小学六年级分数乘除法及百分数应用题类型专项解析 大全
六年级数学分数和百分数应用问题试题答案及解析

六年级数学分数和百分数应用问题试题答案及解析1.学校图书馆科技书占图书总数的40%,故事书占图书总数的30%,科技书比故事书多1200本.学校图书馆共有图书多少本?【答案】12000本【解析】由题意可知:图书总数看作单位“1”,单位“1”是未知的,关键是求出1200本占图书总数的百分之几,然后根据已知一个数的百分之几是多少,求这个数,用除法解答.解:1200÷(40%﹣30%),=1200÷0.1,=12000(本),答:学校图书馆共有图书12000本.【点评】此题的解题关键是找“1”,根据已知比一个数多百分之几的数是多少求这个数,解答即可.2.小强的妈妈在银行存了5000元,定期两年,年利率是4.50%,到期时,她应得利息元.【答案】450.【解析】可根据求利息的计算公式,利息=本金×年利率×时间,由此代入公式计算解答.解:5000×4.50%×2=225×2=450(元)答:到期时,她应得利息450元.故答案为:450.【点评】这种类型属于利息问题,运用关系式:利息=本金×利率×时间(注意时间和利率的对应),找清数据与问题,代入公式计算即可.3.一本书定价75元,售出后可获利50%,如果按定价的七折出售,可获利元.【答案】2.5.【解析】按定价的七折出售,是把定价看成单位“1”,现价是它的70%,用乘法求出现价;再把进价看成单位“1”,它的(1+50%)就是定价75元,由此用除法求出进价,再用现价减去进价,即可求出获利的钱数.解:75×70%=52.5(元)75÷(1+50%)=50(元)52.5﹣50=2.5(元)答:可获利2.5元.故答案为:2.5.【点评】解决进价、定价以及打折的含义,找清楚单位“1”的不同,根据分数乘除法的意义分别求出进价和现价,进而求解.4.如果甲比乙多20%,则乙比甲一定少20%..(判断对错)【答案】×【解析】比乙多20%,即以乙作为单位“1“,甲是乙的(1+20%),要求乙比甲少百分之几,是以甲作为单位“1“,即20%÷(1+20%).解:20%÷(1+20%)=20%÷120%≈17%;故答案为:×.【点评】完成本题的关健是单位“1”的确定.5.一根铁丝长米,第一次用去米,第二次用去剩下的,()用去的铁丝长一些.A.第一次长 B.第二次长 C.两次同样长【答案】C【解析】我们计算出第二次用去的长度,再与第一次的长度进行比较,再进行选择即可.解:第二次用去的长度:()×,=1×,=(米);米=米;故选:C.【点评】本题运用分数的乘法的计算法则进行解答即可,同时考查了分数的大小比较.6.一种纺织品的合格率是98%,300件产品中有()件不合格.A.2B.4C.6D.294【答案】C【解析】合格率98%是指合格产品数量占产品总数量的98%,把产品的总数量看成单位“1”,不合格的产品数量就占总数量的(1﹣98%),用产品总数量乘上这个百分数即可求解.解:300×(1﹣98%)=300×2%=6(件)答:300件产品中有6件不合格.故选:C.【点评】先理解合格率的含义,找出单位“1”,再根据分数乘法的意义进行求解.7.按要求做题.【答案】250本;见解析【解析】(1)由图可知,故事书有200本,将故事书本数当作单位“1”,科技书比故事书多,根据分数加法的意义,科技书本数是故事书的1+,根据分数乘法的意义,用故事书本数乘科技书占故事书本数的分率,即得科技书多少本.(2)由图可知,图中的长方形被平均分成30份,根据分数乘法的意义,求一个数的几分之几是多少,用乘法,则其中的25%是30×25%=7份,据此作图.解:(1)200×(1+)=200×=250(本)答:科技书有250本.(2)30×25%=7即【点评】完成此类题目要注意从图文中获取正确信息,然后分析完成.8.吨煤,用去,还剩吨..(判断对错)【答案】×【解析】此题的易误区是“用去”,“”是分率,而不是具体的数量;它的意思是把吨煤看作单位“1”,平均分成了5份,用去了1份,还剩4份.解:(1),=,=(吨).答:还剩吨.故答案为:×【点评】在分数应用题中要注意“量”和“率”的区别.9.王老师的月工资为2800元.按照国家的新税法规定,超过1600元的部分应缴5%个人所得税.王老师每月实际工资收入是多少元.【答案】2740元【解析】超过1600元的部分应缴5%个人所得税,先用总钱数减去1600元,求出应缴税的部分,再乘上5%,即可得出个人所得税,再用总钱数减去个人所得税即可求出实际收入的钱数.解:(2800﹣1600)×5%=1200×5%=60(元)2800﹣60=2740(元)答:王老师每月实际工资收入是2740元.【点评】解决本题先求出应缴税部分的钱数,再根据应纳税额=缴税部分的收入×税率进行求解.10.一件商品,先打八折,后又涨价20%,现价与原价相比,()A.不变 B.降低了 C.提高了【答案】B【解析】将原价当作单位“1”,先打八折,即是按原价的80%出售,后又涨价20%,根据分数加法的意义,此时价格是打折后价格的1+20%,根据分数乘法的意义,现价是原价的80%×(1+20%).解:80%×(1+20%)=80%×120%=96%即此时价格是原价的96%,比原价降低了.故选:B.【点评】完成本题要注意前后打折与降价分率的单位“1”是不同的.11.王叔叔买了一辆5200元的摩托车.按规定,买摩托车要缴纳10%的车辆购置税.他买这辆摩托车一共要花多少元?【答案】5720【解析】把摩托车的原价看作单位“1”,摩托车要缴纳10%的车辆购置税,实际花费为摩托车原价的(1+10%),根据一个数乘分数的意义,用乘法解答即可.解:5200×(1+10%)=5200×1.1=5720(元)答:王叔叔买这辆摩托车一共要花5720元钱.【点评】解答此题的关键是先判断出单位“1”,进而根据一个数乘分数的意义用乘法解答.12.一本书有80页,小亮看了20%,下一次应从17页开始看.(判断对错)【答案】√【解析】把全书的总页数看成单位“1”,用总页数乘上20%就是小亮第一次看的页数,再加上1页就是下一次开始看的页数.解:80×20%+1=16+1=17(页)即下一次应从17页开始看,原题说法正确.故答案为:√.【点评】解决本题根据分数乘法的意义求出已经看的页数,下一次开始看的页数是第一次已经看的页数加1.13.一台冰箱原价3500元,连续两次降价,每次降20%,现价是多少元?【答案】960元.【解析】连续两次降价,每次降20%,第一次降价20%,将原价当作单位“1”,根据分数减法的意义,此时价格是原价的1﹣20%,第二次降20%,则此时价格是第一次降价后的1﹣20%,根据分数乘法的意义,此时价格是原价的(1﹣20%)×(1﹣20%),则用原价乘此时价格占原价的分率,即得现价是多少.解:1500×(1﹣20%)×(1﹣20%)=1500×80%×80%=960(元)答:现价是960元.【点评】完成本题要注意前后两次降价分率的单位“1”是不同的.14.一件物品原价60元,提价20%,再打九折出售,现价是元.【答案】64.8【解析】先把这件商品的原价看成单位“1”,则提价后的价格是原价的1+20%,由此求出提价后的价格;再把提价后的价格看成单位“1”,打九折是指现价是提价后价格的90%,由此求出现价.据此解答.解:60×(1+20%)×90%=60×1.2×0.9=64.8(元)答:现价是64.8元.故答案为:64.8.【点评】解答此题的关键是分清两个单位“1”的区别,找清各自以谁为标准,再根据求一个数的百分之几是多少用乘法计算来列式解答.15.王华和李明到书城买复习资料,请根据他们的对话内容,帮李明算一算上次所买资料的原价.王华:听说你用20元办了一张会员卡,买书可享受8折优惠.李明:是呀,我上次买了几本书,除了办卡的费用还省10元.【答案】买资料的原价是150元.【解析】由于办了会员卡可可享受8折优惠,即可按原价的80%买书,将原价当作单位“1”,则打折后的价格比原价省了1﹣80%,又李明上次买书除了办卡的费用还省10元,所以共节省了20+10=30元,则这30元占按原价买书费用了1﹣80%,已知一个数的几分之几是多少,求这个数,用除法,则上次所买资料的原价是30÷(1﹣80%)元.解:(20+10)÷(1﹣80%)=30÷20%=150(元)答:上次所买资料的原价是150元.【点评】在商品销售中,打几折即得按原价的百分之几十出售.16.小雨将20000人民币存入银行定期3年,如果年利率是2.5%,国家新规定不用纳利息税,到期后,她可得本息元.【答案】21500.【解析】利息=本金×年利率×时间,由此代入数据求出利息;然后用本金加上利息即可.解:20000+20000×2.5%×3=20000+20000×0.025×3=20000+1500=21500(元),答:她可得本息21500元.故答案为:21500.【点评】此题考查的目的是理解利息的意义,掌握利息的计算方法及应用,明确:本息=本金+利息.17.一本故事书小亮三天看完,第一天看了60页,第二天看了全书的40%,第三天看了全书的.这本书一共多少页?【答案】150页.【解析】将总页数当作单位“1”,第一天看了60页,第二天看了全书的40%,第三天看了全书的,三天看完,根据分数减法的意义,第一天看的60页占总页数的1﹣40%﹣,已知一个数的几分之几是多少,求这个数,用除法,则用第一看的页数除以其占总页数的分率,即得共有多少页.解:60÷(1﹣40%﹣)=60÷40%=150(页)答:这本书共有150页.【点评】首先根据已知条件求出已知数量占单位“1”的分率是完成本题的关键.18.一件儿童服装原价200元,打九折后现价是元,现价比原价便宜元.【答案】180,20.【解析】一件儿童服装原价200元,打九折即按原价的90%出售,根据分数乘法的意义,用原价乘现价占原价的分率,即得现价是多少,然后用原价减现价,即得比原价便宜多少钱.解:200×90%=180(元)200﹣180=20(元)答:打九折后现价是 180元,现价比原价便宜 20元.故答案为:180,20.【点评】在商品销售中,打几折即得按原价的百分之几十出售.19.一种商品七五折销售,“七五折”表示原价的 %,如果商品原价是300元,现在便宜了元.【答案】75,75.【解析】打七五折销售是指现价是原价的75%;把原价看作单位“1”,比原价便宜了(1﹣70%),根据一个数乘分数的意义,解答即可.解:打七五折销售是指现价是原价的75%;300×(1﹣75%)=300×0.25=75(元);答:现在便宜了25元.故答案为:75,75.【点评】此题考查了折扣的意义,应明确明确几折,即十分之几,百分之十几;用到的知识点:判断出单位“1”,根据一个数乘分数的意义解答.20.八一小学准备买56台电脑.甲、乙两个商家每台电脑原价都是4000元.为了做成这笔生意,两商家作出如下优惠:请你先算一算,再比一比,为学校拿个主意:到哪个商家购买更便宜?【答案】甲商店便宜.【解析】甲商店:打七五折,现价就是原价的75%,先求出56台的原价是多少元,再用原价乘75%即可;乙商店:买40台可送12台,另再买4台就行,求出这44台的需要多少元;再把两个商店的价格相比较即可.解:甲商店:56×4000×75%,=224000×75%,=168000(元);乙商店:买40台可送12台,另再买4台就行,40×4000+4×4000,=16000+16000,=176000(元),176000>168000,所以买甲商家的便宜.答:到甲商家购买更便宜.可以直接不算价格,算台数:甲商店:买56台相当于买56×75%=42(台);乙商店:买40台可送12台,另再买4台就行,相当于买40+4=44(台);由此看出甲商店便宜.【点评】本题先理解优惠的办法,根据这个办法求出到两个商店各需要多少钱,比较即可求解.。
小学六年级分数、百分数应用题(含答案)

分数、百分数应用题(二)知识框架一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。
在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a是b的几分之几,就把数b看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1 199÷=.二、怎样找准分数应用题中单位“1”(一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。
解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。
(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
这类分数应用题的单位“1”比较难找。
六年级数学分数乘除应用题型归类(含解析)

六年级数学分数乘除应用题型归类(含解析)一、 已知单位“1”的量,用乘法:题型: (1)找关键字“的”:单位“1”的量×对应分率=具体量 (2)找关键字“比”:A :比“多”: 单位“1”的量×(1+对应分率)=具体量 B :比“少”: 单位“1”的量×(1-对应分率)=具体量例1:150千米的是 ( 90 )千米,40的 是( 15 )。
解答: (千米)9053150=⨯ 158340=⨯例2:货车每小时行56km ,客车每小时行的路程比货车多 ,客车每小时行多少千米?解; 答:客车每小时行72千米.例3:团体操人员中男生有80人,女生人数比男生人数少 ,女生人数有多少人?解:(人))(6041-180=⨯ 答:女生人数有多少人?二、求单位“1”的量,用除法:题型:(1)找关键字“的”:具体量÷对应百分率=单位“1”的量(2)找关键字“比”:A :比“多”: 具体量÷(1+对应分率)=单位“1”的量B :比“少”: 具体量÷(1-对应分率)=单位“1”的量例1:水果批发市场运来的桃子是梨的54。
如果运来桃子是300箱,那么运来的梨有多少箱?解:(箱)37554300=÷ 答:那么运来的梨有375箱.53837241时)(千米)(/7272156=+⨯例2:希望小学新买篮球45个,比新买的足球多51,希望小学新买足球多少个? 解:)(5451145个)(=+÷ 答:希望小学新买足球 54 个。
例:3:学校买来360本科技书,比故事书少51,故事书共买了几本? 解:)(28851-1360本)(=÷ 答:故事书共买了288本。
三:求分率:题型:(1)找关键字“是”、“占”相当于:如 A 是 B 的几分之几,列 式:A ÷B=BA (2 找关键字“比”:如 A 比B 多(少)几分之几,列 式: 相 差 量(大数-小数)÷单位“1”例1:甲数是乙数的97,甲数比乙数少( 92 ),乙数比甲数多( 72 ),乙数是甲数的( 79 )倍。
分数乘除法应用题及解析

分数乘除法应用题及解析(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--分数乘除法应用题及解析学会抓不变量解题:有些较复杂的分数应用题按常规的思路解题,一般的解法比较困难,如果抓住题中的不变量来思考,就可顺利地找到答案.1.育红小学原有科技书、文艺书若干本,其中科技书占.后来又买来科技书180本,这时科技书占两种书总数的.现在这两种书共有多少本这道题中,文艺书的本数是不变量.文艺书占原来两种书总数的,又占现在两种书总数的.设文艺书的本数为8本,那么原来与现在两种书的总数分别为10本、13本.因此,后来买进的180本书占其中(13﹣10)份.则现在两种书的总数为.180÷(13﹣10)×13=780(本).请你用此思路,解决下面的问题.2.有一堆糖果,其中奶糖占,再放人16块水果糖后,奶糖就只占,那么这堆糖中有奶糖多少块请你举出一个例子,并用这种思路解决.考点:分数四则复合应用题.专题:分数百分数应用题.分析:这道题中,奶糖的数量是不变的.奶糖占原来两种糖总数的,放人16块水果糖后,奶糖又占现在两种糖总数的 = ,设奶糖为9块,那么原来与现在两种糖的总数分别为20块、36块,因此,后来放进的16块水果糖占其中的(36﹣20)份.则现在两种糖的总数为16÷(36﹣20)×36=36(块),奶糖的数量为:36× =9(块),解决问题.然后举出例子,据此解答.解答:解:奶糖占原来两种糖总数的,后来奶糖又占现在两种糖总数的 = ,现在两种糖的总数为:16÷(36﹣20)×36=36(块),奶糖的数量为:36× =9(块).答:这堆糖中有奶糖9块.3.有文艺书和科技书共360本,其中科技数占总数的,现在又买来一些科技书,此时科技书占总数的,买来多少科技书在此题中文艺书的本数是不变的,文艺书的本数为360×(1﹣)=320(本),也就是320本占后来总数的(1﹣),那么后来两种书的总数为320÷(1﹣)=384(本),然后用总数减去原来的总数,就是买来科技书的本数.解:360×(1﹣)÷(1﹣)﹣360=360×÷﹣360=384﹣360=24(本).答:买来24本科技书.点评:有些较复杂的分数应用题按常规的思路解题,一般的解法比较困难,如果抓住题中的不变量来思考,就可顺利地找到答案.4.学校有杨树120棵,柳树的棵数是杨树的有柳树多少棵(补充一个条件,变成分数乘除法应用题,并解答.)考点:“提问题”、“填条件”应用题.分析:根据分数乘法和除法应用题的解题思路分别补充问题然后解答即可.解答:解:①补充问题:柳树的棵数是杨树的,120×=60(棵).答:有柳树60棵.②补充问题:杨树的棵数是柳树的,120÷=240(棵).答:有柳树240棵.点评:从补充的问题中找出单位“1”,根据已知还是未知确定用乘法还是除法.5.学校有杨树120棵,﹣﹣﹣﹣﹣﹣,有柳树多少棵(补充一个条件,变成分数乘除法应用题,并解答.)考点:“提问题”、“填条件”应用题.专题:分数百分数应用题.分析:变成分数乘法应用题,则需要单位“1”的量已知,所以可以把杨树的棵数看作单位“1”,补充条件为:柳树的棵数是杨树的几分之几,求柳树的棵数,就可以用分数的乘法解决;则补充条件为:柳树的棵数是杨树的.解答:解:补充条件为:柳树的棵数是杨树的.则:120×=90(棵).答:柳树有90棵.点评:解决本题要从要求出发,提出符合题意的问题.6.按要求补充条件和问题,并列式不计算.①小明去年身高140厘米,今年身高比去年增加,求小明今年身高是多少厘米列式140×(1+)(分数乘法应用题)②小明今年身高147厘米,今年身高比去年增加,小明去年身高是多少厘米列式147÷(1+)(分数除法应用题)考点:“提问题”、“填条件”应用题.分析:①根据已知条件和要求,则去年的身高为已知量,今年的身高为所求量.因此,所填的条件是:小明去年身高140厘米,所提的问题是:求小明今年身高多少厘米把去年的身高看作单位“1”,今年的身高就是去年的(1+),根据分数乘法的意义列式即可.②该题的要求是编一道分数除法应用题,根据已知所得:今年的身高是已知量,去年的身高为所求的量.因此所填的条件是:小明今年身高147厘米,所提的问题是:小明去年身高是多少厘米把去年的身高看作单位“1”,则今年的身高147厘米就是去年的(1+),根据分数除法的意义列式即可.解答:解:①140×(1+);②140÷(1+).点评:解决该题的难点是给题干“填条件”和“提问题”,关键是根据已知条件确定已知量和未知量.7.人们公园里有杨树120棵,柳树比杨树多,有柳树多少棵(补充一个条件,变成两步计算的分数应用题,并解答)考点:“提问题”、“填条件”应用题.专题:简单应用题和一般复合应用题.分析:已知杨树的棵数,求柳树的棵数,可以把杨树的棵数看作单位“1”,可补充条件为:柳树比杨树多;求柳树有多少棵,也就是求杨树的1+是多少,根据分数乘法的意义,用120×(1+)计算得解.解答:解:柳树比杨树多;120×(1+),=120×,=200(棵);答:有柳树200棵.故答案为:柳树比杨树多.点评:解答本题也可以把柳树的棵数看作单位“1”,可补充条件为:杨树比柳树多;求柳树的棵数,用具体的数量120除以对应分率1+,列式为120÷(1+)计算.8.小聪在做分数乘除法练习时把除以错写成除以得到的答案是你知道如何计算正确结果吗考点:分数的四则混合运算.专题:文字叙述题.分析:由“除以得到的答案是”可求出被除数,即×,然后除以即可.解答:解:×÷=××=答:正确结果是.点评:先求出被除数,是解答此题的关键.9.李大妈养了6只灰兔18只白兔,白兔的只数是灰色的几倍(把这道题改变成一道乘法应用题和一道除法应用题)考点:“提问题”、“填条件”应用题.分析:由原来的题目可知:白兔只数是灰兔的3倍;乘法问题就是根据这个倍数关系已知灰兔的只数,求白兔的只数;除法问题就是已知白兔的只数,求灰兔的只数.解答:解:(1)乘法问题:李大妈养了6只灰兔,白兔的只数是灰色的3倍,白兔有多少只解答:6×3=18(只);答:白兔有18只.(2)除法问题:李大妈养了18只白兔,是灰兔只数的3倍,灰兔有多少只解答:18÷3=6(只);答:白兔有6只.点评:本题考查了两个数的倍数关系,已知一个数,求它的几倍是多少,用乘法;已知一个数,和它是另一个数的几倍,求另一个数用除法.10.某粮仓去年存大米7000包,是今年的,今年存大米多少包(请填上合适的条件,使它成为分数应用题,并解答.).考点:“提问题”、“填条件”应用题.专题:分数百分数应用题.分析:要想变为分数问题,最简单的就填是今年的几分之几即可;根据题意今年是单位“1”,而单位“1”不知道,所以用除法解决即可.解答:解:条件为:是今年的7000÷=10500(包)答:今年存大米10500包.故答案为:是今年的.点评:解答这类问题,要看清算式中的数据在题中的含义,再填上条件解答即可.12.一个车队要运送1248吨救灾物品到灾区,要12次运完,平均每次要运送多少吨(1)解答.(2)不改变题意和数据,请你分别改编成一道用乘法和除法计算的应用题.(不计算)用乘法计算的应用题:用除法计算的应用题:考点:整数、小数复合应用题.专题:简单应用题和一般复合应用题.分析:(1)求平均每次要运送多少吨,用要运的总吨数除以运的次数;(2)用乘法计算的应用题:知道每次运的吨数和运的次数,根据这两个条件编即可,用除法计算的应用题:知道总吨数,和每次运的吨数,求次数编.解答:解:(1)平均每次要运送多少吨:1248÷12=104(吨);答:每次云104吨.(2)用乘法计算的应用题:一个车队要运送一批货物到灾区,每次运104吨,12次运完,这批货物有多少吨用除法计算的应用题:一个车队要运送1248吨救灾物品到灾区,每次运104吨,多少次运完点评:此题考查整数、小数复合应用题,解决此题的关键是求平均数等于总数量除以总份数.13.先看图写等量关系式,再编出一道乘法应用题和一道除法应用题并解答.(1)等量关系式:爸爸的体重×=小明的体重;小明的体重=爸爸的体重.(2)乘法应用题:爸爸的体重是75千克,小明体重有多少千克(3)除法应用题:小明的体重是是35千克,爸爸的体重是多少千克考点:分数乘法应用题;分数除法应用题.专题:分数百分数应用题.分析:由图可知,爸爸的体重为单位“1”,小明体重是爸爸体重的,由此可得:爸爸的体重×=小明的体重;小明的体重=爸爸的体重.(2)根据所给条件,可得乘法应用题:爸爸的体重是75千克,小明体重有多少千克(2)除法应用题:小明的体重是35千克,爸爸的体重是多少千克.据(1)关系式完成(2)(3)即可.解答:解:(1)等量关系式:爸爸的体重×=小明的体重;小明的体重=爸爸的体重.(2)爸爸的体重是75千克,小明体重有多少千克75×=35(千克).答:小明的体重是35千克.(3)小明的体重是35千克,爸爸的体重是多少千克35=75(千克).答:爸爸的体重是75千克.故答案为:爸爸的体重×=小明的体重;小明的体重=爸爸的体重;小明体重有多少千克;是35千克,爸爸的体重是多少千克.点评:完成本题要注意分析线段图中所表示的数量关系,然后写出数量关系式并提出问题.先把题目补充完整,使它成为乘减应用题,再列式,不计算.14.五年级有学生120人,六年级人数是五年级的倍,六年级比五年级多多少人或五年级比六年级少多少人列式:120×﹣120 .考点:“提问题”、“填条件”应用题.分析:根据题意可提问题:六年级比五年级多多少人或五年级比六年级少多少人列式时要先求出六年级人数,进一步求得问题即可.解答:解:问题:六年级比五年级多多少人或五年级比六年级少多少人列式:120×﹣120.故答案为:六年级比五年级多多少人或五年级比六年级少多少人,120×﹣120.点评:解决此题关键是审清已知条件,再根据已知条件和题目要求提出用乘减计算的问题,再列出算式即可.。
完整版)六年级分数、百分数应用题专项训练及答案

完整版)六年级分数、百分数应用题专项训练及答案1、一桶油第一次取出总数的10%,第二次取出剩下的20%,两次共取出28升。
这桶油共有多少升?假设这桶油共有x升,则第一次取出0.1x升,剩下0.9x 升;第二次取出0.2(0.9x)升,剩下0.8(0.9x)升。
根据题意可得:0.1x + 0.2(0.9x) = 28解得x = 350,因此这桶油共有350升。
2、一桶柴油,第一次用了全桶的20%,第二次用去20千克,第三次用了前两次的和,这时桶里还剩8千克油。
问这桶油有多少千克?假设这桶油共有x千克,则第一次用去0.2x千克,剩下0.8x千克;第二次用去20千克,剩下0.8x-20千克;第三次用去0.2x+(0.8x-20)千克,剩下8千克。
根据题意可得:0.6x = 48解得x = 80,因此这桶油共有80千克。
3、服装厂一车间人数占全厂的25%,二车间人数比一车间少1/5,三车间人数比二车间多3/10,三车间是156人,这个服装厂全厂共有多少人?假设全厂人数为x人,则一车间人数为0.25x人,二车间人数为(1-1/5)×0.25x=0.2x人,三车间人数为(1+3/10)×0.2x=0.26x人。
根据题意可得:0.26x = 156解得x = 600,因此这个服装厂全厂共有600人。
4、加工一批零件,甲乙二人合作需12天完成;现由甲先工作3天,然后由乙工作2天还剩这批零件的4/5没完成。
已知甲每天比乙少加工4个,这批零件共有多少个?假设这批零件共有x个,则甲每天加工量为y个,乙每天加工量为y-4个。
根据题意可得:3y + 2(y-4) = (1-4/5)x化简得5y = x又因为甲乙二人合作需12天完成,因此可得:12(y+y-4) = x化简得x = 16y将x = 16y代入5y = x中,得到y = 20,因此这批零件共有x = 320个。
5、某商店同时卖出两件商品,每件各得60元,但其中一件赚20%,另一件亏本20%,问这个商店卖出这两件商品是赚钱还是亏本?赚多少,亏多少?设赚钱的商品售出x件,亏本的商品售出y件,则可得:60x + 60y = (1+0.2)x×60 + (1-0.2)y×60化简得y = 2x因为x+y=总销量,因此可得:3x = 总销量商店的总收入为120x元,总成本为(1+0.2)x×60+(1-0.2)2x×60=104x元,因此总利润为16x元。
2022-2023学年六年级数学上册典型例题之第四单元百分数与分数乘除法应用题的结合专项练习北师大版

20222023学年六年级数学上册典型例题系列之第四单元:百分数与分数乘除法应用题的结合专项练习(解析版)1.据统计,人们在饭店吃饭,一般会浪费10%的饭菜。
照这样计算,如果某省上半年饭店营业额为50亿元,那么该省上半年仅在餐桌上造成的浪费约多少亿元?【答案】5亿元【分析】将上半年饭店营业额看成单位“1”,浪费的钱数占10%,求浪费的钱数,用上半年饭店营业额×10%即可。
【详解】50×10%=5(亿元)答:该省上半年仅在餐桌上造成的浪费约5亿元。
【点睛】求一个数的百分之几是多少,用乘法。
2.小麦的出粉率是85%,用200千克小麦可以加工出面粉多少千克?【答案】170千克【分析】根据“小麦的质量×出粉率=面粉的质量”解答即可。
【详解】200×85%=170(千克)答:可以加工出面粉170千克。
【点睛】此题考查了百分率的应用,要灵活掌握方法。
3.一个乡今年绿色蔬菜总产量1152万千克,去年是今年绿色蔬菜总产量的62.5%。
去年绿色蔬菜总产量是多少万千克?【答案】720万千克【分析】将今年总产量看作单位“1”,去年产量是今年的62.5%,直接用今年总产量×去年对应百分率即可。
【详解】1152×62.5%=720(万千克)答:去年绿色蔬菜总产量是720万千克。
【点睛】关键是确定单位“1”,明确问题,求部分用乘法。
4.小明读一本故事书,第一天读了25页,占全书的110,第二天读了全书的40%,第二天读了多少页?【答案】100页【分析】将全书页数看作单位“1”,第一天读的页数÷对应分率=全书页数,全书页数×第二天读的对应百分率=第二天读的页数,据此列式解答。
【详解】25÷110×40%=250×0.4=100(页)答:第二天读了100页。
【点睛】关键是确定单位“1”,部分数量÷对应分率=整体数量,整体数量×部分对应百分率=部分数量。
六年级上册数学第二单元类型题
以下是六年级上册数学第二单元的几种常见类型题:
1. 分数乘除法:
例:某班有50人,其中女生人数是男生人数的3/5,求男生人数和女生人数各是多少?解:设男生人数为x,则女生人数为3/5x。
根据题意,得x+3/5x=50,解得x=25,所以女生人数为3/5x=15。
2. 比例关系:
例:某班语文成绩平均分是85分,其中女生平均分是90分,男生平均分是80分,求这个班男女生人数的比例。
解:设男生人数为x,女生人数为y,根据题意,得(90y+80x)/(x+y)=85,解得x:y=5:6。
3. 百分数应用题:
例:某商场开展促销活动,原价100元的商品现在打8折出售,求打折后商品的价格。
解:根据题意,得打折后商品的价格为100×80%=80元。
4. 工程问题:
例:一项工程甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要多少天完成?解:设两人合作需要x天完成,根据题意,得(1/10+1/15)x=1,解得x=6。
5. 相遇问题:
例:甲从A地出发向B地行走,乙从B地出发向A地行走,两人同时出发,求两人在途中相遇的时间。
解:设相遇时间为t小时,根据题意,得(甲的速度+乙的速度)t=AB两地的距离。
用分数(百分数)解决实际问题题型总结超全
1)剩下的由乙丙两队合作,还需要多少天完成 2)剩下的由乙丙两队合作,一共需要多少天完成
精品
四、工程问题:(已知合作的时间,求一人单独做的时间)
1、一条公路,甲单独修9天完成,甲乙一起合修4天完成,乙单独修几天 完成? 2、一条公路,甲单独修9天完成,乙单独修6天完成,甲乙丙三队一起合 修2天完成,丙单独修几天完成? 3、一条公路,甲单独修9天完成,甲乙一起合修4天完成,乙单独修每天 完成这条公路的多少?
注意:用方程时,设的未知数时单位1 ,但是最后 要求的不一定是单位1,审题要认真
除法:差÷分数差=单位1的量
精品
四、工程问题: 工作效率 ×工作时间 = 工作总量
1 工作总量 ÷ 工作时间 = 工作效率
工作总量 ÷ 工作效率 = 工作时间 一般把工作总量看作单位1,工作效率= 工作效率:
表示单位时间完成工作总量的几分之几,工作效率一般不带单 位
精品
四、工程问题:
1、一条公路,甲单独修9天完成,乙单独修6天完成,两人合作多少天可 以完成这条路的2/3 ?(注意是合作完成一部分)
2、一条公路,甲单独修20天完成,乙单独修30天完成,现两人合作修完 成了这条路,合作中甲休息了2天,乙休息了若干天,这样一共花了14天 修完,乙休息了多少天?(注意中途两队都有休息,合做时间与甲、乙 分别用的时间不同)
用分数解决实际问题 (分数乘除法及百分数)
精品
1、找单位“1”
1)甲比乙多甲的1/2
1)的前比后,的字优先 2)找多或少,谁比谁多或少,比后 3)整体为单位1
2)原价20,现价降低了2/5 3)计划收入500元,增加了3/6 4)水结冰后体积增加了1/10,冰融化后体积减少了1/12
小学数学六年级上学期 分数乘除法应用题 完整版题型+答案
分数乘除法应用题例题讲解:板块一:基础题型:1、运输连要将450枚弹药送到前线,其中炮弹占了95,其余都是手榴弹。
由于遇上敌军伏击,炮弹损失了52,而手榴弹只剩下83,送到是还剩多少枚弹药? 解:炮弹:25095450=⨯(枚)手榴弹:450-250=200(枚) 还剩:22583200521250=⨯+⎪⎭⎫ ⎝⎛-⨯(枚)2、学校举行新年自助餐会,一共准备了1000瓶饮料,其中一部分是可乐,剩下的全是果汁。
一个小时后,果汁已经减少了51,但可乐的数量却没有改变。
如果此时饮料还剩872瓶,那么可乐的数量是多少瓶?解:1000-872=128(瓶)果汁:64051128=÷(瓶)可乐:1000-640=360(瓶)3、口袋里装着红、黄、绿三种颜色的球。
其中红球占总球数的31,黄球占总球数的41,绿球比黄球多50个。
口袋里一共有几个球?解:300414131150=⎪⎭⎫⎝⎛---÷(个)4、游戏公司计划生产一批限量版的游戏机。
现在已完成计划的125,如果再生产340台,总产量就超过计划的81,原计划生产多少台? 解:480811251340=⎪⎭⎫ ⎝⎛+-÷(台)5、一个工人加工一批机器零件,第一天完成了任务的51,第二天完成了剩下部分的31,前两天一共完成了56个。
请问:这批零件共有几个? 解:120315115156=⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-+÷(个)6、红星机械厂有三个车间,第一车间的人数是第二、三车间人数和的21,第二车间的人数是第一、三车间人数和的31,第三车间有105人。
求该厂工人的总数。
解:2523112111105=⎥⎦⎤⎢⎣⎡+-+-÷(个)7、甲桶中的水笔乙桶中的多51,丙桶中的水比甲桶中的少51。
请问:乙、丙两桶哪桶水多?如果把三桶水倒入一个大缸里,甲桶中的水占其中的几分之几?解:(1)设乙为5份,则甲为6份,丙为5445116=⎪⎭⎫ ⎝⎛-⨯,所以5445 ,乙桶水多。
分数乘除法应用题及答案
分数乘除法应用题及答案1. 应用题:小明有3/4个苹果,他吃了1/2个,还剩下多少个苹果?答案:小明吃了3/4 * 1/2 = 3/8个苹果,所以还剩下3/4 - 3/8 = 3/8个苹果。
2. 应用题:小华有5/6个蛋糕,他分给了3个朋友,每个朋友分到的蛋糕是原来的几分之几?答案:每个朋友分到的蛋糕是5/6 ÷ 3 = 5/18个蛋糕。
3. 应用题:小刚有1/3瓶牛奶,他喝掉了1/4瓶,剩下的牛奶是原来的几分之几?答案:剩下的牛奶是1/3 - 1/3 * 1/4 = 1/3 * (1 - 1/4) = 1/3 * 3/4 = 1/4瓶。
4. 应用题:小红有2/5个西瓜,她将西瓜切成了8等份,每份是整个西瓜的几分之几?答案:每份是整个西瓜的2/5 ÷ 8 = 2/5 * 1/8 = 1/20。
5. 应用题:小李有3/5千克的面粉,他用去了2/3,问剩下的面粉是多少千克?答案:剩下的面粉是3/5 * (1 - 2/3) = 3/5 * 1/3 = 1/5千克。
6. 应用题:小王有1/2小时的时间,他用去了1/4小时,还剩下多少小时?答案:还剩下的时间是1/2 - 1/2 * 1/4 = 1/2 * (1 - 1/4) = 1/2 * 3/4 = 3/8小时。
7. 应用题:小张有4/7块巧克力,他与朋友交换了1/3块,问交换后他有多少块巧克力?答案:交换后他有4/7 + 1/3 = 4/7 + 7/21 = 12/21 + 7/21 = 19/21块巧克力。
8. 应用题:小赵有5/6升的果汁,他倒出了1/2升,问倒出后还剩多少升?答案:倒出后还剩5/6 - 1/2 = 5/6 - 3/6 = 2/6 = 1/3升。
9. 应用题:小刘有3/4米的布,他用去了1/3米,问剩下的布有多少米?答案:剩下的布有3/4 - 1/3 = 9/12 - 4/12 = 5/12米。
10. 应用题:小陈有1/2吨的大米,他卖出了1/4吨,问卖出后还剩多少吨?答案:卖出后还剩1/2 - 1/4 = 1/2 - 1/4 = 1/4吨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数乘、除法、百分数应用题专项解析
一、找出关键句,判断单位“1”,如果有比字的话,比字后边的为单位一,另外如果有分数的话一般分数的前面就是单位一。
例题解析:1、某学校有女生400人,女生占全校人数的85,该校有多少人? 本题中有分数8
5,那么分数的前面为单位一,分数的前面是 全校人数,所以全校人数是单位一。
2.某校有女生200人,女生是男生的 6
5,男生有多少人? 本题有分数6
5,所以它前面的 男生 为单位一。
3.商店运来一批水果,其中苹果有180kg,梨比苹果多91,梨有多少千克?
本题中有比字,比字的后边是苹果,所以苹果是单位一。
4.某校有男生240人,女生比男生少6
1,女生有多少人? 本题有比字所以比字的后边 男生为单位一。
二.(1)已知单位“1”,直接用乘法
(2)不知单位“1”,直接用除法或设它为X 即用方程法 例题解析:
1、某校有男生200人,女生是男生的 65,男生有多少人? 单位一是男生,男生的人数是知道的200人,所以已知单位一,用乘法
200×6
5 2、某学校有女生400人,女生占全校人数的8
5,该校有多少人?
单位一是全校人数,因为不知道全校人数所以,不治单位一,用除法。
400÷8
5 练习
1、某校有女生200人,女生是男生的 6
5,男生有多少人? 2、鸡场养有大鸡1200只,是中鸡的76,中鸡是小鸡的85,小鸡有多少只?
三、两步连乘(用两次已知单位一用乘法)
3.(1)鸡场养有小鸡2240只,中鸡是小鸡的 8
5,大鸡是中鸡的7
6,大鸡有多少只? 4.(1)公园里有郁金香90棵,月季花是郁金香的 95 ,兰花的棵数是月季花的 5
2 ,兰花有多少棵? 四、比单位“1”多或者少几分之几类型题目
解析:分两步,第一步判断是乘法还是除法
使用前面讲的已知单位一用乘法不知单位一用除法 第二步判断加法还是减法
具体操作:比单位一多,用加法
比单位一少。
用减法
例题解析:
1,梨1.商店运来一批水果,其中苹果有180kg,梨比苹果多
9
有多少千克?
首先判断单位一,比字后边,苹果,另外判断知道苹果的数量,所以已知单位一用乘法,另外比单位一多,用加法,所以判断出来为用乘法,加法。
1)
具体为180×(1+
9
此类题目竖式模式为数×(1+分数)
数×(1-分数)
数÷(1+分数)
数÷(1-分数)
格式为此四类,只是判断乘除和加减。
1,梨2、商店运来一批水果,其中苹果有180kg,苹果比梨多
9
有多少千克?
单位一是梨,不知单位一,用除法,比单位一多,用加法,列式为:
1)
180÷(1+
9
1,梨3、商店运来一批水果,其中苹果有180kg,梨比苹果少
9
有多少千克?
单位一是苹果,知道苹果的数量,为已知单位一用乘法,比
1)
单位一少,用减法,列式为;180×(1-
9
1,梨4、商店运来一批水果,其中苹果有180kg,苹果比梨少
9
有多少千克?
单位一是梨,不知道梨的数量,不知单位一,用除法,比单位一少,用减法。
列式为;180÷(1-9
1) 练习
1、某电子厂有男工人189人,女工人的人数比男工人的人数多9
2,女工人有多少人? 2、某校有男生240人,女生比男生少6
1,女生有多少人? 3、一个mp3原价540元,现在的价格比原来降低了61,这个mp3现在的价格是多少元?
4、商店运来一批水果,其中梨有20kg, 梨比苹果多91,苹果多少千克?
5、张大爷养了200只鹅,鹅的只数比鸭少5
3。
养了多少只鸭?
6、某校有女生200
人,女生比男生少61,学校共有学生多少人?
7、学校图书馆有科技读物800本,比故事读物少83,故事读物有多少本?
五、甲是乙的几倍类型,(用除法)
1、男生人数有200人,女生人数有50人,男生是女生的多少倍?
简单题目:200÷50用除法
虽然比较简单,但是需要判断谁当被除数谁是除数,这个问题可以让除法和分数的联系解决一下,因为在除法算式中除数想当与分数的分母,分母可以看做单位一,所以单位一应当放在分母的位置,也就是想当与放在除数的位置,能明白吗?
除法和分数的关系,下面解释一下。
举例说明。
4÷5=54
前面5为除数,想当与后面分数的分母
第五类、甲是乙的几分之几类型和甲是乙的几倍相同(用除法)。
1、男生人数有50人,女生人数有200人,男生是女生的几分之几?
50÷200
六、甲比乙多(或少)几分之几
此类题目分两步,第一步,先求多或者少的具体数量,第二步用具体数量除以单位一。
1、某村调整产业结构,去年种梨树20公顷,今年种梨树25公顷,今年比去年增加了几分之几?
例题解析:
第一步,先求多的具体数量
25-20=5
第二步,再求这个具体数量在单位一里面所占的比例,也就是用这个具体数量除以单位一,(单位一的判断前面已经讲
过)看问题所求
今年比去年增加了几分之几?
单位一是去年
1
5÷20=4
练习
1、某村调整产业结构,去年种梨树20公顷,今年种梨树25公顷,去年比今年少种了百分之几?
注意;百分数应用题和分数应用题相同,只是把结果变为百分数而已,在分析题的时候讲百分数看做分数即可。
七、百分率问题
固定格式直接套用公式。