中考数学试题分类大全专题 整式

合集下载

中考数学试题分类汇编 整式与分式

中考数学试题分类汇编 整式与分式

中考数学试题分类汇编:整式与分式一、选择题1、实数a 、b 在数轴上的位置如图所示,则化简代数式||a +b –a 的结果是( ) A .2a +b B .2a C .a D .b2、计算)3(623m m -÷的结果是( )(A )m 3- (B )m 2- (C )m 2m 3 3、下列计算中,正确的是( )A .33x x x =∙B .3x x x -=C .32x x x ÷=D .336x x x += 4、下列运算正确的是( ) A.321x x -= B.22122xx--=-C.236()a a a -=· D.236()a a -=-4、化简:(a +1)2-(a -1)2=( )(A )2 (B )4 (C )4a (D )2a 2+25、下列计算中,正确的是( )A .325a b ab +=B .44a a a =∙ C .623a a a ÷= D .3262()a b a b = 6.对于非零实数m ,下列式子运算正确的是( )A .923)(m m =;B .623m m m =⋅;C .532m m m =+;D .426m m m =÷。

7.下列因式分解正确的是( )A .x x x x x 3)2)(2(342++-=+-;B .)1)(4(432-+-=++-x x x x ;C .22)21(41x x x -=+-;D .)(232y x y xy x y x xy y x +-=+-。

8、下列计算正确的是( )A 、623a a a =∙B 、4442b b b =∙C 、1055x x x =+ D 、87y y y =∙ 9、代数式2346x x -+的值为9,则2463x x -+的值为( )A .7 B .18 C .12D .9 10、下列各式中,与2(1)a -相等的是( )A .21a -B .221a a -+ C .221a a -- D .21a + 二、填空题1、当x=2,代数式21x -的值为_______.2、因式分解:xy 2–2xy +x = .3、分解因式:2218x -= .4、分解因式:2x -9= 。

中考数学分类解析整式

中考数学分类解析整式

整式一、选择题1. (2012上海市4分)在下列代数式中,次数为3的单项式是【 】A . xy 2B . x 3+y 3C . .x 3yD . .3xy【答案】A 。

【考点】单项式的次数。

【分析】根据单项式的次数定义可知:A 、xy 2的次数为3,符合题意;B 、x 3+y 3不是单项式,不符合题意;C 、x 3y 的次数为4,不符合题意;D 、3xy 的次数为2,不符合题意。

故选A 。

2. (2012重庆市4分)计算()2ab 的结果是【 】 A .2ab B .2a b C .22a b D .2ab【答案】C 。

【考点】幂的乘方与积的乘方。

【分析】根据幂的乘方与积的乘方运算法则直接得出结果:原式=22a b 。

故选C 。

3. (2012安徽省4分)计算32)2(x -的结果是【 】A.52x -B. 68x -C.62x -D.58x -【答案】B 。

【考点】积的乘方和幂的运算【分析】根据积的乘方和幂的运算法则可得: 233236(2)(2)()8x x x -=-=-。

故选B 。

4. (2012安徽省4分)某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是【 】A.(a -10%)(a +15%)万元B. a (1-10%)(1+15%)万元C.(a -10%+15%)万元D. a (1-10%+15%)万元【答案】B 。

【考点】列代数式。

【分析】根据3月份的产值是a 万元,用a 把4月份的产值表示出来a (1-10%),从而得出5月份产值列出式子a 1-10%)(1+15%)。

故选B 。

5. (2012山西省2分)下列运算正确的是【 】A .B .C . a 2a 4=a 8D . (﹣a 3)2=a 6 【答案】D 。

【考点】算术平方根,实数的运算,同底数幂的乘法,幂的乘方与积的乘方。

【分析】根据算术平方根,实数的运算,同底数幂的乘法,幂的乘方与积的乘方的概念分别作出判断:A ,故本选项错误;B .C .a 2a 4=a 6,故本选项错误;D .(﹣a 3)2=a 6,故本选项正确。

中考数学专题复习题:整式及其加减

中考数学专题复习题:整式及其加减

中考数学专题复习题:整式及其加减一、单项选择题(共10小题)1.单项式32xy -的系数是()A .3B .4C .2-D .22.下列代数式的书写符合规范的是()A .112a B .a 2÷5C .ab 6D .3b 3.多项式222a b ab a --的项数及次数分别是()A .3,3B .3,2C .2,3D .2,24.关于字母x y ,的多项式22338x kxy y xy --+-化简后不含xy 项,则k 为()A .0B .13-C .13D .35.若25a 4b n 与-27a m b 3是同类项,则m 、n 的取值为()A .m =2,n =3B .m =4,n =2C .m =3,n =3D .m =4,n =36.下面的说法中,正确的是()A .x +3是多项式B .(-2)3中底数是2C .335ab 的系数是3D .单项式-ab 2的次数是2次7.下列代数式中,符合书写规则的是()A .112xB .x ÷yC .m ×2D .3mn 8.小明在计算一个二项式的平方时,得到的正确结果是4x 2+12xy +■,但最后一项不慎被污染了,这一项应是()A .3y 2B .6y 2C .9y 2D .±9y 29.已知一个多项式与322853x x x -+-的和等于3221452x x x -+-,则这个多项式一定是()A .32461x x ++B .261x +C .261x -+D .265x --10.在多项式()a b c d --+-(其中a b c d >>>)中,对每个字母及其左边的符号(不包括括号外的符号)称为一个数,即:a -为“数1”,b 为“数2”,c +为“数3”,d-为“数4”,若将任意两个数交换位置,后得到一个新多项式,再写出新多项式的绝对值,这样的操作称为对多项式()a b c d --+-的“绝对换位变换”,例如:对上述多项式的“数3”和“数4”进行“绝对换位变换”,得到−−−+,将其化简后结果为a b c d +--,…下列说法:①对多项式的“数1”和“数2”进行“绝对换位变换”后的运算结果一定等于对“数3”和“数4”进行“绝对换位变换”后的运算结果;②不存在“绝对换位变换”,使其运算结果与原多项式相等;③所有的“绝对换位变换”共有5种不同运算结果.其中正确的个数是()A .0B .1C .2D .3二、填空题(共5小题)11.多项式322283a ab ac -+-是________次________项式,它的常数项是________.12.23m x y -与35n x y 是同类项,则m n +=________。

2022年全国中考数学真题分类汇编专题3:整式解析版

2022年全国中考数学真题分类汇编专题3:整式解析版

2022年全国中考数学真题分类汇编专题3:整式一.选择题(共15小题)1.计算(2x2)3的结果,正确的是()A.8x5B.6x5C.6x6D.8x6【解答】解:(2x2)3=8x6.故选:D.2.下列运算正确的是()A.a2•a3=a5B.(a2)3=a8C.(a2b)3=a2b3D.a6÷a3=a2【解答】解:a2•a3=a5,故A正确,符合题意;(a2)3=a6,故B错误,不符合题意;(a2b)3=a6b3,故C错误,不符合题意;a6÷a3=a3,故D错误,不符合题意;故选:A.3.计算a2•a()A.a B.3a C.2a2D.a3【解答】解:原式=a1+2=a3.故选:D.4.下列运算正确的是()A.a2•a3=a5B.(a3)2=a5 C.(ab)2=ab2D. a3(a≠0)【解答】解:A.因为a2•a3=a2+3=a5,所以A选项运算正确,故A选项符合题意;B.因为(a3)2=a2×3=a6,所以B选项运算不正确,故B选项不符合题意;C.因为(ab)2=a2b2,所以C选项运算不正确,故C选项不符合题意;D.因为 a6﹣2=a4,所以D选项运算不正确,故D选项不符合题意.故选:A.5.计算a3•a2的结果是()A.a B.a6C.6a D.a5【解答】解:a3•a2=a5.故选:D.6.若24×22=2m,则m的值为()A.8B.6C.5D.2【解答】解:∵24×22=24+2=26=2m,∴m=6,故选:B.7.化简(3a2)2的结果是()A.9a2B.6a2C.9a4D.3a4【解答】解:(3a2)2=9a4.故选:C.8.计算a3÷a得a,则“?”是()A.0B.1C.2D.3【解答】解:根据同底数幂的除法可得:a3÷a=a2,∴?=2,故选:C.9.计算﹣a2•a的正确结果是()A.﹣a2B.a C.﹣a3D.a3【解答】解:﹣a2•a=﹣a3,故选:C.10.下列运算正确的是()A.3a﹣2a=1B.a3•a5=a8C.a8÷2a2=2a4D.(3ab)2=6a2b2【解答】解:3a﹣2a=a,故选项A错误,不符合题意;a3•a5=a8,故选项B正确,符合题意;a8÷2a2 a6,故选项C错误,不符合题意;(3ab)2=9a2b2,故选项D错误,不符合题意;故选:B.11.下列计算正确的是()A.m2•m3=m6B.﹣(m﹣n)=﹣m+nC.m(m+n)=m2+n D.(m+n)2=m2+n2【解答】解:A选项,原式=m5,故该选项不符合题意;B选项,原式=﹣m+n,故该选项符合题意;C选项,原式=m2+mn,故该选项不符合题意;D选项,原式=m2+2mn+n2,故该选项不符合题意;故选:B.12.下列计算结果正确的是()A.5a﹣3a=2B.6a÷2a=3aC.a6÷a3=a2D.(2a2b3)3=8a6b9【解答】解:A选项,原式=2a,故该选项不符合题意;B选项,原式=3,故该选项不符合题意;C选项,原式=a3,故该选项不符合题意;D选项,原式=8a6b9,故该选项符合题意;故选:D.13.计算(2a4)3的结果是()A.2a12B.8a12C.6a7D.8a7【解答】解:(2a4)3=8a12,故选:B.14.计算a(a+1)﹣a的结果是()A.1B.a2C.a2+2a D.a2﹣a+1【解答】解:a(a+1)﹣a=a2+a﹣a=a2,故选:B.15.对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m ﹣n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3【解答】解:①如(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,(x﹣y﹣z)﹣m﹣n=x﹣y﹣z ﹣m﹣n,故①符合题意;②x﹣y﹣z﹣m﹣n的相反数为﹣x+y+z+m+n,不论怎么加括号都得不到这个代数式,故②符合题意;③第1种:结果与原多项式相等;第2种:x﹣(y﹣z)﹣m﹣n=x﹣y+z﹣m﹣n;第3种:x﹣(y﹣z)﹣(m﹣n)=x﹣y+z﹣m+n;第4种:x﹣(y﹣z﹣m)﹣n=x﹣y+z+m﹣n;第5种:x﹣(y﹣z﹣m﹣n)=x﹣y+z+m+n;第6种:x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n;第7种:x﹣y﹣(z﹣m﹣n)=x﹣y﹣z+m+n;第8种:x﹣y﹣z﹣(m﹣n)=x﹣y﹣z﹣m+n;故③符合题意;正确的个数为3,故选:D.二.填空题(共10小题)16.计算:a•a3=a4.【解答】解:a3•a,=a3+1,=a4.故答案为:a4.17.单项式3xy的系数为3.【解答】解:单项式3xy的系数为3.故答案为:3.18.若一个多项式加上3xy+2y2﹣8,结果得2xy+3y2﹣5,则这个多项式为y2﹣xy+3.【解答】解:由题意得,这个多项式为:(2xy+3y2﹣5)﹣(3xy+2y2﹣8)=2xy+3y2﹣5﹣3xy﹣2y2+8=y2﹣xy+3.故答案为:y2﹣xy+3.19.已知代数式a2+(2t﹣1)ab+4b2是一个完全平方式,则实数t的值为 或 ..【解答】解:根据题意可得,(2t﹣1)ab=±(2×2)ab,即2t﹣1=±4,解得:t 或t .故答案为: 或 .20.已知x+y=4,x﹣y=6,则x2﹣y2=24.【解答】解:∵x+y=4,x﹣y=6,∴x2﹣y2=(x+y)(x﹣y)=4×6=24.故答案为:24.21.计算m•m7的结果等于m8.【解答】解:m•m7=m8.故答案为:m8.22.计算:m4÷m2=m2.【解答】解:m4÷m2=m4﹣2=m2.故答案为:m2.23.计算:3a3•a2=3a5.【解答】解:原式=3a3+2=3a5.故答案为:3a5.24.计算:(﹣a3)2=a6.【解答】解:(﹣a3)2=a6.25.已知a+b=4,a﹣b=2,则a2﹣b2的值为8.【解答】解:∵a+b=4,a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=4×2=8,故答案为:8.三.解答题(共8小题)26.下面是一道例题及其解答过程的一部分,其中A是关于m的多项式.请写出多项式A,并将该例题的解答过程补充完整.例:先去括号,再合并同类项:m(A)﹣6(m+1).解:m(A)﹣6(m+1)=m2+6m﹣6m﹣6=m2﹣6.【解答】解:由题知,m(A)﹣6(m+1)=m2+6m﹣6m﹣6=m2﹣6,∵m2+6m=m(m+6),∴A为:m+6,故答案为:m2﹣6.27.已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x2+2x﹣2=0,∴x2+2x=2,∴当x2+2x=2时,原式=2(x2+2x)+1=2×2+1=4+1=5.28.先化简,再求值.(a+b)(a﹣b)+b(2a+b),其中a=1,b=﹣2.【解答】解:(a+b)(a﹣b)+b(2a+b)=a2﹣b2+2ab+b2=a2+2ab,将a=1,b=﹣2代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.29.先化简,再求值:(1+x)(1﹣x)+x(x+2),其中x .【解答】解:(1+x)(1﹣x)+x(x+2)=1﹣x2+x2+2x=1+2x,当x 时,原式=1 1+1=2.30.先化简,再求值:(2+a)(2﹣a)+a(a+1),其中a 4.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a 4时,原式=4 4.31.先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.32.先化简,再求值:(x+y)(x﹣y)+(xy2﹣2xy)÷x,其中x=1,y .【解答】解:(x+y)(x﹣y)+(xy2﹣2xy)÷x=x2﹣y2+y2﹣2y=x2﹣2y,当x=1,y 时,原式=12﹣2 0.33.先化简,再求值:(x+2)(3x﹣2)﹣2x(x+2),其中x 1.【解答】解:原式=(x+2)(3x﹣2﹣2x)=(x+2)(x﹣2)=x2﹣4,当x 1时,原式=( 1)2﹣4=﹣2 .。

中考数学真题分类解析(三)整式考题汇编及解析

中考数学真题分类解析(三)整式考题汇编及解析
3•a2的结果是( )
A.aB.a6C.6aD.a5
【解析】选D.a3•a2=a5.
0301
(2022•丽水中考)计算﹣a2•a的正确结果是( )
A.﹣a2B.aC.﹣a3D.a3
【解析】选C.﹣a2•a=﹣a3.
0301
(2022•绍兴中考)下列计算正确的是( )
0301
(2022•遂宁中考)下列计算中正确的是( )
A.a3•a3=a9B.(﹣2a)3=﹣8a3C.a10÷(﹣a2)3=a4D.(﹣a+2)(﹣a﹣2)=a2+4
【解析】选B.A.原式=a6,故该选项不符合题意;B.原式=﹣8a3,故该选项符合题意;
C.原式=a10÷(﹣a6)=﹣a4,故该选项不符合题意;D.原式=(﹣a)2﹣22=a2﹣4,故该选项不符合题意.
【解析】选D.A.m+m=2m,故本选项不合题意;
B.2(m﹣n)=2m﹣2n,故本选项不合题意;
C.(m+2n)2=m2+4mn+4n2,故本选项不合题意;
D.(m+3)(m﹣3)=m2﹣9,故本选项符合题意;
0301
(2022•德阳中考)下列计算正确的是( )
A.(a﹣b)2=a2﹣b2B. 1C.a÷a• aD.( ab2)3 a3b6
0301
(2022•自贡中考)下列运算正确的是( )
A.(﹣1)2=﹣2 B.( )( )=1 C.a6÷a3=a2D.( )0=0
【解析】选B.A.原式=1,故该选项不符合题意;B.原式=( )2﹣( )2=3﹣2=1,故该选项符合题意;
C.原式=a3,故该选项不符合题意;D.原式=1,故该选项不符合题意.
【解析】选A.A.a3+a3=2a3≠2a6,故选项A计算不正确;B.(﹣a3)2=a6,故选项B计算正确;

中考数学试题分类训练——代数式、整式(含解析)

中考数学试题分类训练——代数式、整式(含解析)

中考数学试题分类训练——代数式、整式【答案】一.选择题(共28小题)1.(2020•玉林)观察下列按一定规律排列的n 个数:2,4,6,8,10,12,…,若最后三个数之和是3000,则n 等于( )A .499B .500C .501D .10022.(2019•贺州)计算11×3+13×5+15×7+17×9+⋯+137×39的结果是( ) A .1937 B .1939 C .3739 D .3839 3.(2018•河池)下列单项式中,与3a 2b 为同类项的是( )A .﹣a 2bB .ab 2C .3abD .34.(2018•梧州)按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是( )A .9999B .10000C .10001D .100025.(2018•贺州)如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,依此下去,第n 个正方形的面积为( )A .(√2)n ﹣1B .2n ﹣1C .(√2)nD .2n6.(2018•柳州)苹果原价是每斤a 元,现在按8折出售,假如现在要买一斤,那么需要付费( )A .0.8a 元B .0.2a 元C .1.8a 元D .(a +0.8)元7.(2018•桂林)用代数式表示:a 的2倍与3的和.下列表示正确的是( )A .2a ﹣3B .2a +3C .2(a ﹣3)D .2(a +3)8.(2020•桂林)下列计算正确的是( )A .x •x =2xB .x +x =2xC .(x 3)3=x 6D .(2x )2=2x 29.(2020•河池)下列运算,正确的是( )A .a (﹣a )=﹣a 2B .(a 2)3=a 5C .2a ﹣a =1D .a 2+a =3a10.(2020•广西)下列运算正确的是( )A .2x 2+x 2=2x 4B .x 3•x 3=2x 3C .(x 5)2=x 7D .2x 7÷x 5=2x 211.(2020•玉林)下列计算正确的是( )A .8a ﹣a =7B .a 2+a 2=2a 4C .2a •3a =6a 2D .a 6÷a 2=a 312.(2019•梧州)下列计算正确的是( )A .3x ﹣x =3B .2x +3x =5x 2C .(2x )2=4x 2D .(x +y )2=x 2+y 213.(2019•桂林)下列计算正确的是( )A .a 2•a 3=a 6B .a 8÷a 2=a 4C .a 2+a 2=2a 2D .(a +3)2=a 2+914.(2019•玉林)下列运算正确的是( )A .3a +2a =5a 2B .3a 2﹣2a =aC .(﹣a )3•(﹣a 2)=﹣a 5D .(2a 3b 2﹣4ab 4)÷(﹣2ab 2)=2b 2﹣a 215.(2019•柳州)计算:x (x 2﹣1)=( )A.x3﹣1B.x3﹣x C.x3+x D.x2﹣x16.(2019•广西)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+117.(2019•贵港)下列运算正确的是()A.a3+(﹣a)3=﹣a6B.(a+b)2=a2+b2C.2a2•a=2a3D.(ab2)3=a3b518.(2018•河池)下列运算正确的是()A.2a+3b=5ab B.a6÷a2=a3C.a3•a2=a5D.(a﹣b)2=a2﹣b219.(2018•贺州)下列运算正确的是()A.a2•a2=2a2B.a2+a2=a4C.(a3)2=a6D.a8÷a2=a420.(2018•贵港)下列运算正确的是()A.2a﹣a=1B.2a+b=2abC.(a4)3=a7D.(﹣a)2•(﹣a)3=﹣a521.(2018•柳州)计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b22.(2018•桂林)下列计算正确的是()A.2x﹣x=1B.x(﹣x)=﹣2x C.(x2)3=x6D.x2+x=223.(2018•南宁)下列运算正确的是()A.a(a+1)=a2+1B.(a2)3=a5C.3a2+a=4a3D.a5÷a2=a324.(2018•玉林)下列计算结果为a6的是()A.a7﹣a B.a2•a3C.a8÷a2D.(a4)225.(2020•桂林)因式分解a2﹣4的结果是()A.(a+2)(a﹣2)B.(a﹣2)2C.(a+2)2D.a(a﹣2)26.(2019•贺州)把多项式4a2﹣1分解因式,结果正确的是()A.(4a+1)(4a﹣1)B.(2a+1)(2a﹣1)C.(2a﹣1)2D.(2a+1)227.(2018•百色)因式分解x﹣4x3的最后结果是()A.x(1﹣2x)2B.x(2x﹣1)(2x+1)C.x(1﹣2x)(2x+1)D.x(1﹣4x2)28.(2018•贺州)下列各式分解因式正确的是()A.x2+6xy+9y2=(x+3y)2B.2x2﹣4xy+9y2=(2x﹣3y)2C.2x2﹣8y2=2(x+4y)(x﹣4y)D.x(x﹣y)+y(y﹣x)=(x﹣y)(x+y)二.填空题(共10小题)29.(2020•广西)如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是.30.(2019•百色)观察一列数:﹣3,0,3,6,9,12,…,按此规律,这一列数的第21个数是.31.(2019•柳州)计算:7x﹣4x=.32.(2019•河池)a 1,a 2,a 3,a 4,a 5,a 6,…,是一列数,已知第1个数a 1=4,第5个数a 5=5,且任意三个相邻的数之和为15,则第2019个数a 2019的值是 .33.(2018•百色)观察以下一列数:3,54,79,916,1125,…则第20个数是 .34.(2020•桂林)计算:ab •(a +1)= .35.(2019•贺州)计算a 3•a 的结果是 .36.(2019•桂林)若x 2+ax +4=(x ﹣2)2,则a = .37.(2018•贵港)因式分解:ax 2﹣a = .38.(2018•南宁)因式分解:2a 2﹣2= .三.解答题(共1小题)39.(2019•河池)分解因式:(x ﹣1)2+2(x ﹣5).答案一.选择题(共28小题)1.(2020•玉林)观察下列按一定规律排列的n 个数:2,4,6,8,10,12,…,若最后三个数之和是3000,则n 等于( )A .499B .500C .501D .1002【答案】C【解答】解:由题意,得第n 个数为2n ,那么2n +2(n ﹣1)+2(n ﹣2)=3000,解得:n =501,故选:C .2.(2019•贺州)计算11×3+13×5+15×7+17×9+⋯+137×39的结果是( ) A .1937B .1939C .3739D .3839 【答案】B【解答】解:原式=12(1−13+13−15+15−17+17−19+⋯+137−139) =12×(1−139) =1939. 故选:B .3.(2018•河池)下列单项式中,与3a 2b 为同类项的是( )A .﹣a 2bB .ab 2C .3abD .3【答案】A【解答】解:∵3a 2b 含有字母a 、b ,且次数分别为2、1,∴与3a 2b 是同类项的是﹣a 2b .故选:A .4.(2018•梧州)按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是( )A .9999B .10000C .10001D .10002【答案】A【解答】解:∵第奇数个数2=12+1,10=32+1,26=52+1,…,第偶数个数3=22﹣1,15=42﹣1,35=62﹣1,…,∴第100个数是1002﹣1=9999,故选:A .5.(2018•贺州)如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,依此下去,第n 个正方形的面积为( )A.(√2)n﹣1B.2n﹣1C.(√2)n D.2n【答案】B【解答】解:第一个正方形的面积为1=20,第二个正方形的面积为(√2)2=2=21,第三个正方形的面积为22,…第n个正方形的面积为2n﹣1.故选:B.6.(2018•柳州)苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元【答案】A【解答】解:根据题意知,买一斤需要付费0.8a元,故选:A.7.(2018•桂林)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)【答案】B【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.8.(2020•桂林)下列计算正确的是()A.x•x=2x B.x+x=2x C.(x3)3=x6D.(2x)2=2x2【答案】B【解答】解:A.x•x=x2,故本选项不合题意;B.x+x=2x,故本选项符合题意;C.(x3)3=x9,故本选项不合题意;D.(2x)2=4x2,故本选项不合题意.故选:B.9.(2020•河池)下列运算,正确的是()A.a(﹣a)=﹣a2B.(a2)3=a5C.2a﹣a=1D.a2+a=3a【答案】A【解答】解:A、a(﹣a)=﹣a2,原计算正确,故此选项符合题意;B、(a2)3=a6,原计算错误,故此选项不符合题意;C、2a﹣a=a,原计算错误,故此选项不符合题意;D、a2与a不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:A.10.(2020•广西)下列运算正确的是()A.2x2+x2=2x4B.x3•x3=2x3C.(x5)2=x7D.2x7÷x5=2x2【答案】D【解答】解:A、2x2+x2=3x2,故此选项错误;B、x3•x3=x6,故此选项错误;C、(x5)2=x10,故此选项错误;。

中考数学总复习《整式与因式分解》专题训练-附答案

中考数学总复习《整式与因式分解》专题训练-附答案

中考数学总复习《整式与因式分解》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.代数式:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫做代数式. (1)代数式求值:用数值代替代数式里的未知数,按照代数式的运算关系计算得出结果.(2)代数推理:通过数学证明,等式变换等方式将复杂的问题简单化,形成一般性的公式,最终达到想要的结果.【练习】1-1.用代数式表示“x 的13与y 的12的差”为 . 【练习】1-2.某种弹簧秤能称不超过10kg 的物体,不挂物体时弹簧的长为8cm ,每挂重1kg 物体,弹簧伸长2cm ,在弹性限度内,当挂重xkg 的物体时,弹簧长度是 cm .(用含x 的代数式表示)【练习】1-3.若4a ﹣3b =3,则7﹣12a +9b = .【练习】1-4.观察一列数:12,24,38,416…根据规律,请你写出第n 个数是 .2. 整式的相关概念:(1)单项式:由数或字母的积组成的式子叫做单项式.单独的一个数或一个字母也是单项式.(2)多项式:几个单项式的和叫做多项式. 多项式中,_____________的项的次数,叫做这个多项式的次数.(3)整式:单项式与多项式统称为整式.(4)同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.【练习】2-1.单项式3πx 4y 7的系数是 ,次数是 . 【练习】2-2.多项式12a 2bc −3ab +8是 次 项式.【练习】2-3.若单项式﹣2x m y 4与12x 3y m+n 的和仍是单项式,则m ﹣n = . 3. 整式的运算:知识梳理(1)整式的加减法:①合并同类项:把同类项的_____________相加,字母和字母的__________不变.②去括号法则:括号前为“+”,去括号后原括号里的每一项都不变号;括号前为“-”,去括号后原括号里的每一项都要变号.如a+(b+c)=________________,a-(b-c)=_______________.(2)幂的运算法则:①同底数幂相乘:a m·a n=_____________(m,n均为正整数).②同底数幂相除:a m÷a n=_____________(a≠0,m,n均为正整数,并且m>n).③幂的乘方:(a m)n=_____________(m,n均为正整数).④积的乘方:(a b)n=_____________(n为正整数).⑤负整数指数幂:a-n=____________(a≠0,n为正整数).⑥零指数幂:a0=_____________(a≠0).(3)整式的乘法:①单项式乘单项式:把它们的系数、同底数幂分别_____________,对于只在一个单项式里含有的字母,则连同它的_____________作为积的一个因式.②单项式乘多项式:m(a+b)=_________________.③多项式乘多项式:(a+b)(c+d)=__________________________.④乘法公式:平方差公式:(a+b)(a-b)=_____________.完全平方公式:(a±b)2=____________________.常用的公式变形:a2+b2=(a+b)2-2ab; a2+b2=(a-b)2+2ab;(a+b)2=(a-b)2+4ab; (a-b)2=(a+b)2-4ab.(4)整式的除法:①单项式除以单项式:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.②多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.【练习】3-1.计算:(a3)2•2a=.【练习】3-2.计算:2x2•3xy的结果是.【练习】3-3.计算(2x)2(﹣3xy2)=.【练习】3-4.计算:(1)3xy•5x3=;(2)6m2÷3m=.【练习】3-5.计算:28x4y2÷7x3y2=.【练习】3-6.计算:(2x﹣1)(3x+2)=.【练习】3-7.计算:(6x3y2−2x2y3)÷13x2y2=.【练习】3-8.计算:(2x+y)(2x﹣y)=.【练习】3-9.已知(x﹣3)2=x2+2mx+9,则m的值是.4. 因式分解:把一个多项式化成几个整式的积的形式.(1)提公因式法:ma+mb+mc=m(a+b+c).(2)公式法:①平方差公式:a2-b2=___________________________.②完全平方公式:a2±2ab+b2=________________.(3)(拓展)十字相乘法:x2+(a+b)x+ab=(x+a)(x+b).【练习】4-1.因式分解:3a2b﹣9ab=.【练习】4-2.分解因式:m2﹣36=.【练习】4-3.分解因式:a2+8a+16=.【练习】4-4.因式分解:am+an﹣bm﹣bn=.【练习】4-5.分解因式:2ax2﹣4ax+2a=.【练习】4-6.因式分解:x2﹣8x+12=.【练习】4-7.分解因式:m2﹣4m﹣5=.参考答案1-1.【答案】13x−12y.1-2.【答案】(8+2x).1-3.【答案】﹣2.1-4.【答案】n2n2-1.【答案】3π75.2-2.【答案】四;三.2-3.【答案】2.3-1.【答案】2a7.3-2.【答案】6x3y.3-3.【答案】﹣12x3y2.3-4.【答案】(1)15x4y;(2)2m.3-5.【答案】18x-6y.3-6.【答案】6x2+x-23-7.【答案】18x﹣6y.3-8.【答案】4x2-y2.3-9.【答案】﹣3.4-1.【答案】3ab(a﹣3).4-2.【答案】(m﹣6)(m+6).4-3.【答案】(a+4)2.4-4.【答案】(m+n)(a﹣b).4-5.【答案】2a(x﹣1)2.4-6.【答案】(x﹣2)(x﹣6).4-7.【答案】(m﹣5)(m+1).考点一:整式的相关概念1.单项式﹣2x2y的系数是;多项式x4y2﹣x2y+23y4的次数是.2.如果单项式﹣a n﹣2b n﹣1与12ab m+3的和仍是单项式,那么m n=.考点突破考点二:整式的运算3.下列计算正确的是()A.a3•a3=2a3B.(ab2)3=ab6C.2ab2•(﹣3ab)=﹣6ab3D.10ab3÷(﹣5ab)=﹣2b24.已知x m=2,x n=3,则x m+n的值是()A.5B.6C.8D.95.观察图,用等式表示图中图形面积的运算为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)(a﹣b)=a2﹣b2C.a(a+b)=a2+ab D.(a+b)2=a2+2ab+b26.下列计算正确的是()A.(x+2y)(x﹣2y)=x2﹣2y2B.(﹣x+y)(x﹣y)=x2﹣y2C.(2x﹣y)(x+2y)=2x2﹣2y2D.(﹣x﹣2y)(﹣x+2y)=x2﹣4y27.下列计算正确的是()A.2a2•3a2=6a2B.(3a2b)2=6a4b2C.(a﹣b)2=a2﹣b2D.﹣a2+2a2=a2考点三:代数式求值8.若x2﹣2x+1的值为10,则代数式﹣2x2+4x+3的值为.9.已知a2+3a﹣2023=0,则2a2+6a﹣1的值为.10.图是一数值转换机的示意图,若输入的x值为18,则输出的结果为.11.已知m=2,n=−12求代数式m3n−2n3m2−4(mn−12m2n3)+16(12mn−6m3n)的值.12.已知(a+b)2+(a﹣b)2=20.(1)求a2+b2的值;(2)若ab=3,求(a+1)(b+1)的值;(3)若2a﹣3b=m,3a﹣2b=n求mn的最大值.考点四:因式分解13.分解因式:(1)m2﹣1=;(2)a2+5a=;(3)x2﹣4x+4=.14.若x2﹣mx+25可以用完全平方式来分解因式,则m的值为.15.如果关于x的二次三项式x2+kx+5可以用十字相乘法进行因式分解,那么整数k等于.考点五:规律探究16.已知S1=10 S2=11−S1S3=11−S2S4=11−S3…按此规律,则S2024=.17.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察右图中的数字排列规律,求a+b﹣c的值为.18.一组按规律排列的单项式a、2a2、3a3、4a4,…,依这个规律用含字母n(n为正整数,且n≥1)的式子表示第n个单项式为.19.如图,把每个正方形等分为4格,在每格中填入数字,在各正方形中的四个数之间都有相同的规律,根据此规律,x=.(用a,b表示)20.一列数:13,26,311,418,527,638…它们按一定的规律排列,则第n个数(n为正整数)为.参考答案与试题解1.【答案】﹣2,7.【解答】解:单项式﹣2x2y的系数是﹣2,多项式x4y2﹣x2y+23y4的次数是7.故答案为:﹣2,7.2.【答案】﹣1.【解答】解:由题意,n﹣2=1,n﹣1=m+3∴m=﹣1,n=3∴m n=(﹣1)3=﹣1.故答案为:﹣1.3.【答案】D【解答】解:A、a3•a3=a6本选项错误,不符合题意;B、(ab2)3=a3b6本选项错误,不符合题意;C、2ab2•(﹣3ab)=﹣6a2b3本选项错误,不符合题意;D、10ab3÷(﹣5ab)=﹣2b2本选项正确,符合题意;故选:D.4.【答案】B【解答】解:∵x m=2,x n=3∴x m+n=x m×x n=2×3=6.故选:B.5.【答案】B【解答】解:由题意得:图1的面积=(a+b)(a﹣b)图2的面积=a2﹣b2∴(a+b)(a﹣b)=a2﹣b2故选:B.6.【答案】D【解答】解:A、(x+2y)(x﹣2y)=x2﹣4y2,本选项错误,不符合题意;B、(﹣x+y)(x﹣y)=﹣(x﹣y)2=﹣x2+2xy﹣y2,本选项错误,不符合题意;C、(2x﹣y)(x+2y)=2x2+3xy﹣2y2,本选项错误,不符合题意;D、(﹣x﹣2y)(﹣x+2y)=(﹣x)2﹣(2y)2=x2﹣4y2,必须执行正确,符合题意.故选:D.7.【答案】D【解答】解:A、2a2•3a2=6a4,故A不符合题意;B、(3a2b)2=9a4b2,故B不符合题意;C、(a﹣b)2=a2﹣2ab+b2,故C不符合题意;D、﹣a2+2a2=a2,故D符合题意;故选:D.8.【答案】﹣15.【解答】解:∵x2﹣2x+1=10∴x2﹣2x=9∴﹣2x2+4x+3=﹣2(x2﹣2x)+3=﹣2×9+3=﹣15.故答案为:﹣15.9.【答案】4045.【解答】解:∵a2+3a﹣2023=0∴a2+3a=2023∴2a2+6a﹣1=2(a2+3a)﹣1=2×2023﹣1=4045故答案为:4045.10.【答案】见试题解答内容【解答】解:若输入的数为18,代入得:3(18﹣10)=24<100;此时输入的数为24,代入得:3(24﹣10)=42<100;此时输入的数为42,代入得:3(42﹣10)=96<100此时输入的数为96,代入得:3(96﹣10)=258>100则输出的结果为258.故答案为:258.11.【答案】﹣2mn,原式=2.【解答】解:m3n−2n3m2−4(mn−12m2n3)+16(12mn−6m3n)=m3n﹣2n3m2﹣4mn+2m2n3+2mn﹣m3n =﹣2mn当m=2,n=−12时,原式=﹣2×2×(−12)=2.12.【答案】(1)10;(2)8或0;(3)125.【解答】解:(1)∵(a+b)2+(a﹣b)2=20∴a2+2ab+b2+a2﹣2ab+b2=202a2+2b2=20∴a2+b2=10;(2)∵ab=3∴2ab=6∵a2+b2=10∴a2+2ab+b2=10+6=16(a+b)2=16a+b=±4∴当a+b=4时(a+1)(b+1)=ab+a+b+1=3+4+1=8当a+b=﹣4时(a+1)(b+1)=ab+a+b+1=3+(﹣4)+1=0∴(a+1)(b+1)的值为8或0;(3)由(1)可知:a2+b2=10∵(a+b)2≥0∴a2+b2+2ab≥010+2ab≥02ab≥﹣10ab≥﹣5∵(a﹣b)2≥0∴a2+b2﹣2ab≥010﹣2ab≥0﹣2ab≥﹣10ab≤5∴﹣5≤ab≤5∴ab的最小值为﹣5∵2a﹣3b=m,3a﹣2b=n∴mn=(2a﹣3b)(3a﹣2b)=6a2﹣4ab﹣9ab+6b2=6a2+6b2﹣13ab=6(a2+b2)﹣13ab=6×10﹣13ab=60﹣13ab∴mn的最大值为:60﹣13×(﹣5)=60+65=125.13.【答案】(1)(m+1)(m﹣1);(2)a(a+5);(3)(x﹣2)2.【解答】解:(1)m2﹣1=(m+1)(m﹣1)故答案为:(m+1)(m﹣1);(2)a2+5a=a(a+5)故答案为:a(a+5);(3)x2﹣4x+4=(x﹣2)2故答案为:(x﹣2)2.14.【答案】±10.【解答】解:∵x2﹣mx+25可以用完全平方式来分解因式∴m=±10.故答案为:±10.15.【答案】±6.【解答】解:∵关于x的二次三项式x2+kx+5可以用十字相乘法进行因式分解,5=1×5或5=(﹣1)×(﹣5)∴k=1+5=6或k=(﹣1)+(﹣5)=﹣6故答案为:±6.16.【答案】−1 9.【解答】解:由题知因为S1=10所以S2=11−S1=11−10=−19;S3=11−S2=11−(−19)=910;S4=11−S3=11−910=10;…由此可见,这列数按10,−19,910循环出现又因为2024÷3=674余2所以S2024=−1 9.故答案为:−1 9.17.【答案】1.【解答】解:根据杨辉三角形的特点确定a=1+5=6b=5+10=15c=10+10=20a+b﹣c=6+15﹣20=1.故答案为:1.18.【答案】n•a n.【解答】解:第n个单项式是n•a n.故答案为:n•a n.19.【答案】a+18b(答案不唯一).【解答】解:由所给表格可知9=2×4+1;20=3×6+2;35=4×8+3;…所以表格中的左下角与右上角的数字之积加上左上角的数字等于右下角的数字; 则x =a +18b .故答案为:a +18b (答案不唯一).20.【答案】nn 2+2.【解答】解:∵一列数:13,26,311,418,527,638…其的分子与序号相同,分母为分子的平分加2∴第n 个数(n 为正整数)为:nn 2+2.故答案为:nn 2+2.。

中考数学试题分类汇总《代数式与整式》练习题及答案

中考数学试题分类汇总《代数式与整式》练习题及答案

中考数学试题分类汇总《代数式与整式》练习题及答案1.若ab≠0,且2b=3a,则的值是.【解答】解:由2b=3a,得到a=b,则原式==,2.已知a、b、c都是实数,若+|2b+|+(c+2a)2=0,则=1.【解答】解:∵+|2b+|+(c+2a)2=0,≥0,|2b+|≥0,(c+2a)2≥0,∴a﹣2=0,2b+=0,c+2a=0,∴a=2,b=﹣,c=﹣4.∴===1.3.若=,则=.4.若x2+2x的值是6,则2x2+4x﹣7的值是5.5.若x=+1,则代数式x2﹣2x+2的值为()A.7B.4C.3D.3﹣2【解答】解:∵x=+1,∴x﹣1=,∴(x﹣1)2=2,即x2﹣2x+1=2,∴x2﹣2x=1,∴x2﹣2x+2=1+2=3.幂的运算6.下列计算正确的是()A.(﹣a3)2=a6B.3a+2b=5abC.a6÷a3=a2D.(a+b)2=a2+b2【解答】解:A.(﹣a3)2=a6,故此选项符合题意;B.3a+2b无法合并,故此选项不合题意;C.a6÷a3=a3,故此选项不合题意;D.(a+b)2=a2+2ab+b2,故此选项不合题意,7.下列运算正确的是()A.x5﹣x3=x2B.(x+2)2=x2+4C.(m2n)3=m5n3D.3x2y÷3xy=x【解答】解:A、x5与x3不是同类项,故不能合并,故A不符合题意.B、原式=x2+4x+4,故B不符合题意.C、原式=m6n3,故C不符合题意.D、原式=x,故D符合题意.8.下列运算结果正确的是()A.2a+a=2a2B.a5•a2=a10C.(a2)3=a5D.a3÷a=a2【解答】解:A、2a+a=3a,故A不符合题意;B、a5•a2=a7,故B不符合题意;C、(a2)3=a6,故C不符合题意;D、a3÷a=a2,故D符合题意;9.下列运算中,正确的是()A.(﹣a)6÷(﹣a)3=﹣a3B.a3•a2=a6C.(ab2)3=ab6D.(﹣3a3)2=6a6【解答】解:∵(﹣a)6÷(﹣a)3=a6÷(﹣a3)=﹣a3,∴选项A符合题意;∵a3•a2=a5≠a6,∴选项B不符合题意;∵(ab2)3=a3b6≠ab6,∴选项C不符合题意;∵(﹣3a3)2=9a6≠6a6,∴选项D不符合题意;10.下列运算中,计算正确的是()A.a3+a3=a6B.(2a2)3=6a6C.a2•a3=a6D.(2a3)2=4a6【解答】解:A.a3+a3=2a3,故本选项不合题意;B.(2a2)3=8a6,故本选项不合题意;C.a2•a3=a5,故本选项不合题意;D.(2a3)2=4a6,故本选项符合题意.11.下列运算正确的是()A.a2•a3=a6B.6a÷3a=2aC.(a﹣b)3=a3﹣b3D.(﹣ab2)2=a2b4【分析】根据整式的除法,幂的乘方与积的乘方,同底数幂的乘法运算法则进行计算即可判断.【解答】解:A.a2•a3=a5,故A不符合题意;B.6a÷3a=2,故B不符合题意;C.(a﹣b)3=a3﹣3a2b+3ab2﹣b3,故C不符合题意;D.(﹣ab2)2=a2b4,故D符合题意;12.下列运算中,计算正确的是()A.a3+a3=a6B.(2a2)3=6a6C.a2•a3=a6D.(2a3)2=4a6【分析】分别根据合并同类项法则,幂的乘方与积的乘方运算法则,同底数幂的乘法法则逐一判断即可.【解答】解:A.a3+a3=2a3,故本选项不合题意;B.(2a2)3=8a6,故本选项不合题意;C.a2•a3=a5,故本选项不合题意;D.(2a3)2=4a6,故本选项符合题意.13.下列计算中,正确的是()A.(3a3)2=9a9B.3a+3b=6ab C.a6÷a3=a2D.﹣5a+3a =﹣2a【分析】利用同底数幂的除法的法则,合并同类项的法则,同底数幂的乘法的法则,积的乘方的法则对各项进行运算即可.【解答】解:A、(3a3)2=9a6,故A不符合题意;B、3a与3b不属于同类项,不能合并,故B不符合题意;C、a6÷a3=a3,故C不符合题意;D、﹣5a+3a=﹣2a,故D符合题意;14.已知3m=4,32m﹣4n=2.若9n=x,则x的值为()A.8B.4C.2D.【分析】根据幂的乘方以及同底数幂的除法法则计算即可求出n的值,再根据算术平方根的定义即可求出x的值.【解答】解:∵3m=4,32m﹣4n=(3m)2÷(3n)4=2.∴42÷(3n)4=2,∴(3n)4=42÷2=8,又∵9n=32n=x,∴(3n)4=(32n)2=x2,∴x2=8,∴x==.15.下列运算中,正确的是()A.a8÷a2=a4B.(a3)4=a12C.(﹣3a)2=a6D.3a2•a3=3a6【分析】根据同底数幂的除法判断A选项;根据幂的乘方判断B选项;根据积的乘方判断C选项;根据单项式乘单项式判断D选项.【解答】解:A选项,原式=a6,故该选项不符合题意;B选项,原式=a12,故该选项符合题意;C选项,原式=9a2,故该选项不符合题意;D选项,原式=3a5,故该选项不符合题意;16.下列运算中,结果正确的是()A.(a3)2=a5B.(a﹣1)(a+1)=a2+1C.2a•a=2a2D.a8÷a2=a4【解答】解:A.(α3)2=α6,此选项错误,不符合题意;B.(α﹣1)(α+1)=α2+1,此选项错误,不符合题意;C.2α⋅α=2α2,此选项正确,符合题意;D.α8÷α2=α6,此选项错误,不符合题意;17.下列运算正确的是()A.(a2)3=a8B.a2•a3=a5C.(﹣3a)2=6a2D.2ab2+3ab2=5a2b4【解答】解:选项A、(a2)3=a2×3=a6,故本选项不符合题意;选项B、a2•a3=a2+3=a5,故本选项符合题意;选项C、(﹣3a)2=9a2,故本选项不符合题意;选项D、2ab2+3ab2=5ab2,故本选项不符合题意;整式的有关概念18.若﹣a x+y b3与2a3b y是同类项,则y﹣x=3.【解答】解:由同类项的定义可知:x+y=3,y=3,∴x=0,y=3,所以y﹣x=3﹣0=3.19.单项式﹣3x2y的次数是3.整式的运算20.化简m+n﹣(m﹣n)的结果为()A.2m B.2n C.0D.﹣2n【分析】原式去括号合并即可得到结果.【解答】解:原式=m+n﹣m+n=2n,21.下列计算正确的是()A.4a2÷2a2=2a2B.3a2+2a=5a3C.﹣(a3)2=a5D.(a﹣b)(﹣a﹣b)=b2﹣a2【分析】根据单项式除以单项式可以判断A;根据合并同类项的方法可以判断B;根据积的乘方可以判断C;根据平方差公式可以判断D.【解答】解:4a2÷2a2=2,故选项A错误,不符合题意;3a2+2a不能合并,故选项B错误,不符合题意;﹣(a3)2=﹣a6,故选项C错误,不符合题意;(a﹣b)(﹣a﹣b)=b2﹣a2,故选项D正确,符合题意;22.下列算式中,正确的是()A.(a+b)2=a2+b2B.5a2﹣3a2=2a2C.D.因式分解23.因式分解:2x2﹣4x+2=2(x﹣1)2.24.因式分解:3x2﹣12=3(x+2)(x﹣2).25.已知x+y=﹣6,xy=,则x3y+2x2y2+xy3的值为9.【解答】解:原式=xy(x2+2xy+y2)=xy(x+y)2,∵x+y=﹣6,xy=,∴原式===9.26.分解因式:2a3﹣8a=2a(a+2)(a﹣2).27.分解因式:a2﹣2ab=a(a﹣2b).28.分解因式:m2﹣6m=m(m﹣6).29.分解因式:a2b﹣18ab+81b=b(a﹣9)2.30.分解因式:2m2﹣18=.31.分解因式:2x2﹣12x+18=2(x﹣3)2.32.分解因式:m2﹣6m=m(m﹣6).33.分解因式:a3﹣9a=.34.分解因式:a2﹣9=(a+3)(a﹣3).35.分解因式:x2﹣y2=(x+y)(x﹣y).36.分解因式:x3﹣4x=x(x+2)(x﹣2).37.分解因式:3a2﹣12=3(a+2)(a﹣2).38.分解因式:x2﹣1=(x+1)(x﹣1).39.因式分解:a3﹣4a=a(a+2)(a﹣2).40.分解因式:4a2﹣16=4(a+2)(a﹣2).41.因式分解:x3﹣2x2=x2(x﹣2).42.因式分解:ab2﹣2ab+a=a(b﹣1)2.43.分解因式:3﹣3x2=3(1+x)(1﹣x).44.分解因式:x2﹣9y2=(x+3y)(x﹣3y).45.分解因式:ax2﹣4a=a(x+2)(x﹣2).整式的化简求值46.已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.【解答】解:(x+1)2﹣2x+y(y﹣2x)=x2+2x+1﹣2x+y2﹣2xy=x2﹣2xy+y2+1,当x﹣y=时,原式=(x﹣y)2+1=()2+1=5+1=6.47.先化简,再求值:(2a﹣3b)2﹣(3b+a)(3b﹣a),其中a=,.【解答】解:(2a﹣3b)2﹣(3b+a)(3b﹣a)=4a2﹣12ab+9b2﹣9b2+a2=5a2﹣12ab,当a=,时,原式=5×()2﹣12××=10﹣12.平方差公式的应用48.(2022·广州黄浦区二模)若m﹣=3,则m2+=11.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.(2010安徽省中中考) 计算x x ÷)2(3的结果正确的是…………………………( ) A )28x B )26x C )38x D )36x【答案】A 2.(2010广东广州,3,3分)下列运算正确的是( )A .-3(x -1)=-3x -1B .-3(x -1)=-3x +1C .-3(x -1)=-3x -3D .-3(x -1)=-3x +3 【答案】D 3.(2010广东广州,8,3分)下列命题中,正确的是( )A .若a ·b >0,则a >0,b >0B .若a ·b <0,则a <0,b <0C .若a ·b =0,则a =0,且b =0D .若a ·b =0,则a =0,或b =0 【答案】D 4.(2010江苏南京)34a a ⋅的结果是A.4a B.7a C.6a D. 12a 【答案】B5.(2010江苏盐城)下列说法或运算正确的是 A .1.0×102有3个有效数字 B .222)(b a b a -=- C .532a a a =+D .a 10÷a 4= a 6【答案】D6.(2010辽宁丹东市) 图①是一个边长为()m n +的正方形,小颖将 图①中的阴影部分拼成图②的形状,由图①和图② 能验证的式子是( )A .22()()4m n m n mn +--= B .222()()2m n m n mn +-+= C .222()2m n mn m n -+=+D .22()()m n m n m n +-=-【答案】B 7.(2010浙江金华)如果33-=-b a ,那么代数式b a 35+-的值是( ▲ ) A .0 B .2 C .5 D .8【答案】D8.(2010山东日照)由m (a +b +c )=ma +mb +mc ,可得:(a +b )(a 2-ab +b 2)=a 3-a 2b +ab 2+a 2b图①图②第4题图-ab 2+b 3=a 3+b 3,即(a +b )(a 2-ab +b 2)=a 3+b 3.我们把等式①叫做多项式乘法的立方公式。

下列应用这个立方公式进行的变形不正确...的是 (A )(x +4y )(x 2-4xy +16y 2)=x 3+64y 3 (B )(2x+y )(4x 2-2xy+y 2)=8x 3+y 3 (C )(a +1)(a 2+a +1)=a 3+1 (D )x 3+27=(x +3)(x 2-3x +9) 【答案】D 9.(2010山东威海)下列运算正确的是A .xy y x 532=+B .a a a =-23C .b b a a -=--)(D .2)2(12-+=+-a a a a )( 【答案】D10.(2010山东威海)已知1=-b a ,则a 2-b 2-2b 的值为 A .4 B .3 C .1 D .0 【答案】C11.(2010四川凉山)下列计算正确的是A .=.1)(11=C .422()a a a --÷=D .2111()24xy xy xy -⎛⎫= ⎪⎝⎭【答案】D12.(2010四川眉山)下列运算中正确的是A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+ 【答案】B 13.(2010台湾)已知有一多项式与(2x 2+5x -2)的和为(2x 2+5x +4),求此多项式为何? (A) 2 (B) 6 (C) 10x +6 (D) 4x 2+10x +2 。

【答案】B 14.(2010浙江宁波)下列运算正确的是(A)22x x x =⋅ (B)22)(xy xy = (C)632)(x x = (D)422x x x =+【答案】C15.(2010 浙江省温州)计算a 2·a 4的结果是(▲)A .a 2B .a 6C .a 8D .a 16【答案】B16.2010 浙江台州市)下列运算正确的是(▲)A .22a a a =⋅B .33)(ab ab =C .632)(a a =D .5210a a a =÷ 【答案】C 17.(2010山东聊城)下列运算正确的是( )A .(3xy 2)2=6x 2y 4B .24122xx =- C .(-x )7÷(-x )2=-x 5 D .(6xy 2)2÷3xy =2xy 3【答案】C18.(2010重庆市潼南县)计算3x +x 的结果是( ) A . 3x 2B . 2x C . 4x D . 4x 2【答案】C 19.(2010 浙江义乌)下列运算正确..的是( ▲ ) A .321ab ab -= B .426x x x = C .235()x x = D .x x x 232=÷【答案】B20.(2010 重庆)计算232x x ⋅的结果是( ) A .2x B .52x C .62x D .5x 【答案】B 21.(2010 福建晋江)下列计算正确的是( ). A.632a a a =⋅ B.()832a a = C.326a a a =÷ D.()6223b a ab =【答案】D22. (2010湖南长沙)下列计算正确的是( ).A 、2242a a a += B 、2(2)4a a = C3= D32=【答案】C .23.(2010江苏宿迁)下列运算中,正确的是A .325=-m mB .222)(n m n m +=+C .n m nm =22 D .222)(mn n m =⋅【答案】D24.(2010 四川南充)下列等式成立的是( ).(A )26a a =3() (B )223a a a -=- (C )632a a a ÷= (D )2(4)(4)4a a a +-=-【答案】A 25.(2010 浙江衢州)如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .2m +3B .2m +6C .m +3D .m +6 【答案】A(第8题)26.(2010江苏泰州)下列运算正确的是( )A.623·a a a = B.632)(a a -=- C.33)(ab ab = D.428a a a =÷ 【答案】B27.(2010江苏泰州)已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( )A.Q P >B.Q P =C.Q P <D.不能确定 【答案】C28.(2010江苏无锡)下列运算正确的是( )A . 325()a a = B .325a a a += C .32()a a a a -÷= D . 331a a ÷=【答案】D29.(2010湖南邵阳)(-a )2⋅a 3= ( ) A .-a 5 B .a 5 C .-a 6 D .a 6 【答案】B30.(2010重庆綦江县)计算2a 2÷a 结果是( ) A .2 B .2a C .2a 3 D .2a 2【答案】B31. (2010山东临沂)下列各式计算正确的是 (A )236x x x = (B )2235x x x += (C )236()x x = (D )623x x x ÷=.【答案】C32. (2010山东临沂)若1x y -=,xy =(1)(1)x y -+的值等于(A )2(B )2(C )D )2 【答案】B33. (2010四川宜宾)下列运算中,不正确...的是( ) A . x 3+ x 3=2 x 3 B . (–x 2)3= –x 5 C . x 2·x 4= x 6 D . 2x 3÷x 2 =2x【答案】B34. (2010 江苏连云港)下列计算正确的是( )A .a +a =x 2B .a ·a 2=a 2C .(a 2) 3=a 5D .a 2 (a +1)=a 3+1 【答案】B35. (2010 黄冈)下列运算正确的是( )A .1331-÷= B a = C .3.14 3.14ππ-=- D .326211()24a b a b =【答案】D36. (2010 山东莱芜)下列计算结果正确的是A .923)(a a =-B .632a a a =⋅C .22)21(21-=--D .1)2160(cos 0=-【答案】C37. (2010福建宁德)下列运算中,结果正确的是( ).A.2a a a =⋅B.422a a a =+C.523)(a a = D.a a a =÷33【答案】A38. (2010江西) 计算 -(-3a)2的结果是( )A .-6a 2B . -9a 2C . 6a 2D . 9a 2【答案】B39. (2010年贵州毕节)若23(2)0m n -++=,则2m n +的值为() A .4- B .1- C .0 D .4 【答案】B40. (2010浙江湖州)化简a +2b -b ,正确的结果()A .a -bB . -2bC .a +bD .a +2 【答案】C .41. (2010江苏淮安)计算32a a ⋅的结果是A .a 6B .a 5C .2a 3D .a 【答案】B42. (2010 山东滨州)下列各式运算正确的是( )A.2a 2+3a 2=5a 2B.(2ab 2)2=4a 3b 4C. 2a 6÷a 3=2a 2D. (a 2)3=a 5【答案】B43.(2010湖南郴州)下列运算,正确的是A .523a a a =⋅ B .ab b a 532=+C .326a a a =÷ D .523a a a =+【答案】 A44. (2010湖南怀化)若1=x ,21=y ,则2244y xy x ++的值是( ). A.2 B.4 C.23D.21【答案】B45. (2010江苏扬州)下列计算正确的是() A .x 4+x 2=x 6 B .x 4—x 2=x 2 C .x 4·x 2=x 8 D .(x 4)2=x 8【答案】D46. (2010湖北恩施自治州)下列计算正确的是:A.422a a a =+B.()a a a a a a +=÷++223C.1046a a a =⋅D .()633a a =【答案】C47. (2010山东泰安)计算(a 3)2·a 3的结果是() A.a 8B.a 9C.a 10D.a 11 【答案】B48. (2010云南红河哈尼族彝族自治州)如果的取值是和是同类项,则与n m y x y x m m n 31253--A.3和-2B.-3和2C.3和2D.-3和-2 【答案】C 49.(2010黑龙江哈尔滨)下列运算中,正确的是( )(A )523x x x =⋅ (B )32x x x =+ (C )x x x =+232 (D ).2)2(33x x =【答案】A50.(2010江苏徐州)下列计算正确的是A .624a a a =+B .2a ·4a =8aC .325a a a =÷D .532)(a a =【答案】C 51.(2010云南昆明)下列各式运算中,正确的是( )A .222()a b a b +=+ B 3= C .3412a a a ⋅= D .2236()(0)a aa =≠ 【答案】B52.(2010陕西西安)计算(a a 3)22⋅-的结果是A .26a - B .36a - C .312aD .36a【答案】B 53.(2010广东东莞)下列运算正确的是( )A .ab b a 532=+B .b a b a -=-4)2(2C .22))((b a b a b a -=-+ D .222)(b a b a +=+【答案】C54.(2010 福建三明)下列运算中,正确的是( )A .34=-a aB .623a a a =⋅ C .a a a =÷22D .632)(a a =【答案】D 55.(2010 山东东营)下列运算中,正确的是( ) (A)2a a a += (B)22a a a =⋅(C)22(2)4a a = (D)325()a a =【答案】C56.(2010 四川绵阳)如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,…,2n ,…,请你探究出前n 行的点数和所满足的规律.若前n 行点数和为930,则n =( ).A .29B .30C .31D .32【答案】B 57.(2010广东汕头)下列运算正确的是( ) A .ab b a 532=+B .()b a b a -=-422C .()()22b a b a b a -=-+D .()222b a b a +=+【答案】C 58.(2010四川泸州)计算(a 4)2÷a 2的结果是( ) A .a 2 B .a 5 C .a 6 D .a 7 【答案】C59.(2010 山东淄博)计算b a ab 2253⋅的结果是(A )228b a (B )338b a (C )3315b a (D )2215b a【答案】C 60.(2010 内蒙古包头)下列运算中,正确的是( ) A .2a a a += B .22a a a =C .22(2)4a a =D .325()a a =【答案】C61.(2010 广西玉林、防城港)计算(a 2)3的结果是: ( ) A .a 5B .a 6C .a 3D .a1-【答案】B62.(2010 重庆江津)下列运算正确的是() A .246x x x += B .236x x x ⋅= C .()336xx = D .253555=【答案】D 63.(2010 福建泉州南安)下列运算正确的是().A .23a a a +=B .22(3)6a a = C .623a a a ÷= D .34aa a =·64.(2010 山东荷泽) 下列运算正确的是A .(a +b )(a -b )=a 2-b 2B .(a -2)2=a 2-4C .a 3+a 3=2a 6D .(-3a 2)2=9a 4【答案】D65.(2010宁夏回族自治区)下列运算正确的是( )A .236a a a ⋅=B .532a a a ÷=C .235a a a += D .235()a a =【答案】B66.(2010 广西钦州市)下列各式运算正确的是(A )224325a a a +=(B )22(3)9a a +=+(C )235()a a =(D )23326a a a ⋅= 【答案】D67.(2010新疆维吾尔自治区新疆建设兵团)计算(-a 2)3的结果是()A. –a 5B.a 6C.-a 6D. a 5【答案】C68.(2010新疆乌鲁木齐)已知整式x x 252-的值为6,则6522+-x x 的值为 A .9 B .12C .18D .24【答案】C69.(2010新疆乌鲁木齐)有若干张面积分虽为ab b a ,,22的正方形和长方形纸片,阳阳从中抽取了1张面积为2a 的正方形纸片,4张面积为ab 的长方形纸片,若他想拼成一个大正方形,则还需要抽取面积为2b 的正方形纸片 A .2张 B .4张 C .6张 D .8张【答案】B 70.(2010广西南宁)下列二次三项式是完全平方式的是:(A )1682--x x (B )1682++x x (C )1642--x x (D )1642++x x 【答案】B71.(2010年山西)下列运算正确的是( )A .222)(b a b a -=-B .632)(a a -=-C .422x x x =+ D .622623a a a =⋅ 【答案】B 72.(2010广东茂名)下列运算中结果正确..的是 A .ab b a 523=+ B .235=-y y C .x x x 853-=+- D .y x y x y x 22223=-【答案】D 73.(2010广东茂名)用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”A .4n 枚B .(4n -4)枚C .(4n+4)枚D . n 2枚 【答案】A74.(2010云南昭通)下列计算正确的是( )长A .532x x x =⋅ B .(a +b )2=a 2+b 2 C .532)(a a = D .a 2+a 3=a 5【答案】A75.(2010辽宁大连)下列运算正确的是()A. 236a a a ⨯=B. 44()a a -= C. 235a a a += D. 235()a a =【答案】B 76.(2010贵州遵义)计算(α3)2的结果是 A .3α2 B .2α3 C .α5 D .α6 【答案】D 77.(2010广东深圳)下列运算正确的是( )A .222)(y x y x -=- B .422)(xy y x =⋅ C .3322y x xy y x =+ D .426x x x =÷ 【答案】D 78.(2010广东佛山)多项式1+xy-xy ²的次数及最高次项的系数分别是 A .2,1 B .2,-1 C .3,-1 D .5,-1 【答案】C 79.(2010湖北宜昌)下列运算正确的是( )。

相关文档
最新文档