初中数学最全知识点总结 初中数学公式汇总 中考最后压[整理版]

合集下载

初中数学知识点全汇总(中考必备)

初中数学知识点全汇总(中考必备)

初中数学知识点全汇总(中考必备)代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如 1.101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a叫实数a的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

初中数学知识点最全总结(精选)

初中数学知识点最全总结(精选)

初中数学知识点最全总结(精选)初中数学知识点最全总结(精选)小伙伴们处在中考复习阶段,我们好好梳理知识点是非常重要的一个环节。

数学知识点是很重要的,下面小编给大家整理了关于初中数学知识点最全总结的内容,欢迎阅读,内容仅供参考!初中数学知识点最全总结1圆的基本性质1.半圆或直径所对的圆周角是直角。

2.任意一个三角形一定有一个外接圆。

3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

4.在同圆或等圆中,相等的圆心角所对的弧相等。

5.同弧所对的圆周角等于圆心角的一半。

6.同圆或等圆的半径相等。

7.过三个点一定可以作一个圆。

8.长度相等的两条弧是等弧。

9.在同圆或等圆中,相等的圆心角所对的弧相等。

10.经过圆心平分弦的直径垂直于弦。

直线与圆的位置关系1.直线与圆有唯一公共点时,叫做直线与圆相切。

2.三角形的外接圆的圆心叫做三角形的外心。

3.弦切角等于所夹的弧所对的圆心角。

4.三角形的内切圆的圆心叫做三角形的内心。

5.垂直于半径的直线必为圆的切线。

6.过半径的外端点并且垂直于半径的直线是圆的切线。

7.垂直于半径的直线是圆的切线。

8.圆的切线垂直于过切点的半径。

2平行线的两条判定定理(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

简称:内错角相等,两直线平行。

(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

简称:同旁内角互补,两直线平行。

补充平行线的判定方法:(1)平行于同一条直线的两直线平行。

(2)垂直于同一条直线的两直线平行。

(3)平行线的定义。

3投影投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。

平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。

中心投影:由同一点发出的光线所形成的投影称为中心投影。

24、视图当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。

物体的三视图特指主视图、俯视图、左视图。

(完整版) 初中数学必背知识点总结

(完整版) 初中数学必背知识点总结

(完整版) 初中数学必背知识点总结初中数学必背知识点总结(完整版)
初中数学是建立中学数学基础的重要阶段,掌握必背知识点对学生的数学研究起到关键性的作用。

以下是初中数学的必背知识点总结。

代数与函数
- 一次函数和二次函数的基本性质
- 幂的运算规律
- 根式的求值及简化
- 四则运算的规则与性质
- 方程与不等式的解法及应用
- 比例与相似的概念与计算
- 函数的定义与性质
几何
- 图形的基本要素和表示方法
- 二维图形的性质、分类和计算
- 三维图形的性质、分类和计算
- 直线、角及其性质的研究
- 圆及其性质的研究
- 三角形及其性质的研究
- 相交线、平行线和垂线的研究
- 平面中的几何关系和判定
- 同位角、对顶角、全等三角形的性质- 平行四边形和梯形的性质
概率与统计
- 实际问题中的统计方法和应用
- 随机事件及其概率计算
- 范围、均值和中位数的计算与分析- 正态分布及其应用
数据与函数
- 数据的收集、整理和表示方法
- 统计数据的分析和解读
- 相关性和回归线的探究
- 折线图、饼图和柱状图的构建与解读
- 函数的图像与性质
这些初中数学的必背知识点涵盖了代数、几何、概率与统计以及数据与函数等重要内内容,掌握这些知识点将为学生在数学学习中打下坚实的基础。

初中数学知识点总结及公式大全

初中数学知识点总结及公式大全

初中数学知识点总结及公式大全初中数学知识点总结及公式大全一、基本运算1.加法的运算规则:交换律、结合律、加零律2.减法的运算规则:减去一个负数等于加上一个正数3.乘法的运算规则:交换律、结合律、乘以1等于它本身、乘以0等于04.除法的运算规则:分子为0,结果为0;分母为0,结果不存在;分子分母相等,结果为1二、整数运算1.整数的加减法运算2.整数的乘法运算3.整数的除法运算三、分数与小数1.分数的加减法运算2.分数的乘法运算3.分数的除法运算4.小数与分数的互相转换四、百分数1.百分数的意义和表示方法2.百分数的分数形式与小数形式的转化3.百分数的加减法运算4.百分数的乘法运算5.百分数的除法运算五、比例与比例的应用1.比例的基本概念2.比例的性质:平行性、对应性3.比例的相等关系4.比例的扩大和缩小5.比例问题的应用:速度、时间、长度等六、图形的性质与计算1.面积:长方形、正方形、三角形、平行四边形、梯形2.周长:长方形、正方形、三角形、平行四边形、梯形、圆形3.体积:长方体、正方体、三角柱、圆柱、圆锥、球体七、方程与方程的应用1.一元一次方程的概念和解法2.一元一次方程的应用:问题的数学表达和求解3.一元一次方程与图象的关系4.含有括号的一元一次方程的解法5.一元一次方程的和差问题6.一元一次方程组的概念和解法八、比较大小、不等式与不等式的应用1.整数的比较大小2.分数的比较大小3.小数的比较大小4.数与式的大小比较5.不等式的性质与解法6.解不等式方程组的图解法7.不等式的应用:问题的数学表达和求解九、平方根与整式1.平方根的概念、性质及运算法则2.含有平方根的整式的加减乘除运算3.一元二次方程的定义与解法4.二次函数与抛物线的基本性质十、统计与概率1.统计的基本概念:调查、样本、总体、频数、频率2.统计图的绘制与解读:条形图、折线图、饼图3.概率的基本概念:随机试验、样本空间、事件、概率4.概率的计算:基本概率、加法原理、乘法原理。

初中数学必背知识点(精华版)

初中数学必背知识点(精华版)

初中数学必背知识点(精华版)
一、整数
- 整数的概念和性质
- 整数的加减法运算规则
- 整数的乘法运算规则
- 整数的除法运算规则
- 整数的绝对值与相反数
- 整数的大小比较
- 整数的混合运算
二、分数
- 分数的概念和性质
- 分数的四则运算规则
- 分数的化简和比较大小
- 假分数和带分数的转化
- 分数和整数的混合运算
- 分数的分解与合并
三、小数
- 小数的概念和性质
- 小数的加减乘除法运算规则
- 小数的大小比较
- 小数和分数之间的转化
- 循环小数和无限不循环小数的表示和性质
四、代数
- 代数式的概念和性质
- 代数式的运算与化简
- 一元一次方程
- 一元一次方程的应用
- 一元一次方程组
- 平面直角坐标系和图形的表示
- 坐标的计算和性质
五、几何
- 平面与空间的基本概念
- 角的概念和性质
- 三角形的分类和性质
- 三角形的面积
- 圆的概念和性质
- 圆的周长和面积
- 空间几何体的分类和性质
- 空间几何体的表面积和体积
六、统计与概率
- 数据的收集和整理
- 直方图和折线图的绘制与分析
- 常见统计量的计算
- 概率的概念和性质
- 事件的概念和性质
- 概率的计算公式
- 独立事件和互斥事件的概率
以上是初中数学中的必背知识点精华版,掌握这些知识,可以帮助你更好地理解和运用数学,提高你的数学水平。

初中数学公式大全总结归纳

初中数学公式大全总结归纳

初中数学公式大全总结归纳一、代数部分1. 有理数- 有理数加法法则:- 同号两数相加,取相同的符号,并把绝对值相加。

例如:3 + 5=8,( -3)+(-5)=-(3 + 5)=-8。

- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

例如:3+( - 5)=-(5 - 3)=-2,( - 3)+5 = 5-3 = 2。

- 一个数同0相加,仍得这个数。

- 有理数减法法则:减去一个数,等于加上这个数的相反数。

即a - b=a+( - b)。

- 有理数乘法法则:- 两数相乘,同号得正,异号得负,并把绝对值相乘。

例如:3×5 = 15,( - 3)×(-5)=15,3×(-5)=-15。

- 任何数同0相乘,都得0。

- 有理数除法法则:- 除以一个不等于0的数,等于乘这个数的倒数。

即adiv b=a×(1)/(b)(b≠0)。

- 两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

2. 整式的加减- 合并同类项:同类项的系数相加,所得结果作为系数,字母和指数不变。

例如:3x+2x=(3 + 2)x=5x。

- 去括号法则:- 如果括号前面是“+”号,去括号时括号里面各项不变号。

例如:a+(b - c)=a + b-c。

- 如果括号前面是“-”号,去括号时括号里面各项都变号。

例如:a-(b -c)=a - b + c。

3. 一元一次方程- 一元一次方程的标准形式:ax + b = 0(a≠0)。

- 求解一元一次方程的步骤:- 去分母(方程两边同时乘以各分母的最小公倍数)。

- 去括号。

- 移项(把含未知数的项移到等号一边,常数项移到等号另一边,移项要变号)。

- 合并同类项。

- 系数化为1(方程两边同时除以未知数的系数)。

4. 二元一次方程组- 二元一次方程组的解法:- 代入消元法:将一个方程中的某个未知数用含有另一个未知数的代数式表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

(完整版)中考数学知识点总结(完整版)

中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 —a ; (2)a 和b 互为相反数⇔a+b=0 2、倒数:(1)实数a(a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号. 4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a 叫实数a 的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示.实数和数轴上的点是一一对应的关系. 四、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。

中考数学必背知识点(精简必背)

中考数学必背知识点(精简必背)中考数学必背知识点一、不为零的量1.分式 $\frac{A}{B}$,分母 $B\neq 0$;2.二次方程 $ax^2+bx+c=0$($a\neq 0$);3.一次函数 $y=kx+b$($k\neq 0$);4.反比例函数 $y=\frac{k}{x}$($k\neq 0$);5.二次函数 $y=ax^2+bx+c=0$($a\neq 0$)。

二、非负数1.$|a|\geq 0$;2.$a\geq 0$($a\geq 0$);3.$a^{2n}\geq 0$($n$ 为自然数)。

三、绝对值:$|a|=\begin{cases}a。

& a\geq 0\\-a。

& a<0\end{cases}$四、重要概念1.平方根与算术平方根:如果 $x^2=a$($a\geq 0$),则称 $x$ 为 $a$ 的平方根,记作:$x=\pm\sqrt{a}$,其中$x=\sqrt{a}$ 称为 $x$ 的算术平方根;2.负指数:$a^{-p}=\frac{1}{a^p}$;3.零指数:$a=1$($a\neq 0$);4.科学计数法:$a\times 10^n$($n$ 为整数,$1\leqa<10$)。

五、重要公式一)幂的运算性质1.同底数幂的乘法法则:$a^m\timesa^n=a^{m+n}$($a\neq 0$,$m$,$n$ 都是正数);2.幂的乘方法则:$(a^m)^n=a^{mn}$($m$,$n$ 都是正数);3.积的乘方法则:$(ab)^n=a^n\times b^n$($n$ 为正整数);4.同底数幂的除法法则:$\frac{a^m}{a^n}=a^{m-n}$($a\neq 0$,$m$,$n$ 都是正数,且 $m>n$)。

二)整式的运算1.平方差公式:$(a+b)(a-b)=a^2-b^2$;2.完全平方公式:$(a\pm b)^2=a^2\pm 2ab+b^2$。

中考数学必考知识点归纳

中考数学必考知识点归纳一、数与代数。

1. 有理数。

- 有理数的概念:整数和分数统称为有理数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。

- 数轴:规定了原点、正方向和单位长度的直线叫做数轴。

数轴上的点与有理数一一对应。

- 相反数:只有符号不同的两个数叫做互为相反数,0的相反数是0。

若a与b互为相反数,则a + b=0。

- 绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

即| a|=a(a≥0) -a(a<0)。

- 有理数的运算:- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。

- 减法法则:减去一个数等于加上这个数的相反数。

- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。

- 除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。

- 乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。

a^n 中,a叫做底数,n叫做指数。

2. 实数。

- 无理数:无限不循环小数叫做无理数,如√(2)、π等。

- 实数的概念:有理数和无理数统称为实数。

实数与数轴上的点一一对应。

- 实数的运算:实数的运算顺序为先算乘方、开方,再算乘除,最后算加减;有括号的先算括号里面的。

3. 代数式。

- 代数式的概念:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式,单独的一个数或者一个字母也是代数式。

- 整式:单项式和多项式统称为整式。

单项式是数与字母的乘积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。

- 整式的加减:实质是合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。

[全]中考初中数学必考知识点思维导图+考点总结

初中数学必考知识点思维导图+考点总结二次函数知识点梳理:1.定义:一般地,如果y=ax²+bx+c(其中a,b,c是常数,a≠0),那么y叫做x的二次函数.2.二次函数y=ax²的性质(1)抛物线y=ax²的顶点是坐标原点,对称轴是y轴.(2)函数y=ax²的图像与a的符号关系.①当a>0时Û抛物线开口向上Û顶点为其最低点;②当a<0时Û抛物线开口向下Û顶点为其最高点.(3)顶点是坐标原点,对称轴是轴的抛物线的解析式形式为y=ax²(a≠0).3.二次函数y=ax²+bx+c的图像是对称轴平行于(包括重合)y轴的抛物线.4.二次函数y=ax²+bx+c用配方法可化成:y=a(x - h)²+k的形式,其中5.二次函数由特殊到一般,可分为以下几种形式:①y=ax²;②y=ax²+k;③y=a(x - h)²;④y=a(x - h)²+k;⑤y=ax²+bx+c.6.抛物线的三要素:开口方向、对称轴、顶点.①a的符号决定抛物线的开口方向:当a>0时,开口向上;当a<0时,开口向下;|a|相等,抛物线的开口大小、形状相同.②平行于y轴(或重合)的直线记作x=h.特别地,y轴记作直线x=0.7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法(1)公式法:∴顶点是:对称轴是直线:(2)配方法:运用配方的方法,将抛物线的解析式化为y=a(x-h)²+k的形式,得到顶点为(h,k),对称轴是直线x=h.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.9.几种特殊的二次函数的图像特征如下:旋转。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1/27 一、猜想、探究题 1. 已知:抛物线2yaxbxc与x轴交于A、B两点,与y轴交于点C. 其中点A在x轴的负半轴上,点C在y轴的负半轴上,线段OA、OC的长(OA2540xx的两个根,且抛物线的对称轴是直线1x.

(1)求A、B、C三点的坐标; (2)求此抛物线的解析式; (3)若点D是线段AB上的一个动点(与点A、B不重合),过点D作DE∥BC交AC于点E,连结CD,设BD的长为m,△CDE的面积为S,求S与m的函数关系式,并写出自变量m的取值范围.S是否存在最大值?若存在,求出最大值并求此时D点坐标;若不存在,请说明理由.

2. 已知,如图1,过点01E,作平行于x轴的直线l,抛物线214yx上的两点AB、的横坐标分别为1和4,直线AB交y轴于点F,过点AB、分别作直线l的垂线,垂足分别为点C、D,连接CFDF、. (1)求点ABF、、的坐标; (2)求证:CFDF;

(3)点P是抛物线214yx对称轴右侧图象上的一动点,过点P作PQPO⊥交x轴于点Q,是否存在点P使得OPQ△与CDF△相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

y x B D O A

E C 2/27

3. 已知矩形纸片OABC的长为4,宽为3,以长OA所在的直线为x轴,O为坐标原点建 立平面直角坐标系;点P是OA边上的动点(与点OA、不重合),现将POC△沿PC翻折 得到PEC△,再在AB边上选取适当的点D,将PAD△沿PD翻折,得到PFD△,使得 直线PEPF、重合. (1)若点E落在BC边上,如图①,求点PCD、、的坐标,并求过此三点的抛物线的函 数关系式; (2)若点E落在矩形纸片OABC的内部,如图②,设OPxADy,,当x为何值时, y取得最大值?

(3)在(1)的情况下,过点PCD、、三点的抛物线上是否存在点Q,使PDQ△是以PD 为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.

E D C

A F B x O

y

l E D C

O

F x

y

(图1) 备用图

C y E B

F D

A P x O 图① A

B D F E

C

O P x

y 图② 3/27

4. 如图,已知抛物线243yxx交x轴于A、B两点,交y轴于点C,•抛物线的对称轴交x轴于点E,点B的坐标为(1,0). (1)求抛物线的对称轴及点A的坐标; (2)在平面直角坐标系xoy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由; (3)连结CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.

5. 如图①, 已知抛物线32bxaxy(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C. (1)求抛物线的解析式; (2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由. (3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.

O D B C A x y E

y C A M O B x 图① y C

A O B

x

图② 4/27

二、动态几何 6. 如图,在梯形ABCD中,906DCABAAD∥,°,厘米,4DC厘米,BC的坡度34i∶,动点P从A出发以2厘米/秒的速度沿AB方向向点B运动,动点Q从点B出

发以3厘米/秒的速度沿BCD方向向点D运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为t秒. (1)求边BC的长; (2)当t为何值时,PC与BQ相互平分; (3)连结PQ,设PBQ△的面积为y,探求y与t的函数关系式,求t为何值时,y有最大值?最大值是多少?

7. 已知:直线112yx与y轴交于A,与x轴交于D,抛物线212yxbxc与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为 (1,0). (1)求抛物线的解析式; (2)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标. (3)在抛物线的对称轴上找一点M,使||AMMC的值最大,求出点M的坐标.

Cc D

c

Ac Bc Qc

Pc

y x O D

E A B C 5/27

8. 已知:抛物线20yaxbxca的对称轴为1x,与x轴交于AB,两点,与y轴交于点C,其中30A,、02C,. (1)求这条抛物线的函数表达式. (2)已知在对称轴上存在一点P,使得PBC△的周长最小.请求出点P的坐标. (3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DEPC∥交x

轴于点E.连接PD、PE.设CD的长为m,PDE△的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.

9. 如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(24),;矩形ABCD的顶点A与点O重合,ADAB、分别在x轴、y轴上,且2AD,3AB. (1)求该抛物线所对应的函数关系式; (2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平 行移动,同时一动点P也以相同的速度.....从点A出发向B匀速移动.设它们运动的时间为

t秒(03t≤≤),直线AB与该抛物线的交点为N(如图2所示).

①当52t时,判断点P是否在直线ME上,并说明理由; ②设以PNCD、、、为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

A C x

y B O

y x M B C D O A 图2 P N E y x M

B C

D O (A)

图1 E 6/27

10. 已知抛物线:xxy22121. (1)求抛物线1y的顶点坐标. (2)将抛物线1y向右平移2个单位,再向上平移1个单位,得到抛物线2y,求抛物线

2y的解析式. (3)如下图,抛物线2y的顶点为P,x轴上有一动点M,在1y、2y这两条抛物线上是否存在点N,使O(原点)、P、M、N四点构成以OP为一边的平行四边形,若存在,求出N点的坐标;若不存在,请说明理由.

【提示:抛物线cbxaxy2(0a)的对称轴是,abx2顶点坐标是2424bacbaa,】

11. 如图,已知抛物线C1:522xay的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1. (1)求P点坐标及a的值;(4分) (2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(4分) (3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.(5分)

5 4 3 2 1

1 2 3 4 5 6 7 8 9 1 1

2 3 4

P y x 1y 2y O 7/27 12. 如图,在平面直角坐标系中,已知矩形ABCD的三个顶点(40)B,、(80)C,、(88)D,.抛物线2yaxbx过AC、两点. (1)直接写出点A的坐标,并求出抛物线的解析式; (2)动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动,速度均为每秒1个单位长度,运动时间为t秒.过点P作PEAB⊥交AC于点E. ①过点E作EFAD⊥于点F,交抛物线于点G.当t为何值时,线段EG最长? ②连接EQ.在点PQ、运动的过程中,判断有几个时刻使得CEQ△是等腰三角形? 请直接写出相应的t值.

13. 如图1,已知正比例函数和反比例函数的图像都经过点M(-2,1-),且P(1-,- 2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B. (1)写出正比例函数和反比例函数的关系式; (2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△

y x A O

B

P

M

图1 C1

C2

C

3

y x A O B

P

N

图2 C1

C4

Q E F

y O x

A F D

Q G

E P

B C

相关文档
最新文档