磁路和变压器

合集下载

电工基础四:磁路与变压器

电工基础四:磁路与变压器

(2)硬磁材料:
磁滞回线较宽,比 如碳钢等。
一般用来制造永久 磁铁。
(3)矩磁材料:
磁滞回线接近矩形, 比如铁氧体材料。一 般用于计算机或控制 系统中的记忆元件。
B
B
B
H
H
H
§3 磁路及磁路的基本定律
1 磁路
i
u
s
: 主磁通 s :漏磁通 i :励磁电流
在铁芯线圈中,铁芯是由高导磁率的材料作成的。当线圈通有电流时,磁通的绝大部分通过铁
磁导率的单位
亨/米(H/m)
一般将其它任意一种物质的磁导率与真空的磁导率 0作比较,定义
r= /0
r 称为相对磁导率
自然界的物质按磁导 率的大小,分为磁性 材料和非磁性材料。
非磁性材料:≈0 、r≈ 1 磁性材料: >>0 、r >>1
4 磁场强度H
磁场强度H是计算磁场时所引用的一个物理量,它也 是一个矢量。
§6 电磁铁
电磁铁是自动控制系统中广泛应用的一种执行元件。它是利用 通电的铁心线圈产生电磁吸力吸引衔铁,使衔铁运动而作功。
电磁
铁的结构 型式很多, 但都由铁 心、线圈 和衔铁三 部分组成, 它们的工 作原理也 都相同。
衔铁 线圈 铁心
电磁铁按励磁电流的不同分直流电磁铁和交流电磁铁两类。
1 直流电磁铁 直流电磁铁的电磁吸力为:
(1)当铁芯材料为铸铁时,
由磁化曲线可查得: I
Hl
9000 0.45
13.(5 A)
B=0.9T→H=9000A/m N
300
(2)当铁芯材料为硅钢片时,
由磁化曲线可查得: I
Hl
260
0.45

磁路与变压器

磁路与变压器

5
2. 磁通 磁通是磁感应强度矢量的通量,是指穿过某一截面S的磁力 线条数,用Φ表示,单位是Wb,称为韦伯。在均匀磁场中,各 点磁感应强度大小相等,方向相同。当所取截面S与磁力线方向 垂直时,有
Φ BS 或 B Φ
(7.2)
S
从式(7.2)可看出,B也可理解为单位截面上的磁通, 即穿 过单位截面的磁力线条数,故又称为磁通密度,简称磁密。
第二定律。
23
4. 磁路的计算 在进行磁路计算时,首先要注意几个问题。 1) 主磁通与漏磁通 主磁通又称为工作磁通,即工作所要求的闭合磁路的磁 通,如图7.7中的Φ即为主磁通。 漏磁通是不按所需的工作路径闭合的磁通,如图7.7中的 Φσ所示。漏磁通很小,一般只有工作磁通的千分之几,因而 常可忽略不计。
15
图7.4 不同材料的磁滞回线 (a) 永磁材料;(b) 软磁材料;(c) 矩磁材料
16
7.2 磁路计算的基本定律
1. 安培环路定律 任何磁场都是由电流产生的,磁路中的磁场也不例外。安 培环路定律说明了产生磁场的电流与所产生的磁场强度之间的 定量关系,它表述为:在磁场中沿任何闭合回路的磁场强度H的 线积分等于通过闭合回路内各电流的代数和。用数学式表示为
磁通为Φ2和Φ3,则根据物理学中磁通连续性原理可知:
Φ1=Φ2+Φ3

Φ1-Φ2-Φ3=0
推广到一般情况,对任意闭合面的总磁通有:
∑Φk=0 这一关系与电路中的基尔霍夫第一定律相对应,可称为磁路
的基尔霍夫第一定律。
另外,若在图7.6所示的磁路中,任取一闭合磁路 ABCDA,其中:CDA段平均长度为L1,AC段平均长度为L2, ABC段平均长度为L3。则根据全电流定律得到
36

磁路和变压器电工电子技术基础

磁路和变压器电工电子技术基础

磁路和变压器电工电子技术基础概述磁路和变压器是电工电子技术中重要的基础知识,它们在电力系统、通信系统以及各种电子设备中起着重要的作用。

本文将介绍磁路和变压器的基础概念、工作原理以及应用。

磁路的基础概念磁路是由磁性材料构成的路径,磁场通过磁路来传导。

磁路主要由磁性材料和空气间隙组成,其中磁性材料的主要作用是增强磁场强度。

磁通量和磁势磁通量是磁场通过磁路的量度,用Φ表示,单位是韦伯(Wb)。

磁通量的大小与磁场强度和磁路截面积成正比。

磁势是磁场在磁路中存在的力量,用Φ表示,单位是安培·匝(Am)。

磁路中的欧姆定律磁路中的欧姆定律类似于电路中的欧姆定律,描述了磁路中的磁势、磁通量和磁路电阻之间的关系。

根据磁路中的欧姆定律,磁势与磁通量的比例关系可以表示为Φ = R × Ψ,其中Φ表示磁通量,Ψ表示磁势,R表示磁路电阻。

磁路中的磁阻磁路中的磁阻决定了磁场通过磁路的难易程度。

磁阻与磁性材料的特性以及磁路的几何形状有关。

磁路中的磁阻可以通过磁路的长度、截面积以及磁性材料的磁导率来计算。

变压器的基本原理变压器是利用电磁感应原理而工作的电器,主要用于将交流电能从一个电路传输到另一个电路。

变压器可以将交流电的电压和电流进行变换,同时也可以提高或降低电压的大小。

变压器的结构典型的变压器由一个或多个绕组和一个铁芯构成。

绕组一般分为输入绕组和输出绕组,它们通过铁芯相连接。

铁芯主要起到增加磁路磁阻、导磁和集中磁感应线的作用。

变压器的工作原理变压器的工作原理基于电磁感应定律。

当输入绕组通电时,产生的磁场通过铁芯传导到输出绕组,由于磁场的变化,输出绕组中会产生感应电动势,从而产生输出电流。

变压器的变压比变压器的变压比是输入电压和输出电压之间的比值。

变压器的变压比可以通过绕组的匝数比来确定。

变压比的大小决定了变压器的升压或降压功能。

变压器的效率变压器的效率是指输出功率与输入功率之间的比值。

变压器的效率通常高达90%以上,主要损耗包括铜损、铁心损耗和额定功率损耗。

《电工电子技术》——磁路与变压器

《电工电子技术》——磁路与变压器

已制成的变压器、互感器等,通常都无法从外观上看出 绕组的绕向,如果使用时需要知道它的同名端,可通过实验 方法测定同名端。
直流电感法
交流感应法
3.4 特殊变压器
3.4.1 自耦变压器
若变压器的原、副绕组有一部分是共用的,这类的变 压器叫自耦变压器。自耦变压器的原、副绕组之间既有磁 的耦合,又有电的联系。
在实际工作中可以选用不同匝数比的变压器,将负载阻抗变换 为所需要的阻抗值。在电子线路中常利用变压器的这种阻抗变 换作用实现阻抗匹配。
4. 变压器的外特性、损耗和效率 (1)变压器的外特性
当原绕组上外加电压和副绕组的负载功率因数cosφ2不变 时,副边端电压U2随负载电流I2变化的规律,称为变压器 的外特性。 从图中可看出,负载性质和功率因数不同时,从空载(I2=0) 到满载(I2=I2N),变压器副边电压U2变化的趋势和程度是 不同的。,我们用副边电压变化率(或称电压调整率)来表示。 副边电压变化率ΔU(%)规定为:当原边接在额定电压和额 定频率的交流电源上,副边开路电压U2N和在指定的功率 因数下副边输出额定电流时的副边电压U2的算术差与副边 额定电压U2N的百分比值,即
r 0
4. 磁场强度H 同一通电线圈内的磁场强弱(用磁感应强度B来表征), 不仅与所同电流的大小有关,而且与线圈内磁场介质的导磁性 能有关。
在通电线圈中,H这个单位只与电流的大小有关,而与线圈 中被磁化的物质,即与物质的磁导率μ无关。但通电线圈中的磁 感应强度B的大小却与线圈中被磁化的物质的磁导率μ有关。H 的大小由B与μ的比值决定,即磁场强度为
2.额定电流
额定电流是根据变压器允许温升而规定的电流值,以 安或千安为单位,变压器的额定电流有原边额定电流I1N和 副边额定电流I2N。

第五章磁路与变压器

第五章磁路与变压器

A*
A*
X
X
a* x
a x*
i
F1
A •
Xi a
• x
F2
A •
X a•
x
i
F1
A •
Xi a
x 同名端

F2
A •
X a
x•
同名端
二、线圈的接法 电器使用时两种电压(220V/110V)的切换:
1
*
3
*
2
4
220V: 联结 2 -3
110V: 联结 1 -3,2 -4
两种接法下线圈工作情况的分析
220V:联结 2 -3
i
1 10 *
N
3
U 220
*
2
N
4
励磁
i10
2
N
Φ m
U220 4.44 f (2N )Φm
Φ m
U 220
4.44 f 2N
220V:联结 2 -3
Φ m
U 220
4.44 f 2N
110V:联结 1 -3,2 -4
i10 1
*
1,3
3
U 110
*
2
2,4
4
U110 4.44 f (N )Φm
按绕组数分: 双绕组、多绕组及自耦变压器。
二. 构造
变压器铁心: 硅钢片叠压而成。 变压器绕组: 高强度漆包线绕制而成。 其它部件: 油箱、冷却装置、保护装置等。
线圈 铁心
铁心
壳式变压器
线圈 心式变压器
单相变压器的基本结构
i1 Φ
u1
铁芯
i2
u2 RL
原边 绕组
副边 绕组

电机与电气控制技术基础

电机与电气控制技术基础
③ 计算各段磁路的磁压 ,即 、 、 。
④ 利用式(15-2)求出磁动势IN。
15.1.2 铁心线圈与电磁铁
1.铁心线圈的电磁关系
铁心线圈的电磁关系有两种,一种是用直流来励磁,另一种是用交流励磁。直流励磁的铁心线圈,磁通恒定、电流I的大小只与线圈电阻R有关,功率损耗也只有I 2R,即所谓铜损。而交流铁心线圈的电磁关系与功率损耗等是比较复杂的。它也是变压器与交流电机的基础。
磁饱和性即磁性材料的磁化磁场B(或Φ)随着外磁场H(或I)的增强,并非无限地增强,而是当全部磁畴的磁场方向都转向与外磁场一致时,磁感应强度B不再增大,达到饱和值。亦即铁磁性材料的磁化曲线是非线性的,如图15-2所示。为了尽可能大地获得强磁场,一般电机铁心的磁感应强度常设计在曲线的拐点a附近。
下面以非匀磁路图15-4的分析与计算为例,介绍其求解磁动势的一般步骤。
① 由于各段磁路的截面不同,而磁通Φ相同,因此各段磁路中的磁感应强度Bi=Φ/Si,由此求得B 1、B 2、及B 0,其中计算B 0时的截面S 0 时,因δ很小,可以也取铁心截面S 2。
② 据各段磁路材料的磁化曲线B=f(H),查得与上述B i对应的磁场度H i。其中空气隙或其它非铁磁材料的磁场强度H 0=B 0/μ0=B 0/4π×10-7(A/m)可以直接计算。
[牛顿] (15-11)
由式(15-11)可知,吸力在零与最大值Fm之间脉动(图15-8)。因而衔铁以两倍电源频率在颤动,引起噪音,同时触头容易损坏。为了消除这种现象,可在磁极的部分端面上套一个分磁坏(图15-9)。于是在分磁坏(或称短路环)中便产生感应电流,以阻碍磁通的变化,使在磁极两部分中的磁通Φ1与Φ2之间产生一相位差,因而磁极各部分的吸力也就不会同时降为零,这就消除了衔铁的颤动,当然也就除去了噪音。

电工电子技术(第二版)第五章

电工电子技术(第二版)第五章
电能输送到用电区域后,为了适应用电设备的电压要求,还需通过各级 变电站(所)利用变压器将电压降低为各类电器所需要的电压值。
那么变压器结构如何?如何实现电压升高或降低?图5-1所示为电力变压 器外形。
返回
5. 1 磁路及基本物理量
工程中常见的电气设备如变压器、电动机等,不仅包含电路部分,而 且还有磁路部分。
下一页 返回
5. 3 变压器
5. 3. 1 变压器的基本结构
变压器的种类很多,结构形式多种多样,但基本结构及工作原理都相 似,均由铁芯和线圈(或称绕组)组成。铁芯的基本结构形式有心式和 壳式两种,如图5-5所示。铁芯一般是由导磁性能较好的硅钢片叠制而 成,硅钢片的表面涂有绝缘漆,以避免在交流电源作用下铁芯中产生 较大的涡流损耗。与电源相接的线圈,称为一次侧绕组;与负载相接的 线圈称为二次侧绕组。
示意图。
例5 -1有一台电压为220/36 V的降压变压器,二次侧接一盏36 V, 40 W 的灯泡,试求:(1)若变压器的一次侧绕组N1 = 1100匝,二次侧绕组匝数 应是多少?(2)灯泡点亮后,一次侧、二次侧的电流各为多少?
解:(1)由公式(5一3),可以求出二次侧的匝数:
上一页 下一页 返回
下一页 返回
5. 2 交流铁芯线圈
设电压、电流和磁通及感应电动势的参考方向如图5 -4所示。 由基尔霍夫电压定律有
上一页 下一页 返回
5. 2 交流铁芯线圈
大多数情况下,线圈的电阻R很小,漏磁通 较小即 根据法拉第电磁感应定律,有 得
上一页 下一页 返回
5. 2 交流铁芯线圈
由于电源电压与产生的磁通同频变化,设 电压的有效值为
作用而消耗的那部分能量。磁滞损耗的能量转换为热能而使磁性材料 发热为了减少磁滞损耗,一般交流铁芯都采用软磁材料。

5-磁路与变压器

5-磁路与变压器


算上极为重要,其为非线性曲线,
实际中通过实验得出。
O
B和与H的关系
H
3. 磁滞性
磁滞性:磁性材料中磁感应强度B的变化总是滞后于
外磁场变化的性质。
磁性材料在交变磁场中反复磁化,其B-H关系曲线
是一条回形闭合曲线,称为磁滞回线。 B
剩磁感应强度Br (剩磁) : 当线圈中电流减小到零(H=0)
• Br
在能量传输过程中,当输送功率P =UI cos 及 负载功率因数cos 一定时:
U I P = I²Rl 电能损耗小 I S 节省金属材料(经济)
电力工业中常采用高压输电低压配电,具体如下:
发电厂 10.5kV
输电线 220kV
升压
降压
变电站 10kV
降压

实验室 380 / 220V
在交流铁心线圈中,处于交变磁通下的铁心内
的功率损耗称铁损,用PFe 表示。 铁损由磁滞和涡流产生。
(1)磁滞损耗(Ph)
由磁滞所产生的能量损耗称为磁滞损耗(Ph)。
磁滞损耗的大小:
B
单位体积内的磁滞损耗正比与
磁滞回线的面积和磁场交变的频
率 f。 磁滞损耗转化为热能,引起
O
H
铁心发热。
减少磁滞损耗的措施:
漏磁电动势eσ1;副绕组匝数为N2 ,电压u2 ,电流i2 ,主磁
电动势e2 ,漏磁电动势eσ2 。
2. 电压变换(设加正弦交流电压)
(1) 一次、二次侧主磁通感应电动势
主磁通按正弦规律变化,设为 msi nt,则
e1N 1d d tN 1d dt(m sin t)
N 1m co ts E 1m si( nt90 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

跳转到第一页
3.1.2 磁场的基本定律
1.安培环路 定律
I
lH dl I N
计算电流代数和时,与绕行方向符合右
手螺旋定则的电流取正号,反之取负号。
若闭合回路上各点的磁场强度相等且其
方向与闭合回路的切线方向一致,则:
Hl I NI F
F=NI 称为磁动势,单位是安(A)。
第5页/共21页
跳转到第一页
1.电压变换
忽略电阻R1和漏抗Xσ1的电压,则:U1 E1
U1 E1 4.44 fN1m
副绕组的电压方程:
U 2 E2
U20 E2 4.44 fN 2m
U1 E1 N1 k U 20 E2 N2
k称为变压器的变比。
第15页/共21页
跳转到第一页
2.电流变换
由U1≈E1=4.44N1fΦm可知,U1和f不变时 ,E1和Φm也都基本不变。因此,有负载时 产生主磁通的原、副绕组的合成磁动势(
应电动势和电流,称为涡流。涡流
在垂直于磁通的平面内环流。
涡流损耗: 由涡流所产生的功率损耗。
涡流损耗转化为热能,引起铁心发热。
减少涡流损耗措施: 提高铁心的电阻率。铁心用彼此
绝缘的钢片叠成,把涡流限制在较 小的截面内。
第13页/共21页
跳转到第一页
3.2 变压器
3.2.1 变压器的工作原理
i1 + e1
u –
式中:R是线圈的电阻;I 是线圈中电流的有效值。 2. 铁损(PFe)
在交流铁心线圈铁损,用PFe 表示。 铁损由磁滞和涡流产生。
第11页/共21页
跳转到第一页
(1)磁滞损耗(Ph)
由磁滞所产生的能量损耗称为磁滞损耗(Ph)。
磁滞损耗的大小:
B
单位体积内的磁滞损耗正比与
相对磁导率μr:物质磁导率与真空磁 导率的比值。非铁磁物质μr近似为1,铁磁 物质的μr远大于1。
第3页/共21页
跳转到第一页
4.磁场强度H
HB
或 B H
磁场强度只与产生磁场的电流以及 这些电流分布有关,而与磁介质的磁导 率无关,单位是安/米(A/m)。是 为了简化计算而引入的辅助物理量。
第4页/共21页
u1 e1

Φ
i2
e2 +
e 2
u2 -
Z
Φσ1
Φσ2
(a) 变压器结构示意图
+
+
u1
u2


(b) 变压器的符号
原 绕 组 匝 数 为 N1, 电 压 u1, 电 流 i1, 主
磁电动势e1 ,漏磁电动势eσ1;副绕组匝数
为N2 ,电压u2 ,电流i2 ,主磁电动势e2 ,
漏磁电动势eσ2 。
第14页/共21页
磁 滞 回 线
第8页/共21页
跳转到第一页
3.1.4 交流铁心线圈电路
1.电压、电流和磁通的关系
设线圈的电阻为R,主
i
磁电动势为e和漏感电动势 为eσ,由KVL,有:
+ u
e+--e
-+
e N d dt
Φ
Φσ
u e e iR
设主磁通按正弦规律变化: m sin t ,则:
e
N
d dt
i1N1+i2N2)和空载时产生主磁通的原绕组的 磁动势i0N1基本相等,即:
i1N1 i2 N2 i0 N1
I1N1 I2 N2 I0 N1
空载电流i0很小,可忽略不计。
I1N1 I2 N2
I1 N2 1 I2 N1 k
第16页/共21页
跳转到第一页
3.阻抗变换
设接在变压器副绕组的负载阻抗Z的模 为|Z|,则:
2.磁通Φ
均匀磁场中磁通Φ等于磁感应强度B与垂直 于磁场方向的面积S的乘积,单位是韦伯(Wb)。
BS
第2页/共21页
跳转到第一页
3.磁导率μ
磁导率μ表示物质的导磁性能,单位是 亨/米(H/m)。
真空的磁导率 0 4 107 H/m 非铁磁物质的磁导率与真空极为接近, 铁磁物质的磁导率远大于真空的磁导率。
跳转到第一页
2.磁路欧姆定律
BS HS NI S NI F I
l
l Rm N
S
Rm
l
S
称为磁阻,表示磁路对磁 通的阻碍作用。
因铁磁物质的磁阻Rm不是常数,它 会随励磁电流I的改变而改变,因而通常
不能用磁路的欧姆定律直接计算,但可
以用于定性分析很多磁路问题。
第6页/共21页
跳转到第一页
Nm
cost
Em
sin(t
90)
e
的有效值为:E
Em 2
Nm
2
4.44 fNm
第9页/共21页
跳转到第一页
u e e iR
由于线圈的电阻 R 和漏磁通 都很小,R 上的电压 和漏感电动势 e 也很小,与主磁电动势比较可以忽略不
计。于是: u e u N d dt
U 4.44 fNm
磁滞回线的面积和磁场交变的频
率 f。 磁滞损耗转化为热能,引起
O
H
铁心发热。
减少磁滞损耗的措施:
选用磁滞回线狭小的磁性材料制作铁心。变压器和 电机中使用的硅钢等材料的磁滞损耗较低。
设计时应适当选择值以减小铁心饱和程度。
第12页/共21页
跳转到第一页
(2)涡流损耗(Pe)
涡流:交变磁通在铁心内产生感
表明在忽略线圈电阻 R 及漏磁通 的条件下,当线圈 匝数 N 及电源频率 f 为一定时,主磁通的幅值Φm 由励磁线 圈外的电压有效值 U 确定,与铁心的材料及尺寸无关。
第10页/共21页
跳转到第一页
2.功率损耗
1. 铜损(Pcu)
i
在交流铁心线圈中, 线圈电阻R +
上的功率损耗称铜损,用Pcu 表示。 Pcu = RI2
| Z | U2 I2
3.1.3 铁磁材料的磁性能
高导磁性:磁导率可达102~104,由铁磁材 料组成的磁路磁阻很小,在线圈中通入较 小的电流即可获得较大的磁通。
磁饱和性:B不会随H的增强而无限增强,H增大到一定 值时,B不能继续增强。
磁 化 曲 线
第7页/共21页
跳转到第一页
磁滞性:铁心线圈中通过交变电流时,H的大小 和方向都会改变,铁心在交变磁场中反复磁化, 在反复磁化的过程中,B的变化总是滞后于H的 变化
3.1 磁路
实际电路中有大量电感元件的线圈中有铁心。 线圈通电后铁心就构成磁路,磁路又影响电 路。因此电工技术不仅有电路问题,同时也 有磁路问题。
+ -
(a) 电磁铁的磁路
(b) 变压器的磁路
第1页/共21页
(c) 直流电机的磁路
跳转到第一页
3.1.1 磁路的基本物理量
1.磁感应强度B
磁感应强度B是表示磁场内某点磁场强弱及 方向的物理量。 B的大小等于通过垂直于磁场方 向单位面积的磁力线数目,B的方向用右手螺旋 定则确定。单位是特斯拉(T)。
相关文档
最新文档