()i x N ,ε,使得()1,->i x N n ε时,对任意p ,有()()()()ipn n j jp n n j p n n j ijjpn n j jx u x u x u x u ∑∑∑∑++=++=++=++=+-=1111()()()∑∑∑++=++=++=+-≤pn n j ijpn n j pn n j ijjx u x u x u 111()εε+-≤-++=∑11/i pn n j jxx u ()()εεε+--≤-=+=∑∑11/1/i nj jpn j jxx u u ()()εεε+-+≤-=+=∑∑11/1/||i nj jpn j jxx u u ()ε12+≤M 因此,对0>∀ε,存在自然数(){}1,,1,0|,max 0-==k i x N N i ε,使得当0N n >时,任意[]b a x ,∈,任意自然数p ,均有()ε)12(1+<∑++=M x u pn n j j.即函数项级数()x u n n∑∞=1在[]b a ,上一致收敛.定理17设()x u nn ∑为定义在数集D 上的函数项级数,D x ∈0为()x u nn ∑的收敛点,且每个()x u n 在上一致可微,()x u nn∑/在上一致收敛,记()=x S ()x u nn∑.定理18设函数列(){}x u n 在闭区间[]b a ,上连续可微,且存在一点[]b a x ,0∈,使得()x u n n∑∞=1在点0x处收敛;()x u n n ∑∞=1/在[]b a ,上一致收敛,则函数项级数()x u n n∑∞=1在[]b a ,上一致收敛.证明已知()x u n n ∑∞=1在点[]b a x ,0∈处收敛,()x u n n ∑∞=1/在[]b a ,上一致收敛.即对()εε1,N o ∃>∀,使得()ε1N n ≥时,对+∈∀N p ,有()ε<∑+=+=p n k n k kx u 1成立.对[]b a x ,∈∀,有()ε<∑+=+=p n k n k k x u 1/.根据拉格朗日中值定理,[]b a x N p N n ,,,∈∀∈∀>∀+,有()()∑∑++=++=-pn n k pn n k kkx u x u 11≤()∑+=+=p n k n k ku 1/ξ0x x -<()a b -ε,(ξ介于x 与0x 之间).于是[]b a x N p N n ,,,∈∀∈∀>∀+,()()()()∑∑∑∑++=++=++=++=+-≤pn n k kp n n k p n n k kkpn n k kx u x u x u x u 1111||()()1+-=+-≤a b a b εεε.即()x u n n ∑∞=1在[]b a ,上一致收敛.引理2若函数项级数()x u n ∑在[]b a ,上收敛,()()N n b x u n n bx ∈=-→lim 则()x u n ∑在[]b a ,一致收敛的必要条件是()x b n n ∑∞=1收敛.证明由函数项级数的柯西收敛准则有,[]b a x N p N n N N ,,,,,0∈∀∈∀>∀∈∃>∀++ε,有()()()ε<+++++x u x u x u p n n n 21.()4又()n n bx b x u N n =∈∀-→+lim ,,在(4)的两端取极限,令-→b x 得ε≤+++++p n n n b b b 21,于是由Cauchy 收敛准则知()x b n n ∑∞=1收敛.(①若()n n x b x u b =+∞=+∞→lim ,,则()x u n ∑在[)+∞,a 一致收敛的必要条件是()x b n ∑收敛.②若(){}x u n 在[)b a ,连续,则()x u n ∑在[)b a ,一致收敛()b u n ∑⇒收敛.)定理19利用内闭一致收敛判别[]7若函数项级数()x u n ∑在[)b a ,内闭一致收敛,则()x u n ∑在[]b a ,一致收敛⇔{}[)b x b a x n n n =⊂∀+∞→lim ,,,级数()n n x u ∑收敛.证明必要性,充分性用反正法,这里不再赘述.注:仅由闭一致收敛性和引理的必要条件(集函数级数在区间端点收敛或端点的极限级数收敛)是不能得到函数级数在区间一致收敛的.例8证明∑∞=1sin n n nx在()π2,0内闭一致收敛,且在端点收敛,但在()π2,0不一致收敛.证明∑<<∀nx sin ,0,πεε的部分和函数列(){}x S n 在[]επε-2,一致有界,而⎭⎬⎫⎩⎨⎧n 1在[]επε-2,一致收敛于0,于是由Dirichlet 判别法知,∑n nx sin 在[]επε-2,一致收敛,从而在()π2,0内闭一致收敛.当0=x 或π2时,级数显然收敛.取()+∈∈=N n n x n ,2,02ππ,则0lim =∞→n n x 但()∑∑∑∞=∞==⋅=1112sin n n n n n nn n x u π发散,故由定理19知,∑∞=1sin n n nx在()π2,0不一致收敛.推论7若()x u n ∑在[)+∞,a 内闭一致收敛,则()x u n ∑在[)+∞,a 一致收敛的充要条件是{}[)+∞=+∞⊂∀∞→n n n x a x lim ,,,()x u n∑皆收敛.证明与定理19类似,略.定理20[]7设函数级数()x u n ∑在[)b a ,收敛,且满足引理2中必要条件,则()x u n ∑在[)b a ,一致收敛⇔[){}[)00lim ,,,,x x b a x b a x n n n =⊂∀∈∀∞→,()n n n x u ∑∞=1皆收敛.证明必要性用反证法.假设[]{}[]00lim ,,,,x x b a x b a x n n n =⊂∃∈∃∞→,而()n n n x u ∑∞=1发散.若a x =0或b x =0,则由定理20知不可;若()b a x ,0∈,则存在{}n x 的子列{}kn x 或00lim ,x x x x k k n k n =≥∞→或00lim ,x x x x k k n k n =≤∞→,于是由定理19知()x u n ∑在()b x ,0或()0,x a 在不一致收敛,从而在[)b a ,不一致收敛,矛盾.必要性获证.充分性用反证法.设()x u n n ∑∞=1在[)b a ,不一致收敛,则由定理18的证明可得,{}[)b a x n ,⊂且[]b a x x n n ,lim 0∈=∞→而()n n n x u ∑∞=1发散,矛盾.推论8设()x u n n ∑∞=1在[)+∞,a 收敛,且满足引理的必要条件,则()x u n ∑在[)+∞,a 一致收敛⇔[)+∞∈∀,0a x 或{}[)00lim ,,,x x a x x n n n =+∞⊂∀+∞=∞→,()n n n x u ∑∞=1皆收敛.证明与定理20的类似,略.推论12[]4设∑)(x u n 使定义在数集D 上的正项函数项级数,)(x u n ,),2,1( =n 在D上有界,若D x n ∈∞→,时,1)()(1-+x u x u nn n 一致收敛于)(x q ,设{})(inf x q q =,则当1>q 时,∑)(x un在D 上一致收敛.证明由1>q ,D x n ∈∞→,时,1)()(1-+x u x u nn n 一致收敛于)(x q ,取10-<<∀q ε,11,N n N ≥∃时,对一切D x ∈,有ε<--+)(1)()(1x q x u x u nn n ,所以1)(1)()(1>->->-+εεq x q x u x u n n n ,取22,,1N n N q s ≥∃-<<ε,有sn n q 111+≥-+ε,取{}21,max N N N o =,当O N n >时,对一切D x ∈,有sssn n nn n n q x u x u )1(111)()(1+=+>-+>+ε,因此)()1()(1x u n x u n n sn s ++≥,所以sS O N S On sn M N x u N x u n O ≤≤)()(,由1>s 时,∑s S O n MN 收敛,由优级数判别法可知∑)(x u n 在D 上一致收敛.推论13函数列{})(x u n 定义于数集D 上,且)(1x u 在D 上有界,若+∈∃N N 对一切的D x N n ∈∀>,,有1)()(1<≤+q x u x u n n ,则函数项级数∑∞=1)(n n x u 在D 上一致收敛.证明不妨设对于+∈∀N n ,有q x u x u n n ≤+)()(1,即q x u x u n n )()(1≤+,则1=n ,q x u x u )()(12≤,假设当1-=k n ,111)()()(--≤≤k k k q x u q x u x u 成立,则当k n =,k k k q x u q x u x u )()()(11≤≤+也成立,故由数学归纳法得11)()(-≤n n q x u x u ,且)(1x u 在D 有界,即0>∃M ,对D x ∈,有M x u ≤)(1所以1)(-≤n n Mq x u ,又已知几何级数∑∞=1n n q 收敛,故级数∑∞=-11n n Mq收敛,由优级数判别法知∑∞=1)(n n x u 在D 上一致收敛.推论14函数列{})(x u n 定义于数集D 上,且)(1x u 在D 上有界,若D x ∈∀,有1)()(lim1<=+∞→l x u x u n n n ,则函数项级数在D 上一致收敛.证明因为1)()(lim1<=+∞→l x u x u n n n .即1-=∃q o ε)1(<<q l ,+∈∃N N ,对一切D x N n ∈∀>,,有1)()(1-≤-+q l x u x u n n ,即q x u x u n n ≤+)()(1,由推论10得函数项级数∑∞=1)(n n x u 在数集D 上一致收敛.例11判断函数项级数∑∞=1!n nn x n n 在[)+∞,1上一致收敛性.证明因为11)(1≤=xx u ,且11111lim !)1()!1(lim )()(lim 111<<=⎪⎭⎫ ⎝⎛+=++=∞→++∞→+∞→e xe x n n n x n x n n x u x u nn n n n n n nn n ,由推论13可知函数项级数∑∞=1!n nn xn n 在[)+∞,1上一致收敛.定理23[]8(根式判别法)设∑)(x u n 为定义在数集D 上的函数项级数,记n n n x u x q )()(=,若存在正整数N ,正数q ,使得1)(<≤q x u n n 对一切的N n >,D x ∈成立,则函数项级数∑)(x u n 在D 上一致收敛.证明由定理条件n n q x u ≤)(对一切N n >,D x ∈成立,而几何级数∑n q 收敛,由优级数判别法知,函数项级数∑)(x u n 在D 上一致收敛.推论15[]8(根式判别法的极限形式)设)(x u n 为定义在数集D 上的函数列,若n n x u )(一致收敛于)(x q ,且1)(<≤q x q {}1)(sup (<∈x q Dx ,即1)()(lim <≤=∞→q x q x u n n n ,对D x ∈∀成立,则函数项级数∑)(x u n 在D 上一致收敛.证明由n n x u )(一致收敛于)(x q )(∞→n ,取q -<<10ε,O N ∃,当o N n >时,对一切D x ∈有ε<-)()(x q x u n n ,所以εε+<+<q x q x u n n )()(,所以n n q x u )()(ε+<,又因为1<+εq ,由优级数判别法知∑)(x u n 在D x ∈上一致收敛.推论51'设()∑x u n 为定义在数集D 上的正项函数项级数,记()n n n x u q =,若()1sup lim <=∈∞→q x q n Dx n ,则函数项级数()∑x u n 在D 上一致收敛.证明由假设()1sup lim <=∈∞→q x q n Dx n ,则存在正整数N ,使得当N n >时,有()1<≤q x q n ,则对任意的N n >,D x ∈∀有()n n q x u ≤,而几何级数∑n q 收敛,由函数项级数一致收敛性优级数判别法知()∑x u n 在D 上一致收敛,即得证.例12函数项级数∑n xn在()()+∞⋃-∞-,,r r 上一致收敛,(其中r 是实常数且1>r ),因为()x nx u q nnn n ==,设()()+∞⋃-∞-=,,r r D ,()11lim sup lim <==∞→∈∞→r r n x q nn n Dx n ,由推论51'得函数项级数∑n xn在()()+∞⋃-∞-,,r r 上一致收敛.推论16[]8有函数项级数()∑x u n ,若对D x ∈∀,有()1lim <=∞→l x u n n n ,则函数项级数()∑x u n 在D 上一致收敛.证明因()1lim <=∞→l x u n n n ,则1-=∃q o ε,1<<q l ,+∈∃N N ,D x ∈∀,有()l q l x u nn -<-,即()1<<q x u n n ,从而()n n q x u <依定理8得函数项级数()∑x u n 在D上一致收敛.例13判别函数项级数nn x ∑⎪⎭⎫⎝⎛+12在R 上的一致收敛性.证明因()1012lim lim 12<=+=∞→+∞→n xn nnn x n ,依推论15函数项级数nn x ∑⎪⎭⎫ ⎝⎛+12在R 上一致收敛.定理24[]8(对数判别法)设()x u n 为定义在D 上的正的函数列,若()()x p nx u n n =-∞→ln ln lim 存在,那么①若D x ∈∀,()1>>p x p 对,则函数项级数()∑x u n 一致收敛;②若对D x ∈∀,()1<<p x p ,则函数项级数()∑x u n 不一致收敛.证明由定理条件知,对任意0>ε,N ∃,使得对一切N n >,有()()()εε+<-<-x p nx u x p n ln ln ,即()()()εε-+<<x p n x p n x u n 11,则当()1>>p x p 对D x ∈∀成立时,有()pn n x u 1<,而p 级数∑p n 1当1>p 时收敛,由优级数判别法知函数项级数()∑x u n 在D 上一致收;而当()1<<p x p ,对D x ∈∀成立时,有()p n n x u 1>,而p 级数∑p n1当1<p 时发散,从而函数项级数()∑x u n 不一致收敛.定理25设函数项级数()∑x u n ,()∑x v n 都是定义在数集D 上的正项函数项级数,当D x ∈,∞→n 时,()()x v x u n n 一致收敛于()x q ,设(){}1inf q x q D x =∈,(){}2sup q x q Dx =∈;①当+∞<=21,0q q 时,若()∑x v n 在D 上一致收敛,则()∑x u n 在D 上也一致收敛.②当+∞=>21,0q q 时,若()∑x u n 在D 上一致收敛,则()∑x v n 在D 上也一致收敛.③当+∞<>21,0q q 时,()∑x u n 与()∑x v n 在数集D 上同时一致收敛,或同时不一致收敛.证明由当D x ∈,∞→n 时,()()x v x u n n 一致收敛于()x q ,则任取0>ε,总+∈∃N N ,当N n >时,对一切D x ∈有()()()ε<-x q x v x u n n ,得到()()()()εεεε+<+<<+-≤+-21q x q x v x u x q q n n 即()()()()()x v q x u x v q n n n εε+<<-21.①当+∞<=21,0q q 时,由上式的右半部分可知若()∑x v n 在D 上一致收敛,则()∑x u n在D 上也一致收敛;②当+∞=>21,0q q 时,由上式左半部分可知若()∑x u n 在D 一致收敛,则()∑x v n 在D 上也一致收敛;③当+∞<>21,0q q 时,取1q <ε易知()∑x u n 与()∑x v n 同时一致收敛或同时不一致收敛.Lipschitz (莱布尼茨)型函数项级数一致收敛判别[]5定义4设有函数项级数()()∑+-x u n n 11,其中()x u n ,(),,2,1 =n 是区间[]b a ,上的连续函数()0≥x u n ,且函数列(){}x u n 在区间[]b a ,上单调减少收敛于0,则称这类级数为Lipschitz 型函数项级数.定理26若()()∑+-x u n n 11,[]b a x ,∈为L 型函数项级数,则①此级数在[]b a ,上一致收敛;②()()()()()()()()()x u x u x u x u x u n p n p n n n n n pn n k k k 211111231211≤-++-+-=-+++++++++=+∑ .证明①因为()x u n 是[]b a ,上的连续函数,函数列(){}x u n 在区间[]b a ,上单调减少且收于连续函数()0=x u .所以()()x u x u k k 1+-在[]b a ,连续非负,而()()()[]()x u x u x u x u n k k k n 1111--=-∑-=+,由Dini 定理知函数项级数()()[]()x u x u x u n k k 111--∑∞=+在区间[]b a ,一致收敛于0,从而函数列(){}x u n 在[]b a ,一致收敛于0.又()⎩⎨⎧=+==+-+-=-∑==k n k n nk k 2,012,111111111,所以()1111≤-∑=+nk k ,故()∑=+-n k k 111一致有界,由Dirichlet 判别法知交错函数项级数()()∑+-x u n n 11在区间[]b a ,上一致收敛.②由①得()()∑+-x u n n 11一致收敛,设()()()x s x u n n =-∑+11,于是()()()()()()()()x s x s x s x s x s x s x u n p n n p n pn n k k k -+-==-++++=+∑111()()()()()()()()()()().211x u x u x u x u x u x r x r x s x s x s x s n n n p n n p n n n p n =+≤+≤+=-+-≤+++++例14试证()∑+--211x n n 在区间[]b a ,一致收敛.证明⎭⎬⎫⎩⎨⎧+21x n 是任意闭区间[]b a ,上的连续函数列且[]b a x ,∈∀,()()x u x u n n ≤≤+10,()0lim =∞→x u n n 由定理26知函数项级数()∑+--211x n n 在[]b a ,上一致收敛.推论17设函数列(){}x S n 在[]b a ,上收敛于)(x S ,若()x S n 可写成L 型函数项级数的部分和,则函数列(){}x S n 在上一致收敛于)(x S .证明设有L 型函数项级数()()∑+-x u n n 11一致收敛于()x u ,[]b a x ,∈而()()()x u x S k nk k n ∑=+-=111,则对[]b a x ,∈∀,都有()()()()()x S x S x u x u n n nk k k n ==-=∞→=+∞→∑lim 1lim 11,即()()x S x u =,故函数列(){}x S n 在[]b a ,上一致收敛于)(x S .例15证明()∑-x nn11在[)+∞,δ上一致收敛.证明因为[)+∞∈∀,δx ,()x xn n 1110≤+≤,01lim =∞→xn n .由②[)+∞∈∀,δx ,+∈∀N p 有()()()δn x u x u n pn n k k K2211≤≤-∑++=,由δn 2与x 无关且02lim =∞→δn n 故()()εδ<≤-∑++=n x u pn k n k k 211,由Cauchy 准则证毕.定理27[]9利用结论:设幂级数∑∞=1n n n x a 的收敛半径0>R ,则①当∑∞=1n nn R a (或()∑∞=-1n nn R a )收敛时,∑∞=1n n n x a 在[]R ,0或()0,R -一致收敛;②∑∞=1n nn x a 在(]R R ,-内一致收敛,当且仅当∑∞=1n n n x a 在[]R R ,-上一致收敛.注:1Cauchy 准则与M 判别法比较实用一般优先考虑;2Cauchy 准则、M 判别法、放大法要实现对函数项级数一致收型性的判别,均要对一定的表达式进行有效是我放大.三非一致收敛性的判别1利用非一致收敛的定义定义3,略.例16讨论函数项级数()[]()∑++-111nx x n x在()+∞∈,0x 是否一致收敛.解()()[]()()111)11111(11111+-=+-+-=++-=∑∑==nx kx x k kx x k x x s nk nk n 当()+∞∈,0x 时,有()()1lim ==∞→x s x s n n .取o ε使210≤<o ε,无论n 多大只要nx 1=',就有()()o n n n s n s x s x s ε≥=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛='-'2111,故()[]()∑++-111nx x n x 在()+∞,0上非一致收敛.2利用确界原理的逆否命题定理28若函数项级数()∑x u n 在数集D 上非一致收敛的充要条件是()0sup lim ≠∈∞→x R n Dx n .证明它是确界原理的逆否命题,故成立.例17函数项级数()∑x u n 的部分和函数为()xx x S nn --=11,讨论()∑x u n 在()1.1-上是否一致收敛.证明部分和函数()x x x S n n --=11,当1<x 时,()(),11lim xx S x S n n -==∞→又当∞→n时,()()()()∞→⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫⎝⎛+≥-=----∈11,11,11111supsup n nnx n x n n n n nn n x x x S x S ,故()∑x u n 在()1.1-内非一致收敛.注:极限函数知道时值得用3利用定理5的逆否命题定理29设()()x S x u n =∑,若存在{}D x n ⊂使得()0lim ≠∞→n n n x r ,则()∑x u n 在D 上不一致收敛.证明略.注:此定理比较实用.4利用Cauchy 准则逆否命题定理30函数项级数()∑x u n 在区间D 上非一致收敛的充要条件是存在0>o ε,+∈∀N N ,N n o >∃,D x ∈'∃,+∈N p 使得()opn n k kx u ε≥'∑++=1证明它是Cauchy 准则的逆否命题,故成立.例18讨论∑nnxsin 在[]π2,0=D 上的一致收敛性.解取21sin 31=o ε,对+∈∀N N ,N n o >∃,1+=o n p ,及()[]π2,0121∈+=o o n x 使()()()()()1212sin 121122sin 21121sin 11++++++++++++=-+o o o o o o o o o o n p n n n n n n n n n n x s x s o o ⎪⎪⎭⎫⎝⎛++++++>121211121sin o o o n n n 21sin 31>oε=故∑nnxsin 在[]π2,0=D 上非一致收敛.注:该类型关键是要找出o x 与o n 及p 之间的关系,从而凑出o ε,该类型题也有一种简便方法,即取1=p 能适用于很多例题.此方法比较实用,优先考虑.推论18函数列(){}x u n 在上非一致收敛于0,则函数项级数()∑x u n 在数集D 上非一致收敛.证明它是推论1的逆否命题,故成立.例19设()()()()12sin 1212cos+⋅++=n n x n n n x u n ,()∞∞-∈,x .讨论函数项级数()∑x u n的一致收敛性.解取()12+=n n x n ,则()()1sin 12cos lim 0lim +=-∞→∞→n x u n n n n ,此极限不存在,所以(){}x u n 在定义域内非一致收敛于0,则()∑x u n 在()∞∞-∈,x 内非一致收敛.推论19[]9若函数项级数()∑x u n 在区间D 上逐点收敛,且在区间D 中存在一点列{}n x ,使()0lim ≠∞→n n n x u ,则函数项级数()∑x u n 在区间D 上非一致收敛.例20讨论∑⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-nx n x e n 11在()+∞,0上的一致收敛性.解因为()0.,,0a x ∃+∞∈∀使a x ≤,有ax nx e n a e nx n x e n 222211≤≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-,知∑⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+-nx n x e n 11在()+∞,0上非一致收敛.5利用求极值的方法定理31()()∑∞+==1n k kn x u x R ,若()0sup lim ≠∈∞→x R nDx n ,则()∑x u n 在D 上不一致收敛.例21证()∑-n n x x 1在[]1,0上处处收敛,但不一致收敛.证明因为()∑∑∑-=-n n n n x x x x 21,对[)1,0∈x ,∑n x 与∑n x 2都收敛,所以()∑-nnx x 1收敛,1=x 时()01=-∑nnx x 收敛,故()∑-nnx x 1在[]1,0上处处收敛;而()∑---=++x x x x x R n n n 11221,所以[]()22211,01111111sup ⎪⎭⎫⎝⎛--⎪⎭⎫⎝⎛--⎪⎭⎫⎝⎛-≥++∈n n n n x R n n n x ,又+∞=⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫⎝⎛-++∞→22211111111lim n n n n n n n ,故()∑-n n x x 1在[]1,0非一致收敛.注:极限函数知道时,可考虑用.6利用一致收敛函数列的一个性质判别[]10引理2若连续函数列(){}x f n 在区间D 上一致收敛于()x f ,则D x o ∈∀,{}D x n ⊂∀,o n n x x =∞→lim ,有()()o n nn x f x f=∞→lim 证明由(){}x f n 在D 上一致收于()x f ,即有()()0sup lim =-∈∞→x f x f n Dx n ,D x o ∈∀,{}D x n ⊂∀:o n n x x =∞→lim ,有()()()()x f x f x f x f n Dx n n n -≤-∈sup ,得()()0lim =-∞→x f x f n n n .根据连续函数列(){}x f n 在区间D 上一致收敛于()x f ,则()x f 也必在D 上连续,从而()()o n n n x f x f =∞→lim .定理32连续函数项级数()∑x u n 在区间D 上逐点收于)(x S ,且D x o ∈∃,{}Dx n ⊂∃o n n x x =∞→lim ,有()()o n n n x S x S ≠∞→lim 则函数项级数()∑x u n 在区间D 上非一致收敛于)(x S .例22讨论∑+221x n x在()+∞∞-,上一致收敛性.解显然()∑x u n 在()+∞∞-,上逐点收,且每一项都在()+∞∞-,上连续,取() ,2,11==n n x n ,则0lim =∞→n n x .再设()221x k x x u k +=,由定积分概念()()∑∑=∞→=∞→+=nk nk nn nk n k n x u 12111lim lim ()∑=∞→+=n k n k n n 12111lim dx x ⎰+=1021110arctgx =4π=()00=≠s 故知∑+221xn x在()+∞∞-,上非一致收敛.推论20设连续函数列(){}x S n 在区间D 上逐点收敛,且在D 中存在数列{}n a 和{}n b 满。

函数项级数收敛和一致收敛的判别

函数项级数收敛和一致收敛的判别

函数项级数收敛和一致收敛的判别函数项级数收敛和一致收敛的判别函数项级数是指将一列函数相加得到的级数,例如:$%sum%limits_{n=1}^%infty f_n(x)$。

如果该级数在某个区间内收敛,则称该级数在该区间内收敛,否则称该级数在该区间内发散。

函数项级数的收敛性可以分为点态收敛和一致收敛两种。

点态收敛是指对于每一个$x$,级数$%sum%limits_{n=1}^%inftyf_n(x)$都收敛,而一致收敛则是指存在一个收敛的函数$S(x)$,使得对于任意$%epsilon>0$,存在一个正整数$N$,使得当$n>N$时,对于所有$x$都有$|%sum%limits_{k=1}^n f_k(x)-S(x)|<%epsilon$。

下面将介绍函数项级数的一致收敛的判别方法:一、Weierstrass判别法Weierstrass判别法是判定函数项级数一致收敛的最常用方法之一。

其基本思想是将原函数项级数中的每一项$f_n(x)$都用一个上界函数$M_n(x)$来代替,并且要求这个上界函数满足以下两个条件:1. 对于任意$n$和$x$,都有$|f_n(x)|%leq M_n(x)$。

2. 上界函数$M_n(x)$的函数项级数$%sum%limits_{n=1}^%infty M_n(x)$在该区间内收敛。

如果满足上述条件,则原函数项级数在该区间内一致收敛。

二、Abel判别法Abel判别法是另一种判定函数项级数一致收敛的方法。

其基本思想是将原函数项级数表示为两个部分的乘积:$%sum%limits_{n=1}^%infty a_n(x)b_n(x)$,其中$a_n(x)=%sum%limits_{k=1}^n f_k(x)$,$b_n(x)$是一个单调有界函数。

如果满足以下两个条件,则原函数项级数在该区间内一致收敛:1. 函数$a_n(x)$在该区间内一致有界。

2. 函数$b_n(x)$在该区间内一致收敛到某个函数$B(x)$。

函数收敛的判别方法

函数收敛的判别方法

函数收敛的判别方法一、序列的收敛判定:给定一个实数序列{an},要判断其是否收敛,可以使用以下方法:1. 有界性判定:如果序列{an}有界,则存在M,使得对于所有n,满足,an,≤ M。

若序列有界,则可以判定序列收敛,否则为发散。

2. 单调性判定:若序列{an}单调递增,并且有上界(或单调递减,有下界),则序列收敛。

若序列不满足单调性条件,或没有上(下)界,则为发散。

3. Cauchy准则:若对于任意给定的ε > 0,存在正整数N,使得当m,n > N 时,有,am - an, < ε,则序列收敛;否则发散。

二、级数的收敛判定:给定一个实数级数∑an,要判断其是否收敛,可以使用以下方法:1. 部分和的有界性判定:若级数的部分和序列{sn = ∑an}有界,则级数收敛,否则为发散。

2. 正项级数判定:若级数的各项均为非负实数(即an ≥ 0),并且其部分和序列有界,则级数收敛;若级数的各项不满足非负性条件,则为发散。

3. 比较判别法:若存在一个收敛级数∑bn,且0 ≤ an ≤ bn 对所有n成立,则级数∑an收敛。

若存在一个发散级数∑bn,且bn ≤ an对所有n成立,则级数∑an发散。

若无法找到这样的级数,则无法判定级数的收敛性。

4. 比值判别法:计算级数的比值极限lim(n→∞),an+1 / an,若该极限存在且小于1,则级数收敛;若该极限大于1或不存在,则级数发散。

5. 根值判别法:计算级数的根值极限lim(n→∞)∛,an,(或lim (n→∞)√,an,),若该极限存在且小于1,则级数收敛;若该极限大于1或不存在,则级数发散。

总结起来,判定函数序列收敛的方法主要有有界性判定、单调性判定和Cauchy准则;而判定级数收敛的方法主要有部分和的有界性判定、正项级数判定、比较判别法、比值判别法和根值判别法。

这些方法可以帮助我们判断一个函数序列或级数是否收敛,并明确其极限值。

一致收敛判别法总结

一致收敛判别法总结

学年论文题目:一致收敛判别法总结学院:数学与统计学院专业:数学与应用数学学生姓名:***学号:************指导教师:***一致收敛判别法总结学生姓名:张学玉 指导教师:陶菊春摘要: 函数项级数一致收敛性的证明是数学分析中的难点,为了开阔思路,更好的理解和掌握函数项级数一致收敛的方法,本文对函数项级数一致收敛的几种判别法进行了分析、归纳、总结。

首先对用定义判断函数项级数一致收敛的方法进行了研究,介绍了函数项级数一致收敛的充要条件,近而提供了证明函数项级数一致收敛的一般方法。

同时介绍了几个较为方便适用的关于函数序列一致收敛的判别法法。

并通过例题的讨论说明这些判别法的可行性及特点。

Abstract :Function Series Uniform Convergence prove mathematical analysisof the difficulties, in order to broaden their thinking, to better understand and master the functions Seies Convergence approach, this paper uniformly convergent series of functions of several discriminant method were analyzed, summarized, summary. First, determine the definition of series of functions with uniform convergence methods were studied, introduced uniformly convergent series of functions necessary and sufficient conditions, while providing nearly proved uniformly convergent series of functions of the general method. Also introduced several relatively easy to apply uniform convergence on the discriminant function sequence Law Act. And through discussion of examples illustrate the feasibility of these discriminant method and characteristics.关键词: 函数项级数;函数序列;一致收敛;判别法Keywords: series of functions; function sequence; uniform convergence; Criterion引言: 函数项级数一致收敛性的证明是初学者的一个难点,教材中给出了用定义法、定理及判别法来证明函数项级数的一致收敛性。

证明数项级数发散以及函数项级数非一致收敛的方法 终

证明数项级数发散以及函数项级数非一致收敛的方法 终
1 1 1 1 5 I=1+ 例 级数 32 - + 2 -……是否收敛?为什么? 2 4 5
1 1 1 1 = 原级数 I= , 前者是收敛的, 后者是发散的, 2 2 2n n 1 (2n 1) n 1 2n n 1 ( 2n 1)
n n n 1 2n 1

(2) (n 2 2) ln(
n 1

n2 1 ) n2
第一个级数的通项 an =
1 n n .由极限的知识,我们很容易知道 lim an = 0. n 2 2n 1
故(1)中的级数是发散的.而(2)中的通项可先进行化简,使之成为我们熟知

1 n n
n
在(1)中我们注意通项中有 n 次幂的存在,首先就会想到用根值判别法,而通 项的分母又有阶乘,我们又会联想到用比值判别法.其实,这个题目用这两种方 法 都 可以 求解 . 在这 里, 我用比 值判 别法来 解一下 :记 通项 an =
nn ,则 有 n!
an 1 (n 1) n 1 (n 1) n 1 n! = lim =e>1.由柯西判别法可知,该级 an 1 = ,故 lim n n n an (n 1)! n (n 1)!
0 就行.
三、对正项级数,利用判别法. 这里的判别法主要指的是根值判别法(柯西判别法) 、比值判别法(达朗贝尔判 别法)以及比较判别法.其中都有对级数发散情况的讨论.因此,在解决正项级数 的敛散性方面,这种方法也比较常见. 例3 判断下列级数的敛散性.
nn n 1 n!

(1)
(2)
n 1
n2 2 1 2 的可求极限的形式. bn = 2 ln(1 2 ) n 1(n ).故此级数是发散的. n n

函数项级数“非一致收敛”的几种证法

函数项级数“非一致收敛”的几种证法

龙源期刊网
函数项级数“非一致收敛”的几种证法
作者:陶思俊黄新仁
来源:《硅谷》2008年第20期
[摘要]结合实例,讲解了函数项级数非一致收敛的三种常见证法,即利用柯西准则证明、利用余项上确界的极限不为零证明及利用和函数的连续性证明。

[关键词]函数项级数非一致收敛柯西准则和函数
中图分类号:O13文献标识码:A 文章编号:1671-7597(2008)1020122-01
函数项级数的一致收敛性和非一致收敛性的证明是数学分析中的两个重要知识点,对初学数学分析的同学来说也是个难点,尤其是非一致收敛性的证明,因为各种不同版本的《数学分析》教材对这个知识点归纳、讲解不多。

针对上述情况,本文对函数项级数非一致收敛性的证明方法加以归纳,并结合实例介绍了几种常见的证法。

一、利用柯西准则来证明
命题1.设是函数项级数的部分和函数列,则该级
注:“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。

”。

函数项级数的一致收敛性与非一致收敛性判别法归纳

函数项级数的一致收敛性与非一致收敛性判别法归纳

函数项级数的一致收敛性和非一致收敛性判别法归纳一 定义引言设函数列{}n f 和函数f 定义在同一数集D 上,若对任给的正数ε,总存在某一正数N ,使得当N n >时,对一切D x ∈,都有()()ε<-x f x f n 则称函数列{}n f 在上一致收敛于()x f ,记作()()x f x f n →→()∞→n ,D x ∈ 设()x u n 是定义在数集E 上的一个函数列,表达式()()(),21 ++++x u x u x u n E x ∈ )1(称为定义在E 上的函数项级数,简记为()x u n n ∑∞=1或()x u n ∑;称()()x u x S nk k n ∑==1, E x ∈, ,2,1=n )2(为函数项级数)1(的部分和函数列.设数集D 为函数项级数∑∞=1)(n n x u 的收敛域,则对每个D x ∈,记∑∞==1)()(n n x u x S ,即D x x S x S n n ∈=∞→),()(lim ,称)(x S 为函数项级数∑∞=1)(n n x u 的和函数,称)()()(x S x S x R n n -=为函数项级数∑)(x u n 的余项.定义1]1[ 设{})(x S n 是函数项级数∑)(x u n 的部分和函数列,若{})(x S n 在数集D 上一致收敛于函数)(x S ,或称函数项级数∑)(x u n 在D 上一致收敛于)(x S ,或称∑)(x u n 在D 上一致收敛.由于函数项级数的一致收敛性是由它的部分和函数列来确定,所以可以根据函数列一致收敛性定义得到等价定义.定义2]1[ 设{})(x S n 是函数项级数∑)(x u n 的部分和函数列,函数列{})(x S n ,和函数)(x S 都是定义在同一数集D 上,若对于任给的正数ε,总存在某一正整数N ,使得当N n >时,对一切D x ∈,都有ε<-)()(x S x S n ,则称函数项级数∑)(x u n 在D 上一致收敛于函数)(x S ,或称∑)(x u n 在D 上一致收敛.同时由ε<-=)()()(x S x S x R n n ,故)(x R n 在D x ∈上一致收敛于0.定义3 设函数项级数∑)(x u n 在区间D 上收敛,其和函数为∑∞==1)()(n n x u x S ,部分和函数列∑==nk n n x u x S 1)()(,若0>∃o ε,+∈∀N N ,N n o >∃及D x ∈'∃,使得o n x s x s o ε≥'-)()(,则函数项级数∑)(x u n 在区间D 上非一致收敛.例1 试证∑∞=1n n x 在[]r r ,-)10(<<r 上一致收敛,但在)1,1(-内不一致收敛.证明 显然∑∞=1n n x 在)1,1(-内收敛于xx-1. 对任意的0>ε,欲使当N n >和r x r ≤≤-时,恒有ε<-=--+=∑x x x x x n nk k1111成立,只要当N n >时,恒有ε<-+rr n 11成立,只要当N n >时,恒有()rr n lg 1lg 1ε->+ 成立,只要当N n >时,恒有()r r n lg 1lg ε->成立,只要取()⎥⎦⎤⎢⎣⎡-=r r N lg 1lg ε即可.依定义,∑∞=1n nx 在[]r r ,-上一致收敛于x x -1.存在e o 2=ε,对任意自然数N ,都存在N N n o >+=1和()1,121-∈++=N N x o ,使 ε2111111111>⎪⎭⎫⎝⎛+++=-=--++=∑N o n o o o n k k oN N x x x x xo o成立,依定义,∑∞=1n n x 在)1,1(-内不一致收敛.二 函数项级数一致收敛性的判定方法定理1 Cauchy 一致收敛准则]1[函数项级数()∑x u n 在数集D 上一致敛的充要条件为:对0>∀ε,总+∈∃N N ,使得当N n >时,对一切D x ∈和一切正整数p ,都有()()ε<-+x S x S n p n 或 ()()()ε<++++++x u x u x u p n n n 21 或()ε<∑++=pn n k kx u 1特别地,当1=p 时,得到函数项级数一致收敛的一个必要条件:推论1 函数项级数在()∑x u n 在数集D 上一致收敛的必要条件是函数列(){}x u n 在D 上一致收敛于0.定理2]2[ 函数项级数()x u n n ∑∞=1在点集D 上一致收敛于)(x S 的充分必要条件是:()()0:sup lim 1=⎭⎬⎫⎩⎨⎧∈-∑=∞→D x x S x u n k n n .定理3 放大法]3[(){}x S n 是函数项级数()∑x u n 的部分和函数列,和函数)(x S ,都是定义在同一数集D 上,对于任意的n ,存在数列{}n a ()0>n a ,使得对于D x ∈∀,有()()()n n n a x S x S x R <-=,且0lim =∞→n n a ,则称函数列(){}x S n 一致收敛于)(x S ,即函数项级数()∑x u n 在D 上一致收敛于函数)(x S .证明 因0lim =∞→n n a ,故对任给的0>ε,+∈∃N N (和x 无关),使得当N n >时,对一切D x ∈,都有()()()ε<≤-=n n n a x S x S x R .由定义2得函数列(){}x S n 一致收敛于)(x S ,即函数项级数()∑x u n 在D 上一致收敛于)(x S .注:用放大法判定函数项级数()∑x u n 一致收敛性时,需要知道)(x S . 定理4 确界法函数项级数在数集D 上一致收敛于)(x S 的充要条件是 ()()()0sup lim sup lim =-=∈∞→∈∞→x S x S x R n Dx n n Dx n证明 充分性 设(){}x S n 是函数项级数()∑x u n 的部分和函数列, )(x S 为和函数,则有()()()x S x s x R n n -=,并令()x R a n Dx n ∈=sup ,而()0sup lim =∈∞→x R n Dx n ,即0lim 0=→n n a ,由定理3(放大法)得知函数项级数()∑x u n 一致收敛于函数)(x S .必要性注:实质上是用极值的方法把一致收敛问题转化为求数列极限的问题. 定理5 若()∑x u n 在区间D 上收敛,则()∑x u n 在D 上一致收敛的充要条件是{}D x n ⊂∀,有()0lim =∞→x R n n .证明 充分性 假设()∑x u n 在D 上不一致收敛,则0>∃o ε,{}D x n ⊂∃,使得()()o n x S x S ε≥-,如此得到{}D x n ⊂,但()0lim ≠∞→n n n x R ,这和已知条件矛盾.必要性 因已知()∑x u n 在D 上一致收敛,所以N ∃>∀,0ε,使得当N n >时,对一切D x ∈,都有()()ε<-x S x S n ,对于{}D x n ⊂∀,则有()()ε<-n n n x S x S ,即()ε<n n x R ,得()0lim =∞→n n n x R .例2 设()0≥x u n , 2,1=n ,在[]b a ,上连续,又()x u n ∑在[]b a ,收敛于连续函数()x f ,则()x u n ∑在[]b a ,一致收敛于()x f .证明 已知()()()x S x f x R n n -=(其中()()∑==nk k n x u x S 1)是单调递减且趋于0,所以[]b a x N n ,,∈∀∈∀有()0≥x R n ,且[]ε∀∈∀,,0b a x >0,()εε,),(00,0x x N n N ≥>∃时,有()ε<≤00x R n .将n 固定,令()ε,00x N N n ==,因为()()()x S x f x R n n -=在[]b a ,上连续,既然()ε<x R n ,所以00>∃δ,当()0000,δδ+-∈x x x 时, ()ε<0x R n .从而0N n >时更有()ε<x R n 即()ε<x R n ,仅当()0000,δδ+-∈x x x .如上所述,对每个点[]b a x ,∈λ,可找到相应的领域()λλλλδδ+-x x ,及相应的λN ,使得λN n >时,对∈x ()λλλλδδ+-x x ,恒有()ε<x R n .如此{()λλλλδδ+-x x ,:[]b a x ,∈λ}构成[]b a ,的一个开覆盖,从而必存在有限子覆盖,不妨记为{()()r r r r x x x x δδδδ+-+-,,,1111 },于是[]b a x ,∈∀,总{}r i ,2,1∈使得i i i i x x x δδ+-∈,(),取{}r N N N N ,,m ax 21=,那么N n >时,恒有()ε<x R n ,由定理5得()x u n∑在[]b a ,一致收敛于()x f .定理6 M 判别法或优先级判别法或Weierstrass 判别法]1[设函数项级数()x u n ∑定义在数集D 上,∑n M 为收敛的正项级数,若对一切D x ∈,有2,1,)(=≤n M x u n x )3( 则函数项级数()x u n ∑在D 上一致收敛.证明 由假设正项级数()x u n ∑收敛,根据函数项级数的Cauchy 准则,∀0>ε,∃某正整数N ,使得当N n >及任何正整数p ,有ε<+=++++++p n n p n n M M M M 11又由(3)对一切D x ∈,有()≤+≤++++++x u x u x u x u p n n p n n )()()(11ε<+++p n n M M 1根据函数项级数一致收敛的Cauchy 准则,级数()x u n ∑在D 上一致收敛.注:若能用从判定()∑∞=1n n x u 一致收敛,则()∑∞=1n n x u 必是绝对收敛,故M 判别法对条件收敛的函数项级数失效.例3 函数项级数∑∑22cos ,sin nnxn nx 在()+∞∞-,上一致收敛,因为对一切∈x ()+∞∞-,有22221cos ,1sin n n nx n n nx ≤≤,而正项级数∑21n 是收敛的. 推论2 设有函数项级数()x u n ∑,存在一收敛的正项级数∑∞=1n n a ,使得对于,I x ∈∀有()()+∞<≤=∞→k k a x u nn n 0lim,则函数项级数()∑∞=1n n x u 在区间I 一致收敛证明 已知()()+∞<≤=∞→k k a x u nn n 0lim,即,,,,00I x N n N N ∈∀>∀∈∃>∃+ε有()0ε<-k a x u n n 即()k a x u n n +<0ε,从而()()n n a k x u +<0ε,又因为∑∞=1n n a 收敛,则()nn a k ∑∞=+10ε也收敛,由M 判别法得函数项级数()∑∞=1n n x u 在区间I 一致收敛.由广义调和级数∑∞=11n p n,当1>p 时收敛,故当n a =pn 1时,有 推论2' 设有函数项级数()∑∞=1n n x u ,若存在极限k x u n n p n =∞→)(lim 且1,0>+∞<≤p k ,则函数项级数()x u n ∑在区间I 一致收敛.例4 证明函数项级数∑∞=+++1)1)((1n n x n x 在[)∞,0是一致收敛的.证明 对于∑∞=+++1)1)((1n n x n x ,存在收敛的正项级数∑∞=121n n,且=+++⋅∞→)1)((1lim 2n x n x n n 1)1)((lim2=+++∞→n x n x n n 由的推论2和推论2'得, ∑∞=+++1)1)((1n n x n x 在[)∞,0一致收敛. 定理7 比较判别法[]4两个函数项级数()∑x u n 和()x v n ∑,若N N ∈∃0,当I x N n ∈∀>∀,0有()x v c x u n n <)((其中c 为正常数),且函数项级数()x v n ∑在区间I 绝对一致收敛,则函数()x u n∑区间I 绝对一致收敛.证明 已知 ()x v n ∑在区间I 绝对一致收敛,即对cε∀0>(其中c 为正常数), 11,N n N N >∀∈∃及I x N p ∈∈,,有()()()cx v x v x v p n n n ε<++++++ 21;又由条件知I x N n N ∈>∀∃,,00有()x v c x u n n <)(;取{},,m ax 01N N N =当I x N p N n ∈∈∀>∀,,,有()()()<++++++x u x u x u p n n n 21()()()()εε=⋅<++++++cc x v x v x v c p n n n 21.由收敛级数一致收敛Cauchy 准则知,函数项级数∑)(x u n 在区间I 一致收敛,从而函数项级数()x u n ∑在区间I 绝对一致收敛.定理8[]4 若有函数级数()∑x u n 和()x v n ∑,N N ∈∃0,I x N n ∈∀>∀,0有()x cv x u n n <)((其中c 为正常数),且函数项级数()∑∞=1n n x v 在区间I 一致收敛,则函数()∑∞=1n n x u 区间I 绝对一致收敛.证明 已知I x N n N ∈>∀∃,,00,有()x v c x u n n <)((其中c 为正常数). 又函数项级数()∑∞=1n n x v 在区间I 绝对一致收敛,即I x N p N n N N c∈∈>∀∈∃>∀,,,,011ε,有()()()()cx v x v x v x v x v p n n p n n n ε<+=++++++++ 121)(;取{},,m ax 10N N N =当I x N p N n ∈∈>∀,,有()()()()()()x u x u x u x u x u x u p n n n p n n n +++++++++≤++ 2121()()()x v x v c p n n ++++< 1εε=⋅<cc从而函数项级数()x u n ∑在区间I 绝对一致收敛.推论3 比较极限法若有两个函数级数()∑∞=1n n x u 和()())0(1≠∑∞=x v x v n n n ,且有()()k x v x u nn n =∞→lim且+∞<≤k 0,若级数()x v n ∑在区间I 绝对一致收敛,则函数()∑x u n 在区间I 也绝对一致收敛.证明 由()()k x v x u nn n =∞→lim且+∞<≤k 0,即,,00N n ∈∃>∀ε当I x N n ∈>,有()()0ε<-k x v x u n n 使()()c k x v x u n n =+<0ε且00>+=εk c .即N n >∀及I x ∈有()()x v c x u n n <,又级数()x v n ∑在区间I 绝对一致收敛,由比较判别法定理7知级数()∑∞=1n n x u 在区间I 绝对一致收敛.推论4[]4 有函数列(){}x u n 在区间I 上一致有界,且函数级数()∑∞=1n n x v 在区间I 绝对一致收敛,则函数级数()()x v x u n n ∑在区间I 上也绝对一致收敛.证明 由已知函数列(){}x u n 在区间I 上一致有界,即I x N n M ∈∈∀>∃,,0有()M x u n ≤,使当I x N n ∈∈∀,有()()()x v M x v x u n n n ≤⋅,又因函数级数()∑x v n 在区间I 绝对一致收敛,由比较判法定理7知, 函数级数()()x v x u n n ∑在区间I 上绝对一致收敛.例5 若函数级数()()x c x a n n ∑∑,在区间I 一致收敛,且I x N n ∈∈∀,,有()()()x c x b x a n n n ≤≤,则函数项级数()x b n ∑在区间I 上一致收敛.证明 由条件函数()()x c x a n n ∑∑,在区间I 一致收敛,则级数()()()∑-x a x c n n 在区间I 上一致收敛.又I x N n ∈∈∀,有()()()x c x b x a n n n ≤≤,故()()()()x a x c x a x b n n n n -≤-≤0且级数()()()∑-x a x c n n 在区间I 绝对一致收敛,由定理8知,级数()()()∑-x a x b n n 在区间I 上一致收敛.又已知()x a n ∑在区间I 一直收敛,从而级数()()()()()[]()()()()x a x a x b x a x a x b x b nnnnnnn∑∑∑∑+-=+-=在区间I 上一致收敛.推论5 设函数项级数()∑x u n 定义在数集]2[上,()∑x v n 在上一致收敛且()0>x v n ,若对一切D x ∈,有()()x v x u n n ≥, ,2,1则函数项级数()∑x u n 在D 上一致收敛.定理9 逼近法[]5若对任意的自然数n 和D x ∈,都有()()()x w x u x v n n n ≤≤成立,又()x v n ∑和()x w n ∑都在数集D 上一致收敛于)(x S ,则()x u n ∑也在D 上一致收敛于)(x S .证明 设()()x v x V nk k n ∑==1,()()x u x U nk k n ∑==1,()()x w x W nk k n ∑==1因为D x N n ∈∀∈∀+,都有()()()x w x u x v n n n ≤≤,所以D x N n ∈∀∈∀+,有()()()x W x U x V n n n ≤≤.又()x v n ∑,()x w n ∑在区间D 上一致收敛于)(x S ,即+∈∃>∀N N ,0ε,当N n >时,对一切D x ∈∀有()()()εε+<<-x S x V x S n 及()()()εε+<<-x S x W x S n ;所以+∈∃>∀N N ,0ε,当N n >时,对一切D x ∈∀有()()()()()εε+<≤≤<-x S x W x U x V x S n n n .由函数项级数一致收敛定义知, ()x u n n ∑∞=1在D 上也一致收敛于)(x S .定理10 由有性质判别若()x u n ∑和()x v n ∑在点集D 上一致收敛,则[]∑±)()(x v x u nn在D 上也一致收敛证明 由()x u n ∑和()x v n ∑均在点集D 上一致收敛知,对N ∃>∀,0ε(自然数),使 得当N n ≥时,对∀自然数p 和x 有()()()ε<+++++x u x u x u p n n n 21 ()()ε<++++++x v x v x v p n n n 21)(所以 ()()()()()())()()(2211x v x u x v x u x v x u p n p n n n n n ++++++++++++()()()+++≤+++x u x u x u p n n n 21()()x v x v x v p n n n ++++++ 21)(εεε2=+<由函数项级数一致收敛的Cauchy 收敛准则知,[]∑±)()(x v x u nn在D 上也一致收敛定理11 Dini 定理设()()()() ,2,10,0=≤≥n x u x u n n 在[]b a D ,=上连续,又()x u n ∑在[]b a ,上收敛于连续函数,则函数项级数()x u n ∑在[]b a ,一致收敛.使用步骤:⑴判定()0≥x u n 且连续;⑵求和函数)(x S ;⑶判定求和函数)(x S 在[]b a ,上连续.Abel 引理定理12 Abel 判别法[]1 证明推论6 设函数项级数()x u n ∑在D 上一致收敛,函数()x g 在D 上有界,则()()x u x g n ∑在D 上一致收敛.证明 因为()x g 在D 上有界,所以,0>∃M 使()M x g ≤,对D x ∈∀成立.因()x u n ∑在D 上一致收敛,,0,,0>∃>∀∴p N ε使当N n >,时有()Mx u pn nk k ε<∑+=,对D x ∈∀成立,此式表明()()()()εε=⋅<<∑∑+=+=MM x u x g x u x g pn nk k pn nk k .由Cauchy 准则知()()x u x g n ∑在D 上一致收敛.定理13 Dirichlet 判别法[]1设(i )()x u n ∑的部分和函数列()()x u x s nk k n ∑==1在I 上一直致有界;(ii )对每一个I x ∈,()x v n 单调; (ⅲ)在I 上()()∞→→n x v n 0,则级数和()()x u x v n n ∑在I 上一致收敛.证明 充分性 由(i )∃正数M ,对一切I x ∈,有()M x s n ≤,因此当为任何正整数p n , 时()()()()()M x s x s x u x u x u n p n p n n n 221≤-=++++++ ,对任何一个I x ∈,再由(ii )及Abel 引理,得到 ()()()()()x v x v M x v x v x v p n n p n n n ++++++≤+++22)(121 .再由(ⅲ)对,0,0>∃>∀N ε当N n >时,对一切I x ∈,有()ε<x v n ;所以()()()()εεεM M x v x u x v x u p n p n n n 6)2(211=+<++++++于是由一致收敛的Cauchy 准则级数()()x u x v n n ∑在I 上一致收敛.注:事实上必要性也成立,即已知()()x u x v n n ∑在I 上一致收敛,可推出(i )(ii )(ⅲ)成立,这里不再赘述.例6 若数列{}n a 单调且收敛于0,则级数∑nx a n cos 在[]()πααπα<<-02,上一致收敛.证明 由()π2,0,2sin221sin cos 211∈⎪⎭⎫ ⎝⎛+=+∑=x x x n kx nk 得 在[]απα-2,上有212sin 21212sin21212sin 221sin cos 1+≤+≤-⎪⎭⎫ ⎝⎛+=∑=αx x x n kx nk ,所以级数∑nx cos 的部分和函数列在[]απα-2,上一致有界,于是令()()nnnax v nx x u ==,cos ,则由Dirichlet 判别法可得级数∑nx a n cos 在[]()πααπα<<-02,上一致收敛.定理14 积分判别法[]4设()y x f ,为区域(){}+∞<≤∈=y D x y x R 1,|,上的非负函数, ()x u n ∑是定义在数集D 上的正项函数级()()n x f x u n ,=,如果()y x f ,在[)+∞,1上关于y 为单调减函数,若含参变量反常积分()⎰+∞1,dy y x f 在数集D 上一致收敛,则()x u n ∑在数集D 上一致收敛. 证明 由()⎰+∞1,dy y x f 在数集D 上一致收敛,对0>∀ε,∃一个N ,当N n >时,对一切自然数p 和一切D x ∈,有()ε<⎰+pn ndy y x f ,.由()()()<+++++x u x u x u p n n n 21()ε<⎰+pn ndy y x f ,,所以()x u n ∑在数集D 上一致收敛.例7 设()∑∞=-⋅=1n nx e n x S ,证明()x S 在区间()+∞,0连续.证明 首先对任意取定一点()+∞∈,00x ,都存在0>δ,使得[)+∞∈,0δx ,我们只要证明()x S 在0x 即可.令()yx e y y x f -⋅=,,[)+∞∈,δx ,由()δy yx e y e y y x f --⋅<⋅=,,[)+∞∈,δx ,并且无穷级数dy ey y ⎰+∞-⋅δδ1收敛,所以含参积分dy e y y ⎰+∞-⋅δδ1在[)+∞∈,δx 上一致收敛.又因为()()()()⎭⎬⎫⎩⎨⎧>+∞<≤=∈<-=-δ1,0|,,,01,y x y x R y x yx e y x f yx y 即对任意固定[)+∞∈,δx ,()yx e y y x f -⋅=,关于y 在区间⎪⎭⎫⎢⎣⎡+∞,1δ上是单调递减的,由定理14知,函数级数∑∞+⎥⎦⎤⎢⎣⎡=-⋅11δn nxen 在区间[)+∞∈,δx 上是一致收敛的.利用函数项级数的性质可得, ()∑∞+⎥⎦⎤⎢⎣⎡=-⋅=11*δn nxe n x S 在区间[)+∞∈,δx 连续,从而()()x S e n x S n nx *11+⋅=∑=-δ在区间[)+∞∈,δx 也连续,所以()x S 在0x 连续,由0x 在()+∞,0的任意性可知, ()x S 在()+∞,0上连续.含参变量无穷积分和函数项级数都是对函数求和的问题,前者连续作和,后者离散作和,因此它们的一致收敛性定义及判别法都是平行的,而且所表示的函数分析性质(如连续、可微、可积性)也一致,在此不在赘述.由定理14,我们可利用积分的便利条件判断某些数项级数的一致收敛,也可用函数项级数的一致收敛性判别某些含参变量积分一致收敛.定理15 函数列(){}x u n 在[]b a ,上连续且单调,级数()∑a u n 和级数()||b u n 收敛,则级数()x u n ∑在[]b a ,上一致收敛.证明 级数()∑a u n 和()∑b u n 收敛.则()∑a u n +()∑b u n 收敛.由(){}x u n 在[]b a ,上连续且单调,则()||x u n <()||a u n +()||b u n ,由M 判别法知,级数()x u n ∑在[]b a ,上一致收敛.定理16[]6 设函数()x u n ,() ,2,1=n 在[]b a ,上可微(其中b a ,为有限数),且满足如下条件:(i )函数项级数()x u pn n k k∑++=1在[]b a ,上收敛;(ii )存在常数M ,使得对任意的自然树1≥m ,任意的实数[]b a x ,∈,恒有()M x u n<∑/,则函数项级数()x u n n ∑∞=1在[]b a ,上一致收敛.证明 对0>∀ε,因为b a ,为有限数,所以存在自然数k ,使得()εεk a b k a +≤≤-+1,我们在闭区间[]b a ,上插入分点i a x a x i ε+==,0,()1,2,1-=k i ,b x k =,于是,闭区间被分成k 个小区间[]i i x x ,1-,()k i ,2,1=.从而有[]b a ,=[]i i ki x x U ,11-=.又因为函数项级()x u n n ∑∞=1在[]b a ,上是收敛的,故对任意i x ()1,2,1-=k i ,存在自然数()i x N ,ε,使得()i x N n ,ε>时,对任意p ,有()ε<∑++=pn n j ijx u 1.于是,对任意[]i i x x x ,1-∈,在自然数()i x N ,ε,使得()1,->i x N n ε时, 对任意p ,有()()()()ipn n j jp n n j p n n j ijjpn n j jx u x u x u x u ∑∑∑∑++=++=++=++=+-=1111()()()∑∑∑++=++=++=+-≤pn n j ijpn n j pn n j ijjx u x u x u 111()εε+-≤-++=∑11/i pn n j jxx u()()εεε+--≤-=+=∑∑11/1/i nj j pn j j x x u u()()εεε+-+≤-=+=∑∑11/1/||i nj jpn j jxx u u()ε12+≤M因此,对0>∀ε,存在自然数(){}1,,1,0|,m ax 0-==k i x N N i ε,使得当0N n >时,任意[]b a x ,∈,任意自然数p ,均有()ε)12(1+<∑++=M x u pn n j j.即函数项级数()x u n n ∑∞=1在[]b a ,上一致收敛.定理17 设()x u nn ∑为定义在数集D 上的函数项级数,D x ∈0为()x u nn ∑的收敛点,且每个()x u n 在上一致可微, ()x u nn ∑/在上一致收敛,记()=x S ()x u nn ∑.定理18 设函数列(){}x u n 在闭区间[]b a ,上连续可微,且存在一点[]b a x ,0∈,使得()x u n n ∑∞=1在点0x处收敛; ()x u n n ∑∞=1/在[]b a ,上一致收敛,则函数项级数()x u n n ∑∞=1在[]b a ,上一致收敛.证明 已知()x u n n ∑∞=1在点[]b a x ,0∈处收敛, ()x u n n ∑∞=1/在[]b a ,上一致收敛.即对()εε1,N o ∃>∀,使得()ε1N n ≥时,对+∈∀N p ,有()ε<∑+=+=p n k n k kx u 1成立.对[]b a x ,∈∀,有()ε<∑+=+=p n k n k k x u 1/.根据拉格朗日中值定理,[]b a x N p N n ,,,∈∀∈∀>∀+,有()()∑∑++=++=-pn n k pn n k kkx u x u 11≤()∑+=+=p n k n k k u 1/ξ0x x -<()a b -ε,(ξ介于x 和0x 之间).于是[]b a x N p N n ,,,∈∀∈∀>∀+,()()()()∑∑∑∑++=++=++=++=+-≤pn n k kp n n k p n n k kkpn n k kx u x u x u x u 1111||()()1+-=+-≤a b a b εεε.即()x u n n ∑∞=1在[]b a ,上一致收敛.引理2 若函数项级数()x u n ∑在[]b a ,上收敛,()()N n b x u n n bx ∈=-→lim 则()x u n ∑在[]b a ,一致收敛的必要条件是()x b n n ∑∞=1收敛.证明 由函数项级数的柯西收敛准则有,[]b a x N p N n N N ,,,,,0∈∀∈∀>∀∈∃>∀++ε,有()()()ε<+++++x u x u x u p n n n 21. ()4又()n n bx b x u N n =∈∀-→+lim ,,在(4)的两端取极限,令-→b x 得ε≤+++++p n n n b b b 21,于是由Cauchy 收敛准则知()x b n n ∑∞=1收敛.(①若()n n x b x u b =+∞=+∞→lim ,,则()x u n ∑在[)+∞,a 一致收敛的必要条件是()x b n ∑收敛.②若(){}x u n 在[)b a ,连续,则()x u n ∑在[)b a ,一致收敛()b u n ∑⇒收敛.)定理19 利用内闭一致收敛判别[]7若函数项级数()x u n ∑在[)b a ,内闭一致收敛,则()x u n ∑在[]b a ,一致收敛⇔{}[)b x b a x n n n =⊂∀+∞→lim ,,,级数()n n x u ∑收敛.证明 必要性,充分性用反正法,这里不再赘述.注:仅由闭一致收敛性和引理的必要条件(集函数级数在区间端点收敛或端点的极限级数收敛)是不能得到函数级数在区间一致收敛的.例8 证明∑∞=1sin n n nx在()π2,0内闭一致收敛,且在端点收敛,但在()π2,0不一致收敛. 证明 ∑<<∀nx sin ,0,πεε的部分和函数列(){}x S n 在[]επε-2,一致有界,而⎭⎬⎫⎩⎨⎧n 1在[]επε-2,一致收敛于0,于是由Dirichlet 判别法知, ∑nnx sin 在[]επε-2,一致收敛,从而在()π2,0内闭一致收敛.当0=x 或π2时,级数显然收敛.取()+∈∈=N n nx n ,2,02ππ,则0lim =∞→n n x 但()∑∑∑∞=∞==⋅=1112sin n n n n n nn n x u π发散,故由定理19知, ∑∞=1sin n n nx在()π2,0不一致收敛. 推论7 若()x u n ∑在[)+∞,a 内闭一致收敛,则()x u n ∑在[)+∞,a 一致收敛的充要条件是{}[)+∞=+∞⊂∀∞→n n n x a x lim ,,, ()x u n ∑皆收敛.证明 和定理19类似,略.定理20[]7 设函数级数()x u n ∑在[)b a ,收敛,且满足引理2中必要条件,则()x u n ∑在[)b a ,一致收敛⇔[){}[)00lim ,,,,x x b a x b a x n n n =⊂∀∈∀∞→,()n n n x u ∑∞=1皆收敛.证明 必要性 用反证法.假设[]{}[]00lim ,,,,x x b a x b a x n n n =⊂∃∈∃∞→,而()n n n x u ∑∞=1发散.若a x =0或b x =0,则由定理20知不可;若()b a x ,0∈,则存在{}n x 的子列{}kn x 或00lim ,x x x x k k n k n =≥∞→或00lim ,x x x x k k n k n =≤∞→,于是由定理19知()x u n ∑在()b x ,0或()0,x a 在不一致收敛,从而在[)b a ,不一致收敛,矛盾.必要性获证.充分性 用反证法.设()x u n n ∑∞=1在[)b a ,不一致收敛,则由定理18的证明可得,{}[)b a x n ,⊂且[]b a x x n n ,lim 0∈=∞→而()n n n x u ∑∞=1发散,矛盾.推论8 设()x u n n ∑∞=1在[)+∞,a 收敛,且满足引理的必要条件,则()x u n ∑在[)+∞,a 一致收敛⇔[)+∞∈∀,0a x 或{}[)00lim ,,,x x a x x n n n =+∞⊂∀+∞=∞→,()n n n x u ∑∞=1皆收敛.证明 和定理20的类似,略.推论12[]4 设∑)(x u n 使定义在数集D 上的正项函数项级数,)(x u n ,),2,1( =n 在D 上有界,若D x n ∈∞→,时,1)()(1-+x u x u nn n 一致收敛于)(x q ,设{})(i nf x q q =,则当1>q 时,∑)(x un在D 上一致收敛.证明 由1>q ,D x n ∈∞→,时,1)()(1-+x u x u nn n 一致收敛于)(x q ,取10-<<∀q ε,11,N n N ≥∃时,对一切D x ∈,有ε<--+)(1)()(1x q x u x u nn n ,所以1)(1)()(1>->->-+εεq x q x u x u n n n ,取22,,1N n N q s ≥∃-<<ε,有sn n q 111+≥-+ε,取{}21,m ax N N N o =,当O N n >时,对一切D x ∈,有ss sn n nn n n q x u x u )1(111)()(1+=+>-+>+ε,因此)()1()(1x u n x u n n sn s ++≥,所以s S O N SOn sn M N x u N x u n O ≤≤)()(,由1>s 时,∑sSO nMN 收敛,由优级数判别法可知∑)(x u n 在D 上一致收敛.推论13 函数列{})(x u n 定义于数集D 上,且)(1x u 在D 上有界,若+∈∃N N 对一切的D x N n ∈∀>,,有1)()(1<≤+q x u x u n n ,则函数项级数∑∞=1)(n n x u 在D 上一致收敛.证明 不妨设对于+∈∀N n ,有q x u x u n n ≤+)()(1,即q x u x u n n )()(1≤+,则1=n ,q x u x u )()(12≤,假设当1-=k n ,111)()()(--≤≤k k k q x u q x u x u 成立,则当k n =,k k k q x u q x u x u )()()(11≤≤+也成立,故由数学归纳法得11)()(-≤n n q x u x u ,且)(1x u 在D 有界,即0>∃M ,对D x ∈,有M x u ≤)(1所以1)(-≤n n Mq x u ,又已知几何级数∑∞=1n n q 收敛,故级数∑∞=-11n n Mq收敛,由优级数判别法知∑∞=1)(n n x u 在D 上一致收敛.推论14 函数列{})(x u n 定义于数集D 上,且)(1x u 在D 上有界,若D x ∈∀,有1)()(lim1<=+∞→l x u x u n n n ,则函数项级数在D 上一致收敛.证明 因为1)()(lim1<=+∞→l x u x u n n n .即1-=∃q o ε )1(<<q l ,+∈∃N N ,对一切D x N n ∈∀>,,有1)()(1-≤-+q l x u x u n n ,即q x u x u n n ≤+)()(1,由推论10得函数项级数∑∞=1)(n n x u 在数集D 上一致收敛.例11 判断函数项级数∑∞=1!n nn xn n 在[)+∞,1上一致收敛性. 证明 因为11)(1≤=xx u , 且 11111lim !)1()!1(lim )()(lim 111<<=⎪⎭⎫ ⎝⎛+=++=∞→++∞→+∞→e xe x n n n x n x n n x u x u nn n n n n n nn n ,由推论13可知函数项级数∑∞=1!n nn x n n 在[)+∞,1上一致收敛. 定理23[]8 (根式判别法)设∑)(x u n 为定义在数集D 上的函数项级数,记n n n x u x q )()(=,若存在正整数N ,正数q ,使得1)(<≤q x u n n 对一切的N n >,D x ∈成立,则函数项级数∑)(x u n 在D 上一致收敛.证明 由定理条件n n q x u ≤)(对一切N n >,D x ∈成立,而几何级数∑n q 收敛,由优级数判别法知,函数项级数∑)(x u n 在D 上一致收敛.推论15[]8 (根式判别法的极限形式)设)(x u n 为定义在数集D 上的函数列,若n n x u )(一致收敛于)(x q ,且1)(<≤q x q {}1)(sup (<∈x q Dx ,即1)()(lim <≤=∞→q x q x u n n n ,对D x ∈∀成立,则函数项级数∑)(x u n 在D 上一致收敛.证明 由n n x u )(一致收敛于)(x q )(∞→n ,取q -<<10ε,O N ∃,当o N n >时,对一切D x ∈有ε<-)()(x q x u n n ,所以εε+<+<q x q x u n n )()(,所以n n q x u )()(ε+<,又因为1<+εq ,由优级数判别法知∑)(x u n 在D x ∈上一致收敛.推论51' 设()∑x u n 为定义在数集D 上的正项函数项级数,记()n n n x u q =,若()1sup lim <=∈∞→q x q n Dx n ,则函数项级数()∑x u n 在D 上一致收敛.证明 由假设()1sup lim <=∈∞→q x q n Dx n ,则存在正整数N ,使得当N n >时,有()1<≤q x q n ,则对任意的N n >,D x ∈∀有 ()n n q x u ≤,而几何级数∑n q 收敛,由函数项级数一致收敛性优级数判别法知()∑x u n 在D 上一致收敛,即得证.例12 函数项级数∑nx n在()()+∞⋃-∞-,,r r 上一致收敛,(其中r 是实常数且1>r ),因为()xnx u q nn n n ==,设()()+∞⋃-∞-=,,r r D ,()11lim sup lim <==∞→∈∞→r r n x q nn n D x n ,由推论51'得函数项级数∑nx n在()()+∞⋃-∞-,,r r 上一致收敛. 推论16[]8 有函数项级数()∑x u n ,若对D x ∈∀,有()1lim <=∞→l x u n n n ,则函数项级数()∑x u n 在D 上一致收敛.证明 因()1lim <=∞→l x u n n n ,则1-=∃q o ε,1<<q l ,+∈∃N N ,D x ∈∀,有()l q l x u nn -<-,即()1<<q x u n n ,从而()n n q x u <依定理8得函数项级数()∑x u n 在D上一致收敛.例13 判别函数项级数nn x ∑⎪⎭⎫⎝⎛+12在R 上的一致收敛性.证明 因()1012lim lim 12<=+=∞→+∞→n xn nnn x n ,依推论15函数项级数nn x ∑⎪⎭⎫⎝⎛+12在R 上一致收敛.定理24[]8 (对数判别法)设()x u n 为定义在D 上的正的函数列,若()()x p nx u n n =-∞→ln ln lim 存在,那么①若D x ∈∀,()1>>p x p 对,则函数项级数()∑x u n 一致收敛;②若对D x ∈∀,()1<<p x p ,则函数项级数()∑x u n 不一致收敛.证明 由定理条件知,对任意0>ε,N ∃,使得对一切N n >,有()()()εε+<-<-x p nx u x p n ln ln , 即()()()εε-+<<x p n x p n x u n 11,则当()1>>p x p 对D x ∈∀成立时,有()pn n x u 1<,而p 级数∑p n 1当1>p 时收敛,由优级数判别法知函数项级数()∑x u n 在D 上一致收;而当()1<<p x p ,对D x ∈∀成立时,有()p n n x u 1>,而p 级数∑p n1当1<p 时发散,从而函数项级数()∑x u n 不一致收敛.定理25 设函数项级数()∑x u n ,()∑x v n 都是定义在数集D 上的正项函数项级数,当D x ∈,∞→n 时,()()x v x u n n 一致收敛于()x q ,设(){}1inf q x q D x =∈,(){}2sup q x q Dx =∈;①当+∞<=21,0q q 时,若()∑x v n 在D 上一致收敛,则()∑x u n 在D 上也一致收敛. ②当+∞=>21,0q q 时,若()∑x u n 在D 上一致收敛,则()∑x v n 在D 上也一致收敛. ③当+∞<>21,0q q 时,()∑x u n 和()∑x v n 在数集D 上同时一致收敛,或同时不一致收敛. 证明 由当D x ∈,∞→n 时,()()x v x u n n 一致收敛于()x q ,则任取0>ε,总+∈∃N N ,当N n >时,对一切D x ∈有()()()ε<-x q x v x u n n ,得到()()()()εεεε+<+<<+-≤+-21q x q x v x u x q q n n 即()()()()()x v q x u x v q n n n εε+<<-21.①当+∞<=21,0q q 时,由上式的右半部分可知若()∑x v n 在D 上一致收敛,则()∑x u n在D 上也一致收敛;②当+∞=>21,0q q 时,由上式左半部分可知若()∑x u n 在D 一致收敛,则()∑x v n 在D 上也一致收敛;③当+∞<>21,0q q 时,取1q <ε易知()∑x u n 和()∑x v n 同时一致收敛或同时不一致收敛.Lipschitz (莱布尼茨)型函数项级数一致收敛判别[]5定义4 设有函数项级数()()∑+-x u n n 11,其中()x u n ,(),,2,1 =n 是区间[]b a ,上的连续函数()0≥x u n ,且函数列(){}x u n 在区间[]b a ,上单调减少收敛于0,则称这类级数为Lipschitz 型函数项级数.定理26 若()()∑+-x u n n 11,[]b a x ,∈为L 型函数项级数,则①此级数在[]b a ,上一致收敛;②()()()()()()()()()x u x u x u x u x u n p n p n n n n n pn n k k k 211111231211≤-++-+-=-+++++++++=+∑ . 证明 ①因为()x u n 是[]b a ,上的连续函数,函数列(){}x u n 在区间[]b a ,上单调减少且收于连续函数()0=x u .所以()()x u x u k k 1+-在[]b a ,连续非负,而()()()[]()x u x u x u x u n k k k n 1111--=-∑-=+,由Dini 定理知函数项级数()()[]()x u x u x u n k k 111--∑∞=+在区间[]b a ,一致收敛于0,从而函数列(){}x u n 在[]b a ,一致收敛于0.又()⎩⎨⎧=+==+-+-=-∑==k n k n nk k 2,012,111111111,所以()1111≤-∑=+nk k ,故()∑=+-n k k 111一致有界,由Dirichlet 判别法知交错函数项级数()()∑+-x u n n 11在区间[]b a ,上一致收敛.②由①得()()∑+-x u n n 11一致收敛,设()()()x s x u n n =-∑+11,于是()()()()()()()()x s x s x s x s x s x s x u n p n n p n pn n k k k -+-==-++++=+∑111()()()()()()()()()()().211x u x u x u x u x u x r x r x s x s x s x s n n n p n n p n n n p n =+≤+≤+=-+-≤+++++例14 试证()∑+--211x n n 在区间[]b a ,一致收敛.证明 ⎭⎬⎫⎩⎨⎧+21x n 是任意闭区间[]b a ,上的连续函数列且[]b a x ,∈∀,()()x u x u n n ≤≤+10,()0lim =∞→x u n n 由定理26知函数项级数()∑+--211x n n 在[]b a ,上一致收敛.推论17 设函数列(){}x S n 在[]b a ,上收敛于)(x S ,若()x S n 可写成L 型函数项级数的部分和,则函数列(){}x S n 在上一致收敛于)(x S .证明 设有L 型函数项级数()()∑+-x u n n 11一致收敛于()x u ,[]b a x ,∈而()()()x u x S k n k k n ∑=+-=111,则对[]b a x ,∈∀,都有()()()()()x S x S x u x u n n nk k k n ==-=∞→=+∞→∑lim 1lim 11,即()()x S x u =,故函数列(){}x S n 在[]b a ,上一致收敛于)(x S .例15 证明()∑-x nn11在[)+∞,δ上一致收敛. 证明 因为[)+∞∈∀,δx ,()x xn n 1110≤+≤,01lim =∞→x n n.由②[)+∞∈∀,δx ,+∈∀N p 有()()()δn x u x u n pn n k k K2211≤≤-∑++=,由δn 2和x 无关且02lim =∞→δn n 故()()εδ<≤-∑++=n x u pn k n k k211,由Cauchy 准则证毕.定理27[]9 利用结论:设幂级数∑∞=1n n n x a 的收敛半径0>R ,则①当∑∞=1n nn R a (或()∑∞=-1n nn R a )收敛时,∑∞=1n n n x a 在[]R ,0或()0,R -一致收敛;②∑∞=1n nn x a 在(]R R ,-内一致收敛,当且仅当∑∞=1n n n x a 在[]R R ,-上一致收敛.注:1 Cauchy 准则和M 判别法比较实用一般优先考虑;2 Cauchy 准则、M 判别法、放大法要实现对函数项级数一致收型性的判别,均要对一定的表达式进行有效是我放大.三 非一致收敛性的判别 1 利用非一致收敛的定义定义3,略.例16 讨论函数项级数()[]()∑++-111nx x n x在()+∞∈,0x 是否一致收敛.解 ()()[]()()111)11111(11111+-=+-+-=++-=∑∑==nx kx x k kx x k x x s nk nk n当()+∞∈,0x 时,有()()1lim ==∞→x s x s n n .取o ε使210≤<o ε,无论n 多大只要nx 1=',就有()()o n n n s n s x s x s ε≥=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛='-'2111,故()[]()∑++-111nx x n x 在()+∞,0上非一致收敛.2 利用确界原理的逆否命题定理28 若函数项级数()∑x u n 在数集D 上非一致收敛的充要条件是()0sup lim ≠∈∞→x R n Dx n .证明 它是确界原理的逆否命题,故成立.例17 函数项级数()∑x u n 的部分和函数为()xx x S nn --=11,讨论()∑x u n 在()1.1-上是否一致收敛.证明 部分和函数()x x x S n n --=11,当1<x 时,()(),11lim xx S x S n n -==∞→又当∞→n时,()()()()∞→⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫⎝⎛+≥-=----∈11,11,11111supsup n nnx n x n n n n nn n x x x S x S ,故()∑x u n 在()1.1-内非一致收敛.注:极限函数知道时值得用3 利用定理5的逆否命题定理29 设()()x S x u n =∑,若存在{}D x n ⊂使得()0lim ≠∞→n n n x r ,则()∑x u n 在D 上不一致收敛.证明 略.注:此定理比较实用.4 利用Cauchy 准则逆否命题定理30 函数项级数()∑x u n 在区间D 上非一致收敛的充要条件是存在0>o ε,+∈∀N N ,N n o >∃,D x ∈'∃,+∈N p 使得()opn n k kx u ε≥'∑++=1证明 它是Cauchy 准则的逆否命题,故成立. 例18 讨论∑nnxsin 在[]π2,0=D 上的一致收敛性. 解 取21sin 31=o ε,对+∈∀N N ,N n o >∃,1+=o n p ,及()[]π2,0121∈+=oo n x 使()()()()()1212sin121122sin 21121sin 11++++++++++++=-+o o o o o o o o o o n p n n n n n n n n n n x s x s o o ⎪⎪⎭⎫ ⎝⎛++++++>121211121sin o o o n n n 21sin 31>o ε= 故∑nnxsin 在[]π2,0=D 上非一致收敛. 注:该类型关键是要找出o x 和o n 及p 之间的关系,从而凑出o ε,该类型题也有一种简便方法,即取1=p 能适用于很多例题.此方法比较实用,优先考虑.推论18 函数列(){}x u n 在上非一致收敛于0,则函数项级数()∑x u n 在数集D 上非一致收敛.证明 它是推论1的逆否命题,故成立. 例19 设()()()()12sin 1212cos +⋅++=n n x n n n x u n ,()∞∞-∈,x .讨论函数项级数()∑x u n的一致收敛性.解 取()12+=n n x n ,则()()1s i n 12c o s lim 0lim +=-∞→∞→n x u n n n n ,此极限不存在,所以(){}x u n 在定义域内非一致收敛于0,则()∑x u n 在()∞∞-∈,x 内非一致收敛.推论19[]9 若函数项级数()∑x u n 在区间D 上逐点收敛,且在区间D 中存在一点列{}n x ,使()0lim ≠∞→n n n x u ,则函数项级数()∑x u n 在区间D 上非一致收敛.例20 讨论∑⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+-nx n x e n 11在()+∞,0上的一致收敛性. 解 因为()0.,,0a x ∃+∞∈∀使a x ≤,有ax nx e n a e nx n x e n 222211≤≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+-,知∑⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+-nx n x e n 11在()+∞,0上非一致收敛. 5 利用求极值的方法定理31 ()()∑∞+==1n k kn x u x R ,若()0sup lim ≠∈∞→x R nDx n ,则()∑x u n 在D 上不一致收敛.例21 证()∑-n n x x 1在[]1,0上处处收敛,但不一致收敛.证明 因为()∑∑∑-=-n n n n x x x x 21,对[)1,0∈x ,∑n x 和∑n x 2都收敛,所以()∑-nnx x 1收敛,1=x 时()01=-∑nnx x 收敛,故()∑-nnx x 1在[]1,0上处处收敛;而()∑---=++x x x x x R n n n 11221,所以[]()22211,01111111sup ⎪⎭⎫⎝⎛--⎪⎭⎫⎝⎛--⎪⎭⎫⎝⎛-≥++∈n n n n x R n n n x ,又+∞=⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫⎝⎛-++∞→22211111111lim n n n n n n n ,故()∑-n n x x 1在[]1,0非一致收敛. 注:极限函数知道时,可考虑用.6 利用一致收敛函数列的一个性质判别[]10引理2 若连续函数列(){}x f n 在区间D 上一致收敛于()x f ,则D x o ∈∀,{}D x n ⊂∀,o n n x x =∞→lim ,有()()o n n n x f x f =∞→lim证明 由(){}x f n 在D 上一致收于()x f ,即有()()0sup lim =-∈∞→x f x f n Dx n ,D x o ∈∀,{}D x n ⊂∀:o n n x x =∞→lim ,有()()()()x f x f x f x f n Dx n n n -≤-∈sup ,得()()0lim =-∞→x f x f n n n .根据连续函数列(){}x f n 在区间D 上一致收敛于()x f ,则()x f 也必在D 上连续,从而()()o n n n x f x f =∞→lim .定理32 连续函数项级数()∑x u n 在区间D 上逐点收于)(x S ,且D x o ∈∃,{}D x n ⊂∃o n n x x =∞→lim ,有()()o n n n x S x S ≠∞→lim 则函数项级数()∑x u n 在区间D 上非一致收敛于)(x S .例22 讨论∑+221xn x在()+∞∞-,上一致收敛性. 解 显然()∑x u n 在()+∞∞-,上逐点收,且每一项都在()+∞∞-,上连续,取() ,2,11==n n x n ,则0lim =∞→n n x .再设()221x k x x u k +=,由定积分概念 ()()∑∑=∞→=∞→+=nk nk nn nk n k n x u 12111lim lim()∑=∞→+=n k n k n n 12111lim dx x ⎰+=1021110arctgx = 4π=()00=≠s故知∑+221x n x在()+∞∞-,上非一致收敛.推论20 设连续函数列(){}x S n 在区间D 上逐点收敛,且在D 中存在数列{}n a 和{}n b 满足条件①o n n n n x b a ==∞→∞→lim lim ,()D x o ∈;②()A a S n n n =∞→li m ,()B b S n n n =∞→lim ,而B A ≠则(){}x S n 在D 上不一致收敛.例23 讨论()n n n x x x S 2-=,() ,2,1=n 在[]1,0上的一致收敛性.解 (){}x S n 这个连续函数列在[]1,0上逐点收,先取1=n a ,() ,2,1=n ,则1lim =∞→n n a有()()011lim lim 2=-=∞→∞→n n n n n n a S ⑷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 通 过 判 断 部 分 和 数 列 的发 散 性 判 定 函数 项 级 数 的非 一致 收 敛 性
对 于 已知 s( ( ≤艇≤ ) ) a b 的情 况 , 应着 眼 于判 断数 列 { ( ) ( ≤c ) c } a ≤b 的收敛性 , 时可 通 过判 断部 此 分 和 数列 的发散 性判 定 函数项 级数 的非 一致 收敛 性 . 定理 1 ( 西 收敛准则 ) 函数 项 级 数 ∑ ( 在 区 间 , 一致 收敛 骨 Ve>0 了N∈N, Vn>N 柯 ) 上 , 当
则该 函数项 级 数在 ( , ) a b 内不 一致 收敛 .
证 明 : ∑ ( 在 c n b 点发 散 , 设 ) ∈[ , ] 即数项 级 数 ∑ u ( ) 散 . c发 因此 由定理 1知 : o , V NE N, j。 >0 对
当 V n>N 时 , VP 对 ∈N, 有
l +( )+ u +( )+… + 1+ ( )I £ lc 2 c 1 pc ≥ 0 " n
收 稿 日期 :0 2 0 . 5 2 1 . 4 0
作 者 简 介 : 会 萍 (9 4 ) 女 , 北 沧 州人 , 州 师 范 学 院物 理 与 电 子 信 息 系副教 授 石 16 . , 河 沧
由 于
I 1 + ( +“ + ( +… +Ⅱ + ( ] u +( ) 2 c +… +l + ( ) I [‘ 1 ) 2 ) P ) 一[ lc +u +( ) I P c ]
≥ I +( ) +( ) [ lc + 2 c +… +王 + ( ) I [ + ( + + ( +… +U + ( ] ‘ P c ] —l l ) 2 ) p ) I 所 以当 f —c < 且 ∈[ b 时 , I 口, ] I I +( [‘ 1 )+I +( )+… +u + ( ]I I I+( )+ I+( )+… +t + ( ) ‘ 2茹 p ) ≥ [‘ 1c ‘ 2c ‘ p c ]I
时 , VP∈N和 V 对 ∈, 有 I +( l )+“ +( 2 )+… + + ( )I e < 【
由此 可得 函数 项 级数及 数项 级数 非一 致 收敛 的充要 条 件 : 定 理 I: 函数项级 数 ∑ U ( 在 区 间 , 非 一致 收 敛铮 j£ >0 对 VNE N, V n>N 时 , VP∈N, n ) 上 0 , 当 … ' n / 2 ' n
+ n p l s + ≥ 0
由此 充 要条 件 可得 :
定 理 2 如果 函数 项级 数 ∑ / ( 的 每一 项 在 区间 [ , ] 连 续 , 2 ) , a b上 而该 级 数在 [ , ] 的 某一 点 发 散 , a b上

2 ・ 3
又因为 Ⅱ()( : ,, 在 ,n l …) :c 2 点连续, 所以壹 +() 在 : 点连续, 。 故对e , > , : 0对一
切满 足 I —c < 且 ∈ [ b 的 , 有 I n, ] 都
I “ +( [ l )+ u+( 2 )+… +l + ( ) 一 [ +( )+ +( )+… + + ( ) < e  ̄ p 戈 ] lc 2c n c ]I
函数项 级 数在 某一 区 间上一致 收敛 的定义 是 高等数 学 的重 要概 念 之一 . 而判 别 函数 项 级数 在 某一 区间 上非 一 致 收敛则 是 高 等数学 教学 的难 点之 一 . 很多 教材 和 文献 只介 绍 了判 别 函数 项级 数 一 致 收敛 的 常用 方 法 , 未 提及 如 何判 别非 一致 收敛 . 而 本文 利用 函数项级 数 一致 收 敛 的定 义及 其 性质 , 于某些 函数项 级 数 给 对 出了判 定其 在某 一 区 间内非一 致 收敛 的几种 比较 实用 的方法 .
石 会 萍
( 沧州 师范学 院 物理 与 电子信 息 系 , 河北 沧州 0 10 ) 60 1
摘 要 : 于 函数 项 级 数 非 一 致 收 敛 判 别 方 法 的 研 究 有 不 少 的 文 献 都 曾 讨 论 过 . 是 仅 仅 给 出几 种 方 关 但 法 , 不 能令 人 满 意 . 过 对 函数 项级 数 一 致 收 敛 的 定 义及 其 性 质 的 综合 归 纳 分 析 , 出 了判 定 某 些 函 还 通 给
j ∈,有 0 I +( 0 l )+H +( )+… + + ( )I s 2 0 4 口 o ≥ o
定 理 1: ” 数项 级 数 ∑ / 区间 , . t 在 上发 散铮 j£ >0 对 VNEN, V 1>N 时 , VPE N, o , 当 / , 对 有
数 项 级 数 在 某 一 区 间 内非 一 致 收敛 的 三 种 基 本 而 又 简便 的 方 法 , 解 决有 关 函数 项 级 数 非 一 致 收 敛 的 可 几 种 问题 , 有 一 定 的 学 术 参考 价 值 . 具
关键 词 : 函数 项 级 数 ; 分和 数 列 ; 一 致 收敛 ; 续 部 非 连 中 图 分 类 号 : 7 O13 文 献 标 识 码 : A 文章 编号 :0 52 1 (0 2 0 .0 30 2 9 .9 0 2 1 )30 2 .3
第2 8卷 第 3 期
21 02年 9月
沧 州师 范学 院学报
J u n lo a g h u No ma iest o r a fC n z o r lUnv ri y
Vo . 128, No. 3 S p. 0 2 e 2 1
函数 项 级 数 非 一致 收 敛 判 别 方 法 的归 纳 分析
相关文档
最新文档