微波水热法制备纳米二氧化钛
微波水热晶化制备纳米二氧化钛光催化剂及其性能研究

2006 年 2 月 Journal of Chemical Engineering of Chinese Universities Feb. 2006文章编号:1003-9015(2006)01-0138-04微波水热晶化制备纳米二氧化钛光催化剂及其性能研究种法国1, 赵景联1,2(西安交通大学 1. 化学工程系, 2. 环境工程系, 陕西西安 710049)摘要:以TiCl4为原料,采用微波水热合成法制备了锐钛型纳米TiO2光催化剂。
利用XRD、TEM、TG-DTA等技术对产物进行了表征,并以制备的TiO2为催化剂,通过酸性品红水溶液的光催化降解实验考察了该催化剂的光催化反应性能。
结果表明:微波场作用使反应体系均匀迅速的升温,加快了水热晶化反应速度,在20×105 Pa的微波水热条件下Ti(OH)4水热晶化2.5 h后,产物主要以锐钛型存在,晶粒粒径小于10 nm。
与常规水热合成时间相比,微波水热条件下在较短的晶化时间内形成了锐钛型TiO2,光催化降解品红的实验也证明微波水热条件下制备的催化剂具有较高的光催化性能。
关键词:微波水热法;二氧化钛;水热合成;光催化中图分类号:TQ426.81 文献标识码:AStudy on Nanocrystal Titanium Dioxide Catalyst Prepared byMicrowave-Hydrothermal MethodCHONG Fa-guo1, ZHAO Jing-lian1,2(1. Department of Chemical Engineering, 2. Department of Environmental Engineering,Xi’an Jiaotong University, Xi’an 710049, China)Abstract:Using titanium tetrachloride as the raw material, the nano-crystal titanium dioxide was synthesized by microwave-hydrothermal method. All products were characterized by X-ray diffraction (XRD)、TG-DTA and transmission electron microscopy (TEM). Their catalytic capability was investigated by the degradation of acid-fuchsin. The results suggest that the microwave field makes the hydrothermal reaction system reaches a high temperature rapidly and uniformly, and crystallization is accelerated. When Ti(OH)4 is treated for 2.5h at 20×105 Pa in a microwave-hydrothermal vessel, the main crystalline phase of titanium dioxide is anatase and the particle size is under 10nm. Due to the generation of high temperatures rapidly in the presence of microwave, the crystallization under microwave-hydrothermal conditions is faster than that in the conventional hydrothermal method. The photocatalytic activity of these samples is high, which is proved by the degradation experiments of acid-fuchsin.Key words: microwave-hydrothermal method; titanium dioxide; hydrothermal synthesis; photocatalysis1前言二氧化钛具有特殊的物理化学特性及电子能带结构,光催化活性高,作为光催化材料广泛地应用于环境保护和污染治理的研究应用领域[1]。
溶胶-凝胶微波辅助水热处理合成纳米TiO2

半导体材料 ,从二 十世 纪初期就被用 于颜料_ l 1 、 防晒霜IJ 、油漆 等方面 。17 年 ,Fj h a 92 u si 和 i m H na od 发现 了TO在 紫外光 照射下光催 化降解水 i 中有机物的现象[ 5 ,此后 ,关于TO材料的研究 1 - [ i
金 项 目 (WJU1C 0 8 o S T 1X 5
第 1 期 21年 2 02 月
纳 米 科 技
Na o ce e & Na o e h l g n s inc n t c noo y
关键词 :溶胶 一 凝胶 ;微 波 ;水热 法 ;纳米TO i。
S l e e a a i n o no Ti e t d b ir wa e o -g lPr p r to fNa O2 Tr a e y M c o v Asit d dr t e m a sse Hy o h r l
闫浩然 ,汪建新 ,李辉 ,陈迪
( 西南交通大学材料先进技术教育部重点实验室 西南交通大学生命科学与工程学院,
四 川 成都 60 3) 10 1
摘
要 :以钛 酸 丁酯作 为前躯 体 ,采 用溶胶 一 凝胶 经微 波加 热 水热 处理 制备 纳 米二 氧化钛 ,通过
x 线衍射 (R ) 射 X D 、扫描 电镜 (E 、 高分辨 透射 电镜 ( T M)分析 研 究 了微 波加热 相 对 于传 S M) HR E 统加 热方 法的优 势 , 同时考察 了p 和 加热 时 间对二氧化 钛 晶型 的影响 。 H
收 稿 日期 :0 1 1— 9 2 1- 0 0 基 金 项 目 :7 国 家 重 大 科 学 研 究计 划 项 目 ( 号 93 编
水热法制备二氧化钛工艺流程

水热法制备二氧化钛工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!水热法制备二氧化钛工艺流程一、准备工作阶段。
在进行水热法制备二氧化钛之前,需要准备好所需的原料和设备。
实验三_水热法制备纳米二氧化钛

水热法制备纳米二氧化钛一、实验目的1、了解水热法制备纳米二氧化钛的原理、方法和操作2、掌握根据实验原理选择实验装置的一般方法。
选择理由:优势:直接制备结晶良好且纯度高的粉体,需作高温灼烧处理,避免形成粉体硬团聚,粒径分布均匀。
缺点:反应时间长、杂质离子难以除去、纯度不高。
二、实验原理TiO2在自然界中存在三种晶体结构:金红石型、锐钛矿型和板钛矿型,其中金红石型和锐钛矿型TiO2均具有光催化活性,尤以锐钛矿型光催化活性最佳,两种晶型结构如图1.1所示。
OTi图1 二氧化钛的晶体结构二氧化钛的用途极为广泛,目前已经用于化工、环保、医药卫生、电子工业等领域。
纳米二氧化钛具有良好的紫外线吸收能力,且具有很好的光催化作用,因而可以用做织物的抗紫外和抗菌的整理剂。
纳米二氧化钛制备原理如下:Ti(OC4H9)4+2H2O TiO2+4C4H9OH可分为两个独立的反应,即:Ti(OC4H9)4+xH2O Ti(OC4H9)4-x OH x+xC4H9OHTi(OC4H9)4-x OH x+Ti(OC4H9)4(OC4H9)4-x TiO x Ti(OC4H9)4-x+xC4H9OHa = 4.593Åc = 2.959ÅEg=3.1eVρ= 4.250 g/cm30212.6fG∆=-a = 3.784 Åc = 9.515ÅEg=3.3eVρ= 3.894 g/cm30211.4/fG kcal mol∆=-当x=4时水解完全,反应为可逆反应,因此在反应过程中保持足够量的水保证醇盐水解完全。
三、主要仪器与药品1.仪器磁力加热反应器,水热反应釜(60ml),250ml烧杯,100ml量筒,电子分析天平, pH试纸。
2.试剂钛酸丁酯(化学纯); 二乙醇胺、十二胺(化学纯); 氨水(稀释至30%)、无水乙醇(分析纯),去离子水。
四、操作步骤在盛有0.5g表面活性剂十二胺的烧杯中加入20ml二次蒸馏水, 在磁力搅拌下使之充分溶解(可以适当加热), 然后加入氨水调节pH值至10。
tio2纳米材料的制备与表征

tio2纳米材料的制备与表征制备和表征二氧化钛(TiO2)纳米材料是一项重要的科学任务,由于其广泛的应用领域,包括光催化、太阳能电池、光电器件、光致发光、药物载体和生物成像等。
下面将介绍一种常用的制备和表征TiO2纳米材料的方法。
制备目前,制备TiO2纳米材料的主要方法包括化学气相沉积(CVD)、溶胶-凝胶法、水热法、微波等离子体化学方法等。
这里我们以水热法为例。
水热法是一种在高温高压条件下,利用水作为溶剂,使原料在其中发生化学反应并形成结晶的方法。
制备TiO2纳米材料的水热法通常包括以下步骤:1.将一定量的钛酸丁酯(Ti(OC4H9)4)和适量的硝酸(HNO3)溶液混合,搅拌均匀。
2.将上述混合液转移到高压反应釜中,密封后置于烘箱中加热至指定温度(通常为150-250℃)。
3.在该温度下保持一定时间(例如1-10小时),使钛酸丁酯和硝酸发生水热反应,生成二氧化钛(TiO2)纳米颗粒。
4.待反应结束后,将反应釜自然冷却至室温,取出产物。
5.用去离子水冲洗产物,去除可能存在的杂质。
6.最后,将产物进行干燥,得到TiO2纳米材料。
表征为了确认制备得到的物质是否为TiO2纳米材料,以及其结构和形貌等性质,我们通常会使用一系列表征方法。
1.X射线衍射(XRD):XRD可以用于确定材料的晶体结构和相组成。
通过对比标准PDF卡片,可以确认制备得到的物质是否为TiO2纳米材料。
2.扫描电子显微镜(SEM)和透射电子显微镜(TEM):SEM和TEM可以用于观察材料的形貌和尺寸。
通过这些方法,我们可以了解到制备得到的TiO2纳米材料的形状、大小以及分布情况。
3.光电子能谱(XPS):XPS可以用于分析材料的化学组成和化学状态。
通过这种方法,我们可以确认制备得到的物质是否含有Ti、O元素,并得到它们的比例。
4.紫外-可见光谱(UV-Vis):UV-Vis可以用于研究材料的电子结构和光学性质。
通过这种方法,我们可以得到制备得到的TiO2纳米材料的吸收边和带隙等信息。
《2024年水热法制备不同晶粒尺寸的纳米二氧化钛》范文

《水热法制备不同晶粒尺寸的纳米二氧化钛》篇一一、引言纳米二氧化钛(TiO2)作为一种重要的功能性材料,因其独特的光学、电学、催化性能等,在许多领域有着广泛的应用。
制备高质量的纳米二氧化钛对于提高其性能和应用范围至关重要。
本文将介绍一种以水热法为基础的纳米二氧化钛制备方法,通过该方法可以制备出不同晶粒尺寸的纳米二氧化钛。
二、文献综述近年来,随着纳米技术的不断发展,纳米二氧化钛的制备方法日益丰富。
其中,水热法因其操作简便、成本低廉、可控制备等优点,受到了广泛关注。
水热法通过在高温高压的水溶液环境中进行化学反应,使原料发生溶解、重结晶等过程,从而得到纳米材料。
关于水热法制备纳米二氧化钛的研究已有很多报道,但关于晶粒尺寸控制的研究仍具有重要意义。
三、实验方法1. 原料与试剂本实验所需原料为钛源(如钛酸四丁酯)、去离子水、氢氧化钠等。
所有试剂均为分析纯,使用前未经进一步处理。
2. 水热法制备纳米二氧化钛(1)将一定量的钛源溶解在去离子水中,形成均匀溶液;(2)在搅拌条件下,加入适量的氢氧化钠溶液,调节溶液的pH值;(3)将溶液转移至高压反应釜中,加热至设定温度,保持一定时间;(4)反应结束后,冷却至室温,离心分离得到纳米二氧化钛产品。
四、结果与讨论1. 晶粒尺寸控制通过调整水热反应的温度、时间、pH值等参数,可以控制纳米二氧化钛的晶粒尺寸。
实验结果表明,随着反应温度的升高或反应时间的延长,晶粒尺寸逐渐增大。
此外,pH值的调节也会对晶粒尺寸产生影响。
当pH值较低时,晶粒尺寸较小;随着pH值的升高,晶粒尺寸逐渐增大。
2. 形貌与结构分析利用X射线衍射(XRD)、透射电子显微镜(TEM)等手段对制备的纳米二氧化钛进行表征。
XRD结果表明,所有样品均为锐钛矿型TiO2;TEM结果显示,通过调整制备参数,可以得到不同晶粒尺寸的纳米二氧化钛,且晶粒分布均匀。
3. 性能评价对不同晶粒尺寸的纳米二氧化钛进行性能评价,包括光催化性能、电学性能等。
水热法合成TiO2纳米粉体材料

实验仪器:
电子天平,不锈钢压力釜(高温型),恒温箱(带控温装置),离心机,X射线粉末衍射仪,扫描电子显微镜,玻璃仪器若干等。
实验试剂:
硫酸氧钛,硫酸钛,尿素,硝酸钡,无水乙醇等。
五、实验步骤(Procedure of experiment)
1、TiO2纳米粉的合成
将尿素加入到Ti(SO4)2水溶液中,搅拌至尿素完全溶解后,将溶液加入到高压釜中进行水热沉淀反应,填充度为80%。所得产物用去离子水反复洗涤,至滤液中不再检出SO42-,最后在不同温度下干燥若干小时得产物。实验条件:硫酸钛摩尔浓度为0.5M,尿素摩尔浓度为1.0M,用水热沉淀法在140~280℃保温2~12h。
2、在干燥前采用适当的方法将水脱除,避免由于水与颗粒形成氢键。
4、查阅资料比较水热法与溶剂热法合成纳米材料的异同。
水热法又称热液法,属液相化学法的范畴。是指在密封的压力容器中,以水为溶剂,在高温高压的条件下进行的化学反应。水热反应依据反应类型的不同可分为水热氧化、水热还原、水热沉淀、水热合成、水热水解、水热结晶等。其中水热结晶用得最多。它的原理:水热结晶主要是溶解———再结晶机理。首先营养料在水热介质里溶解,以离子、分子团的形式进入溶液。利用强烈对流(釜内上下部分的温度差而在釜内溶液产生)将这些离子、分子或离子团被输运到放有籽晶的生长区(即低温区)形成过饱和溶液,继而结晶。
6、数据处理(date processing)
(1)用X射线衍射法(XRD)确定产物的物相结构
编号
温度/℃
时间/h
编号
温度/℃
时间/h
1
150
6
4
210
微波水热法制备纳米二氧化钛

微波水热法制备纳米二氧化钛1.微波加热特性及作用机理微波加热是物质在电磁场中由介质损耗引起的体积加热,在高频变换的微波能量场作用下,分子运动由原来杂乱无章的状态变成有序的高频振动,从而使分子动能转变成热能,其能量通过空间或媒介以电磁波的形式传递,可实现分子水平上的搅拌,到达均匀加热,因此微波加热又称为无温度梯度的“体加热〞。
在一定微波场中,物质吸收微波的能力与其介电性能和电磁特性有关。
对于介电常数较大、有强介电损失能力的极性分子,与微波有较强的藕合作用,可将微波辐射转化为热量分散于物质中,因此在一样微波条件下,不同的介质组成表现出不同的温度效应,该特征可适用于对混合物料中的各组分进展选择性加热。
微波加热有致热与非致热两种效应。
微波是频率介于300MHz- 300GHz之间的超高频振荡电磁波,其相应波长100cm-lnm,能够整体穿透有机物碳键构造,使能量迅速传达至反响物的各个功能团上。
由于极性分子内电荷分布不平衡,可通过分子偶极作用在微波场中迅速吸收电磁能量,以每秒数十亿次高速旋转产生热效应,这就是微波的“致热效应〞。
一些学者认为,微波辐射除了存在“致热效应〞外,还存在着直接作用于反响分子而引起的特殊的“非致热效应’,由于微波频率与分子转动频率相近,微波被极性分子吸收时,可与分子平动能发生自由交换,降低反响活化能,加快合成速度、提高平衡转化率、减少副产物、改变立体选择性等效应,从而促进了反响进程,即所谓的“特殊效应〞或“非致热效应〞。
针对制备TiO2纳米材料,从晶体形成的动力学机理可知,形成纳米尺寸晶粒的条件首先必须满足晶体的成核速度大于晶体的生长速度。
微波辐射在纳米晶体形成过程中所起的作用为:当辐射波照射到被加热的物体时,引起C-C, C-H以及O-H键的振动,物体由内部产生热量,因而有极快的加热速度和极小的热惯性。
当微波辐射到含有Ti4+离子的水溶液时,水分子中的O-H键产生振动,瞬间释放出大量的热,一方面使Ti4+离子迅速水解生成水合TiO2分子,局部成为过饱和溶液;另一方面过饱和溶液由于短时间的急剧升温,产生了大量的晶核,从而保证了水合TiO2晶体的纳米尺度,进而为形成纳米颗粒提供了必要条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微波水热法制备纳米二氧化钛1.微波加热特性及作用机理微波加热是物质在电磁场中由介质损耗引起的体积加热,在高频变换的微波能量场作用下,分子运动由原来杂乱无章的状态变成有序的高频振动,从而使分子动能转变成热能,其能量通过空间或媒介以电磁波的形式传递,可实现分子水平上的搅拌,达到均匀加热,因此微波加热又称为无温度梯度的“体加热”。
在一定微波场中,物质吸收微波的能力与其介电性能和电磁特性有关。
对于介电常数较大、有强介电损失能力的极性分子,与微波有较强的藕合作用,可将微波辐射转化为热量分散于物质中,因此在相同微波条件下,不同的介质组成表现出不同的温度效应,该特征可适用于对混合物料中的各组分进行选择性加热。
微波加热有致热与非致热两种效应。
微波是频率介于300MHz- 300GHz之间的超高频振荡电磁波,其相应波长100cm-lnm,能够整体穿透有机物碳键结构,使能量迅速传达至反应物的各个功能团上。
由于极性分子内电荷分布不平衡,可通过分子偶极作用在微波场中迅速吸收电磁能量,以每秒数十亿次高速旋转产生热效应,这就是微波的“致热效应”。
一些学者认为,微波辐射除了存在“致热效应”外,还存在着直接作用于反应分子而引起的特殊的“非致热效应’,由于微波频率与分子转动频率相近,微波被极性分子吸收时,可与分子平动能发生自由交换,降低反应活化能,加快合成速度、提高平衡转化率、减少副产物、改变立体选择性等效应,从而促进了反应进程,即所谓的“特殊效应”或“非致热效应”。
针对制备TiO2纳米材料,从晶体形成的动力学机理可知,形成纳米尺寸晶粒的条件首先必须满足晶体的成核速度大于晶体的生长速度。
微波辐射在纳米晶体形成过程中所起的作用为:当辐射波照射到被加热的物体时,引起C-C, C-H以及O-H键的振动,物体由内部产生热量,因而有极快的加热速度和极小的热惯性。
当微波辐射到含有Ti4+离子的水溶液时,水分子中的O-H键产生振动,瞬间释放出大量的热,一方面使Ti4+离子迅速水解生成水合TiO2分子,局部成为过饱和溶液;另一方面过饱和溶液由于短时间的急剧升温,产生了大量的晶核,从而保证了水合TiO2晶体的纳米尺度,进而为形成纳米颗粒提供了必要条件。
2.微波在合成纳米TiO2材料中的应用2.1 微波水解法微波水解法是在微波场的作用下,强迫金属钛盐水解,产生均匀分散的金属氧化物或水合氧化物.经过滤、洗涤、加热分解即可得到金属氧化物纳米粉末。
与常规加热方法相比,微波水解法具有穿透性好、效率高等优点,曾广泛地用于陶瓷粉末和亚微细粒的制备。
钛盐水解获得TiO2的反应是一个吸热反应,传统的加热方式热传导时间长,反应初始速度慢,晶核不能瞬间形成,且易多次成核,粒子易长大;同时由于温度梯度的存在,体系内不同区域粒子生长速度不一,从而影响粒子尺寸的均匀性。
而在微波加热条件下,溶液可在很短时间内迅速、均匀地升温,晶核能够在瞬间萌发,反应没有诱导期,很少出现多次成核,故制备出来的粒子粒径小且分布均匀。
以Ti(SO4)2为原料,在Ti(SO4)2的水解反应中引人微波加热技术,将微波加热水解反应水解产物过滤、洗涤、干燥、锻烧后得到锐铁矿晶型TiO2。
研究发现TiO2试样由锐钛矿向金红石的相转变在900℃以上才显著发生,明显高于锐钛矿向金红石转变的相变温度在800℃以下的报道。
其主要原因可能与微波加热水解工艺条件下,颗粒表面吸附了较多的SO42-有关。
SO42-抑制锐钛矿向金红石相转变的机制较为复杂,SO42-可与反应体系中的TiOH3+形成桥式结构,限制TiOH3+等水解产物成核后的结构取向,从而有利于锐钛矿的形成并增加其稳定性,进而抑制其向金红石相的转变。
在此过程中,微波很可能起到了促进作用,由于TiOH3+内部结构的非对称性,导致其表现为极性离子,而SO42-也属于极性离子,在微波场中二者都易被极化,并有转向与外场方向一致的趋势,再加在微波场作用下,分子整体运动加剧,平均动能增加,体系温度升高,分子间碰撞频率增大,此时SO42-带负电荷的一端与TiOH3+呈正电性的一端碰撞频率也相应增大,从而使SO42-与TiOH3+结合的机会增加,结合更为紧密,在锻烧过程中也不易挥发,从而起到较强的抑制金红石晶型生成的作用,这一点对于提高TiO2的高温热稳定性意义重大。
以海绵钛为原料,采用微波水解法成功地合成了锐钦矿型纳米TlO2粉末。
粉末颗粒呈球形,粒度集中在60-80nm,颗粒分布均匀,分散性好,且原料成本低,工艺简单易行。
采用微波诱导沸腾回流强迫水解新方法,由TiOC12液相直接合成TiO2金红石型纳米粒子,其粒子尺寸为5一30nm。
研究表明,该产物的物相取决于Ti4+的初始水解速率,水解速率越快,越有利于金红石相成核;通过控制初始Ti 4+的浓度,可改变纳米TiO2的粒径。
2.2微波水热法微波水热法是把传统的水热合成法与微波场结合起来的一种新方法。
其基本原理是:利用微波场作为热源,反应介质在特制的能通过微波场的耐压反应釜中进行反应,通过微波加热创造一个高温高压反应环境,使通常难溶或者不溶的物质溶解并且重结晶,再经过分离和热处理得到产物。
由于在高温高压条件下,介质水处于临界状态,反应物在水中的物性和化学反应性能都有很大改变,因此制备反应是在非理想、非平衡状态下进行的,其反应过程和机理也与常态下反应有很大的差异,反应的活性得到大大提高。
在微波加热条件下,瞬间可使整个反应体系温度达到结晶化温度,极大地加速了合成与晶化的速度。
对于凝胶反应,沉淀凝胶可快速溶解并均匀成核,迅速达到过饱和,缩短了结晶化时间。
另外微波水热法具有可操作性和可调变性,有利于低价态、中间态与特殊价态化合物的生成,并能均匀地进行离子掺杂。
种法国等采用微波水热法,将以四氯化钛等为原料制得的Ti(OH)4胶体移至微波加热反应釜中,加人一定量的去离子水,在20 X 105 Pa的压力条件下,通过微波水热晶化反应2.5h,产物经滤洗、真空干燥,直接得到锐钛矿型TiO2,其晶粒粒径小于l0nm。
与常规水热合成法相比,微波水热法能在较短的晶化时间内形成锐钛矿型TiO2。
研究表明,在微波水热反应釜内,Ti(OH)4胶粒迅速晶化为锐钛型TiO2的主要原因是由于微波对反应釜进行的体加热,使反应体系均匀、迅速地达到很高的反应温度。
白波等则利用硫酸钛和尿素为主要原料,EDTA为控制剂,在反应体系压力为210-215MPa条件下,经微波水热法反应3h,制得TiO2纳米光催化剂颗粒。
对所得催化剂结构的表征表明,TiO2纳米光催化剂颗粒具有粒径小、颗粒分散性好、纯度高等特性,同时后续的热处理可对TiO2纳米晶粒的晶相进行调节.Komamenei等采用微波水热法直接合成纳米金红石晶型TiO2粉体,研究发现,反应时间和体系压力对TiO2产率影响较大,反应时间越长,体系压力越大,TiO2产率就越大;同时溶液中阴离子的存在影响TiO2晶型,一般C1-存在易导致金红石型TiO2生成,SO42-的存在易导致锐钛矿型TiO2生成。
研究表明,微波对制备TiO2反应的影响是多方面的。
目前在开放体系中微波合成纳米TiO2也引起人们的关注。
例如,以钛盐为原料制备掺杂型TiO2,可先将铁盐{Ti(S04 )2或TiOSO4}和掺杂离子盐(如FeCl3)溶于HCl溶液,目的是保证反应混合液中不形成多聚物及其它多核配合物,防止产生团聚诱生较大的晶种,随后向体系中缓慢加人NaOH溶液.当体系pH值达到10左右时,钦盐水解生成的T1O(OH)2,T1(OH)4与Fe3+生成的各种配合物等处于一种稳定的状态,然后将其置于微波场中微波辐射,使体系迅速均匀升温,晶核大量地“爆析式”萌发,T1O(OH)2,T1(OH)4等迅速脱水,体系中微量电离出的Fe3+不足以形成铁氧化物,而在TiO2“爆析”的过程中取代Ti4+的位置,生成Fe3+掺杂的TiO2。
上述方法,通过控制钛的水解,经微波辐射制备出晶粒为6 ~30nm的Fe3+、Co2+、Ni2+掺杂的TIO2。
对水解温度、陈化时间、微波辐射的影响研究发现,Fe/TiO2,Co/TiO2和Ni/TiO2的水解温度分别控制在70-80°C、65℃及60~80℃时,形成的晶粒尺寸较小。
钛(IV)化合物在水溶液中主要以TiO2+形式存在,在酸性环境中可与过氧化氢反应生成单核配离子[TiO(H2O2)]2+、双核配离子Ti2O5(OH)+等。
以酸性TiCl4水溶液、过氧化氢等为原料,微波加热处理该过氧配合物溶液,将反应析出的浅黄色沉淀经300°C煅烧,可制得蜂窝状的锐钛型TiO2。
利用以TiCl4和尿素的水溶液为反应体系,将其置于功率可调的微波炉内,加热反应一定时间,取出冷却、静置后,过滤得偏钛酸,经100~110℃红外线加热干燥后,在850一900°C煅烧1. 5h,得TiO2粉末。
实验表明:微波加热反应不仅可大大缩短制备时间,而且克服了常规加热方法存在温度梯度和搅拌剪切力而造成的粒子尺寸分布宽、团聚严重的问题。
以有机钛盐为前驱体Wilson 等以异丙醇钛为原料,在硝酸存在条件下,200℃水热15h,并于145℃进行微波处理,得到粒径为4~5nm 的纳米TiO2,并且他们认为正是由于微波的存在,加快了升温速度,使晶体结晶速度加快,从而得到颗粒较小的纳米TiO2。
Zhou Zehua 等以钛酸四丁酯为原料,加入正丁醇和无水乙醇,采用微波水热法成功地制备了纳米TiO2。
其中钛酸四丁酯与正丁醇两种反应物的摩尔比为1: 1.5。
反应物经混合后置于微波消解系统中,于200℃微波水热反应20min,得到的产物经过滤后再用去离子水反复冲洗,于100℃温度下烘干,最后对样品进行一定的热处理,得到平均粒径为20nm 的纳米TiO2 粉体。
该实验结果表明,相对于常规水热法而言,作为外加场引入的微波能显著提高反应速度。
3.结语采用微波辐射与水热法相结合的微波水热法是一种新型制备方法。
作为外加场引入的微波能使溶液在很短的时间被均匀的加热,大大消除了温度梯度的影响,同时有可能使沉淀相在瞬间萌发成核,TiO2 胶体颗粒迅速地发生晶化,从而获得粒径均匀的超细纳米TiO2 粉体。