汽车风道设计

合集下载

汽车空调出风口及风道设计要求规范

汽车空调出风口及风道设计要求规范

汽车空调出风口及风道设计作者:成台单位:一汽轿车股份目录第1章风道及出风口介绍 (4)1.1 风道介绍 (4)1.2 出风口介绍 (4)1.3 相关法规/标准要求 (5)1.3.1 国家/政府/行业法规要求 (6)1.3.2 FCC相关标准要求 (6)第2章风道及出风口设计规 (7)2.1风道及出风口结构 (7)2.1.1风道结构 (7)2.1.2出风口结构 (7)2.1.3出风口及风道实例 (8)2.1.4材料 (8)2.2风道及出风口整车布置 (8)2.2.1风道整车布置 (8)2.2.2出风口整车布置 (9)2.3通风性能 (10)2.3.1 风道中的压力损失 (10)2.3.2出风量 (10)2.3.3通风有效面积 (10)2.4 出风口水平叶片布置方式 (11)2.4.1叶片数量 (11)2.4.2叶片尺寸要求 (11)2.5.3叶片间距 (13)2.5 出风口垂直叶片布置方式 (13)2.5.1叶片数量 (13)2.5.2叶片尺寸要求 (13)2.5.3叶片间距 (13)2.6 气流性能 (13)2.6.1气流方向性 (13)2.6.2泄漏量 (17)2.7 出风口手感 (17)2.7.1拨钮操作力 (17)2.7.2拨轮操作力 (17)第3章试验验证与评估 (18)3.1 设计验证流程 (18)3.2 设计验证的容与方法 (18)第4章附录 (19)4.1 术语和缩写 (19)4.2 设计工具 (19)4.3 参考 (19)第1章风道及出风口介绍在整个汽车空调系统中,风道和出风口组成空调的通风系统,担负着将经过处理(温度调节,湿度调节,净化)的气流送到汽车驾驶舱,以完成驾驶舱通风,制冷,加热,除霜除雾,净化空气等的功能。

图 1 某车型空调通风系统及周围环境结构爆炸图1.1 风道介绍风道连接空调器与出风口,是空调系统中制冷和制热空气的通道。

目前空调系统由空调厂商提供,作为空调系统一部分的风道设计,需汽车整车设计部门做匹配设计,车厢的空气流场与温度场不仅与车厢结构以及空调制冷系统有关,还与空调风道的结构形状密切相关。

风道设计规范

风道设计规范

XXXXXX有限公司风道设计规范编制:校对:审核:批准:2017- - 发布 2017- - 实施前言本规范的主要目的在于提高汽车乘坐的舒适性以及汽车空调系统的通风性能。

1、范围本文件适用于XXXXXX有限公司本部乘用车仪表板风道总成(以下简称风道总成),事业部/分子公司遵照执行。

2、规范性引用文件GB 11555-2009 汽车风窗玻璃除霜和除雾系统的性能要求及试验方法GB 11556-2009 汽车风窗玻璃除霜系统的性能要求及试验方法3、术语和定义新风口:指将车外新鲜空气导入车内部的部件。

新风过度风道:指从新风口道HV AC入风口中间的进风管道。

前风道:指输送前HV AC入风口之间的进风管道。

后风道:指输送后HV AC入风口之间的进风管道。

本指南适用于汽车仪表板风道总成系列,一般包括除霜风管总成、吹面风道总成、及包覆风道表面泡棉等系列。

全车风道总成的功能为:运输暖风机吹出的风,保证吹出来的风在风道中按要求的截面积、要求的风速、风量和要求的方向且以最小的压力损失吹到驾驶室及前挡风玻璃和前排侧玻璃;材料性能满足以下要求;GB 8410 - 2006 《汽车内饰材料的燃烧特性》GB/T 30512-2014 《汽车禁用物质要求》GB/T 27630-2011 《乘用车内空气质量评价指南》4、概述在整个汽车空调系统中,风道和出风口组成空调通风系统,担负着将经过处理(温度调节,湿度调节,精华)的气流送到汽车驾驶舱内,以完成驾驶舱内通风,制冷,加热,除霜除雾,净化空气等的功能。

风道连接空调器与出风口,是空调系统中制冷和制热空气的通道。

目前空调系统由空调厂商加工设计,车厢内的空气流场与温度流场不仅与车厢结构以及空调制冷系统密切相关。

风道的布置走向、风道占用空间(截面积)以及风道中空气的流速等均影响车厢内的制冷效果,影响系统的经济性和外观造型。

5、主要设计内容1、配合样件测量2、根据点云逆向初步设计3、确定风道布置方式和安装方式4、确定风道的成型加工方式5、建立三维数模6、根据造型改动要求修改风道设计7、进行二维图设计8、与模具厂及制造商进行协调,修改设计6、设计规范6.1 材料选择风道总成部件常用材料见表1,实际设计时可根据需要适当调整。

汽车空调出风口及风道设计规范标准

汽车空调出风口及风道设计规范标准

汽车空调出风口及风道设计**:***单位:一汽轿车股份目录第1章风道及出风口介绍 (4)1.1 风道介绍 (4)1.2 出风口介绍 (4)1.3 相关法规/标准要求 (5)1.3.1 国家/政府/行业法规要求 (6)1.3.2 FCC相关标准要求 (6)第2章风道及出风口设计规 (7)2.1风道及出风口结构 (7)2.1.1风道结构 (7)2.1.2出风口结构 (7)2.1.3出风口及风道实例 (8)2.1.4材料 (8)2.2风道及出风口整车布置 (8)2.2.1风道整车布置 (8)2.2.2出风口整车布置 (9)2.3通风性能 (10)2.3.1 风道中的压力损失 (10)2.3.2出风量 (10)2.3.3通风有效面积 (10)2.4 出风口水平叶片布置方式 (11)2.4.1叶片数量 (11)2.4.2叶片尺寸要求 (11)2.5.3叶片间距 (13)2.5 出风口垂直叶片布置方式 (13)2.5.1叶片数量 (13)2.5.2叶片尺寸要求 (13)2.5.3叶片间距 (13)2.6 气流性能 (13)2.6.1气流方向性 (13)2.6.2泄漏量 (17)2.7 出风口手感 (17)2.7.1拨钮操作力 (17)2.7.2拨轮操作力 (17)第3章试验验证与评估 (18)3.1 设计验证流程 (18)3.2 设计验证的容与方法 (18)第4章附录 (19)4.1 术语和缩写 (19)4.2 设计工具 (19)4.3 参考 (19)第1章风道及出风口介绍在整个汽车空调系统中,风道和出风口组成空调的通风系统,担负着将经过处理(温度调节,湿度调节,净化)的气流送到汽车驾驶舱,以完成驾驶舱通风,制冷,加热,除霜除雾,净化空气等的功能。

图 1 某车型空调通风系统及周围环境结构爆炸图1.1 风道介绍风道连接空调器与出风口,是空调系统中制冷和制热空气的通道。

目前空调系统由空调厂商提供,作为空调系统一部分的风道设计,需汽车整车设计部门做匹配设计,车厢的空气流场与温度场不仅与车厢结构以及空调制冷系统有关,还与空调风道的结构形状密切相关。

客车行李架及风道设计规范

客车行李架及风道设计规范

内行李架及风道设计规范1.范围本标准规定了客车内行李架及冷气道在设计、检验及安装方面的技术条件和要求;2.规范性引用文件下列文件对于本文件的应用是必不可少的。

凡是注日期的引用文件,仅注日期的版本适用于本文件。

凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB 7258-2012 机动车运行安全技术条件GB 13094-2007 客车结构安全要求GB 8410-2006 汽车内饰材料的燃烧特性GB/T 13053-2008 客车车内尺寸3.术语和定义3.1 行李架宽:行李架外缘相切的Y平面至行李架内护板之间的距离;3.2 行李架入口高:行李架入口处至顶盖护板之间的距离;3.3 行李架倾角:行李架底面与Z平面之间的夹角;4.要求4.1内行李架及风道分类:客车的风道行李架是乘客区最关建的内饰件,它是具有功能性零部件,确定整车内饰的风格和基调;从客车行李架和风道之间的关系可以分为整体式行李架和独立式行李架。

整体式行李架多用于豪华客车,其状态不能取消行李架保留风道。

独立式行李架可以直接实现取消行李架保留风道。

从客车行李架的使用功能上可以将行李架分为:航空式全封闭内行李架(全封闭带行李仓门)和半封闭非航空行李架(或豪华行李架,行李架不封闭不带行李仓门)。

4.2 内行李架及风道组成和材料:4.2.1 行李架由底板、底板边型材、行李架内封板和吊架等组成。

如图一为某客车型所使用的整体式行李架,可以很方便实现航空行李架或非航空行李架。

11.底板2.底板边型材3.行李架里板(内封板)4.吊架图一4.2.3 客车行李架风道经常用以下三种材料制做:A、滚压成型的薄钢板材料,表面粘接面料;此种材料强度高,目前为止,尚没有其它材料的组合可以在成本和价格上低于钢板包面料的材料组合;但粘接面料发生过脱落的现象;B、聚氨脂发泡或亚麻、PVC材料;此种材料由于材质软,基本仅用于风道部分;材质轻,有利于降重减油耗;C、铝板材,材质比钢板轻,表面质量高,防冷风结露性能、阻燃性能好,但价格较高。

风道设计规范精选全文

风道设计规范精选全文

可编辑修改精选全文完整版风道设计规范编制校对审核版本日期目录1. 目的、介绍 (3)2.引用标准 (3)3 风道开发流程图 (4)3.1设计流程图 (4)3.2 设计输入 (4)4详细设计 (5)4.1 风道的设计 (5)4.1.1 注意要点 (5)4.1.2 风道的分类 (5)4.1.3风道中的压力损失 (6)4.1.3.1沿程压力损失 (6)4.1.3.2局部压力损失 (7)4.1.4出风量 (8)4.1.5 风道的安装 (8)4.1.5.1风道之间连接 (8)4.1.5.2 风道的安装定位 (10)4.1.6 材料选用 (12)4.2 出风口的设计 (12)4.2.1 出风口的介绍 (12)4.2.2 出风口的详细结构与分类 (12)4.2.3出风口整车布置 (14)4.2.4 材料的选用 (17)5.模拟分析 (17)5.1 风速分析 (17)5.2 风量分析 (17)5.3 风阻分析 (18)5.4 出风口风速方向 (18)5.5 样件测试结果 (19)6.附录 (19)1.目的、介绍目的:本规范描述了一般风道设计开发流程,用于指导风道的开发设计,本规范仅适用于多种类型汽车设计功能:在整个汽车空调系统中,风道和出风口组成空调的通风系统,担负着将经过处理(温度调节,湿度调节,净化)的气流送到汽车驾驶舱内,以完成驾驶舱内通风,制冷,加热,除霜除雾,净化空气等的功能。

2.引用标准根据客户的目标市场确定整车要满足哪些国家或地方法规,一般规定:国家/政府/行业法规要求中华人民共和国国家标准汽车风窗玻璃除霜系统的性能要求及试验方法,GB 11556-94中华人民共和国国家标准汽车风窗玻璃除雾系统的性能要求及试验方法,GB 11555-94FCC相关标准要求GMW3037 乘用车最大制冷性能验证试验3 风道开发流程图3.1设计流程图在风道3D数据设计完成后面增加模拟分析及台架试验分析过程;3.2 设计输入风道设计需要输入暖风空调的相关系统参数,具体要求如下表单位mm2名称暖风机器出口除霜管道(前)侧除霜风道吹脚风道吹面风道截面积7000 5000 2000 3000 40004详细设计4.1 风道的设计4.1.1 注意要点1)由于风道都是与仪表板本体形成总成,为了节省仪表板下的空间,而又能够满足风道的截面积,所以风道的布置尽量跟着仪表板的大面趋势来做断面布置。

电动汽车空调系统设计及风道的设计改进

电动汽车空调系统设计及风道的设计改进

1、空调系统改进方案 a.部件更 换:为了提高空调系统的性能
2、风道设计改进方案 a.进风口 位置调整:通过调整进风口的位 置
效果评估
1、改进后的空调系统效果评估 a.制冷速度:改进后的空调系统应具有更快的 制冷速度,能够在短时间内将车内温度降低到设定值。 b.制冷效果:改进后 的空调系统应具有更好的制冷效果,能够实现车内温度的均匀分布和研究集中在传统汽车空调系统和新能源空调系统 的研究上。传统汽车空调系统主要采用发动机驱动压缩机的方式,但这种方式 在电动汽车上无法应用。因此,研究人员转向新能源空调系统的研究,包括电 动压缩机制冷、热泵空调、座椅空调等。电动压缩机制冷空调的研究相对较为 成熟,已经得到广泛应用。
电动汽车空调系统的发展历程
电动汽车空调系统自电动汽车问世以来就伴随着电动汽车的发展而发展。早期 的电动汽车由于受限于电池技术和续航里程,空调系统多采用简单的吹风式或 分体式结构。随着电动汽车技术的不断进步,特别是电池能量密度的提高和充 电速度的加快,电动汽车空调系统也逐渐向高效率、低能耗、舒适性方向发展。
电动汽车空调系统设计及风道 的设计改进
目录
01 电动汽车空调系统的 发展历程
03 参考内容
02 空调系统设计思路
随着全球能源危机的加剧和环保意识的提高,电动汽车逐渐成为交通出行的重 要选择。然而,电动汽车在夏季高温天气下行驶时,空调系统对于车辆的舒适 性和续航里程有着重要的影响。本次演示将对电动汽车空调系统设计及风道的 设计改进进行探讨,旨在提高空调系统的性能和降低能源消耗。
系统能够有效地过滤和吸附车内的有害物质,为驾乘者提供更加健康和舒适的 环境。
在参数设计方面,全自动汽车空调系统的设计主要考虑系统的制冷、制热、通 风和净化等方面的性能参数。例如,系统的制冷量和制热量的大小直接影响了 车内温度和湿度的调节效果;系统的风量和风向的设计直接影响了车内的空气 交换效果;系统的过滤器和活性炭等净化装置的性能参数直接影响了对车内有 害物质的过滤和吸附效果。因此,在参数设计时需要对各个部件的性能参数进 行科学的计算和选择。

汽车空调出风口与风道设计规范标准

汽车空调出风口与风道设计规范标准
对不同的车型,出风口的数量及位置也会不同。一般地,普通带两排座位的装空调系统的车,都配有前排吹脸出风口,前排吹脚出风口,前吹窗出风口和侧吹窗出风口。一些档次较高的车,为了照顾后排乘客的舒适性,往往会增配后排吹脸出风口和后排吹脚出风口;一些三排座位的旅行车或更多排座位的大型车,往往还需增配第三排出风口或更多的出风口。
风道走向尽量避免过大的转角,这样会增加风阻;在风道内部尽量不要有尖角或突出物,这样容易产生蜗旋气流,并有可能产生噪音;风道截面大小尽量做到均匀;总之,我们需要得到的风道具有风阻小,出风均匀,没有噪音的特点。
2.1.2出风口结构
出风口有前排吹脸出风口和后排吹脸出风口之分,属于外观零件,造型设计师会对它们的形状,外观,颜色,表面处理等进行重点设计,以达到期望的美学效果。
2.1.3出风口及风道实例
2.1.4材料
风道类零件一般采用吹塑或注塑工艺制成,吹塑零件主要采用PE材料,而注塑则采用PP材料,以一定比例的滑石粉作为填充物,如PP-TD20。
出风口类零件材料如下:
面框、拨轮骨架:采用ABS+PC。
装饰框、壳体、拨钮:采用ABS。
连杆,曲柄:采用POM。
风门包胶、拨轮包胶:采用EPDM。
这些风道的布置于主仪表板和副仪表板内部空间布局有很大关系,布置要求满足风道最小截面面积的需要,同时要求具有良好的装配和可拆卸性能。
2.2.2出风口整车布置
j)调节拨钮造型与叶片应当统一。
k)对后排吹脚出风口而言,为了美观,需要被座椅遮住,应该特别关注滑动座椅。
组成
结构示意图:
图8出风口结构示意图
外形及结构:前排出风口外形为异形,后排出风口外形为方形,其上设计有拨轮和拨钮,拨轮上下有标识指示风门的开启和关闭。拨轮控制风门的开启和关闭,控制出风口出风量。叶片上的拨钮控制出风口水平及垂直出风方向。

客车空调送风风道设计

客车空调送风风道设计

客车空调送风风道设计客车空调送风风道设计1、评价客车空调使用效果的指标(1)降温能力——从一定的车内高温环境降低到乘员舒适性温度环境所用的时间,时间越短,空调使用效果越好。

(2)车内温度场的均匀性——即在同一时间车内任意两点的温差,一般要求不能超过3℃2、降温能力决定因素(1)空调名义制冷量Q1不同的车长,不同车型空调的空调名义制冷量选择要由该车空调制冷负荷的决定。

通常需要通过计算整车的空调制冷负荷,工程上按车型有不同的标准来确定旅游车、团体车——JT/T216《客车空调系统技术条件》按人均制冷量选取公交车、校车、机场摆渡车——CJ-T134《城市公交空调客车空调技术条件》按车厢容积选取。

(2)冷气在风道内的热损失Q2冷气在风道内的热损失Q2由空调风道的设计来决定。

通常与风道的长度,风道的气流阻力,风道的隔热保温能力有关。

(3)整车的实际制冷量Q3Q3=Q1-Q2同等条件下整车的实际制冷量Q3越大,降温能力越强,空调的使用效果越好。

3、车内温度场的均匀性车内温度场的均匀性由空调风道的设计来决定,通常涉及如下几个因素:(1)空调的布置——决定了风道的截面积和风道的长度,影响了风道内压力分布,进而影响风道上每个出风口的风量。

(2)风道出风口布置—由于车箱内不同处热负荷不同,要确保车内温度场的均匀性,风道出风口的数量和布置要依据此处的制冷负荷设计。

4、风道设计重要性由此可见,风道的设计不仅影响整车降温能力,而且影响车内温度的均匀性,在整个空调布置设计中占据重要的位置由于整车布置的原因,空调布置型式多变————风道外型和设计发生变化;由于整车不同位置热负荷不同——风道出风口设计发生变化5、风道设计计算(1)风道截面面积计算风道总的送风截面面积 0003600v L F m2式中:0L —蒸发器的送风量,m3/h 。

0v —风道内冷空气的流速,一般取为5~8m/s 。

风道的截面面积 n F S 0= m2式中:n —对双侧前后送风风道,其值为4;对双侧单方向送风风道,其值为2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. I 汽车风道通用设计规范
. 风道系统设计需考虑的因素
在汽车风道系统设计时,要保证将其制冷和采暖设备的出风均匀地送入车厢内。

在满足该使用效果的前提下,尽可能地做到结构简单,制造方便,与车内内饰设计及附件相协调。

风道系统设计时,需考虑以下因素:
1. 必须考虑车身总布置设计、内饰造型设计以及底盘设计中和风道设计相关
的情况;
2. 由于汽车车厢空间有限,空调汽车的风道压力损失问题较为严重,因此在设计、布置风道时,应特别注意风道中的压力损失;
3. 要考虑风道各支管路之间的风量平衡,各支管路之间的空气流动的压力损失差值不得超过15%,并要详细计算各支管路的沿程阻力损失;
4. 必须将风道的气流噪声控制在允许的范围内,因此要对风道的风速进行控制。

通常出风口风速控制在~11m/s ,新风入口处风速5~6m/s ,主风道风速~8m/s ,支风道风速4~s ,过滤器风速1~s ;
5. 风道不能有大的泄漏点,以保证空调系统功能的发挥;
6. 对风道要进行隔热保温处理,以减少空气在风道输送过程中的冷、热量损失,并防止低温风道表面结露。

常用的保温材料有聚苯乙烯泡沫塑料、玻璃棉、聚氨脂泡沫塑料等,为了防止火灾,车外风道最好用泡沫石棉隔热,并用石棉布包扎;
. 风道中的压力损失
由于汽车车室内部的空气流动受有限的车厢空间的限制,汽车空调风道的压力损失问题较为严重,风道压力损失是由沿程压力损失和局部压力损失两部分组成。

风道沿程压力损失
风道沿程压力损失是空气沿风道管壁流动时,由空气与管壁之间的摩擦、空气分子与分子之间的摩擦而产生。

风道单位长度的沿程压力损失p m (又称比摩阻)的计算式如下:
2
412ρυλs m R p = 式中:λ——摩擦阻力系数;
ν——风道内空气的平均速度(m/s );
R S ——风道的水力半径(m );
R S =A/P ;
A ——风道的过流横截面面积(m 2);
P ——风道的周长(m );
摩擦阻力系数λ是雷诺数Re 和管壁粗糙度n 的函数。

若空气流动呈层流状态时(Re<2300),λ值与管壁表面粗糙度无关,只与Re 有关,即
λ=64/Re
当空气呈紊流状态时(Re >2300),有三种状态:
⑴当层流边界层覆盖住管壁凸起高度时,为水力光滑管,此时影响λ值的只有
Re ,即
25.0e R 0.3164
≈λ
⑵当层流边界层只是覆盖住管壁一部分凸起高度,而另一部分凸起高度在边界层外时,为过渡状态,此时λ既与Re 有关,又与管壁粗糙度有关。

⑶如果层流边界层很薄,管壁凸起高度完全突出在边界层外部,属于水力粗糙管,λ只与管壁表面粗糙度有关而与Re 无关。

但是对于大部分风道而言,空气的流动处在紊流过渡区,λ值既与Re 有关,又与管壁表面粗糙度n 有关,λ值与Re 和n 的关系可参阅一般空调设计手册和管道设计手册中的有关图表。

风道内空气的平均速度ν对风道沿程压力损失的影响最大,如果在相同风量时,风道中风速选得过大,虽然可减小风道的尺寸,但同时也会使风道内空气流动的沿程阻力以速度的平方值增加,而且还需要配置高压风机来满足风道出口风速的要求;反之,在相同的风量条件下,把空气速度选得过小,虽然风道阻力损失减小,但同时使风道尺寸过大,造成安装不方便,风道在车厢里所占空间过多。

为此,空调汽车风道的风速应控制在如表所示的低速风道送风范围内: 表 低速风道推荐风速
风道摩擦阻力系数λ和单位长度的沿程压力损失p m 也可采用如下的简化计算式计算:
①风道材料为薄钢板,风道内壁表面各凸出部分的平均高度为时,
0.210.0750.0175D λυ--=; 2
1.21 1.925
0.01052m p D D λρυυ-==
D ——圆形风道内径或风道当量直径(m );
适用范围:≤D ≤2m ; 3 m/s ≤ν≤20m/s ;
②风道材料为塑料板或玻璃钢,风道内壁表面各凸出部分的平均高度(绝对粗糙度)为1mm 时,
0.190.1670.0188D λυ--=; 2
1.19 1.833
0.01132m p D D λρυυ-==
D ——圆形风道内径或风道当量直径(m );
适用范围:≤D ≤2m ; 5 m/s ≤ν≤30m/s ;
要降低风道沿程压力损失,就要求风道内表面光滑平整,以降低风道表面的绝对粗糙度,从而减小摩擦阻力。

风道的局部压力损失 局部压力损失是由于空气在风道中的流量、流动方向或速度骤然突变时,会在风
道内发生涡流或速度的重新分布,从而使流动阻力大大增加,造成能量损失。

例如当空气流过三通管、四通管等部件时,因流量改变而产生的局部阻力损失;当空气流过弯管、渐扩管、渐缩管、风门等部件时因气流速度或方向改变而产生的局部阻力损失。

不论哪类局部构件,其所引起的局部阻力损失
j p ∆均可根据下式计算:
2
2j p ρνξ∆= ξ——局部阻力系数,其取值根据相应的风道截面气流速度查阅有关的工程手册;
设计风道时,为了减小局部阻力,通常采取如下技术措施:
① 避免风道截面突变
风道截面突然扩大,会使部分气流因流速的变化而脱离扩管的壁面,在扩大截面处产生涡流,形成局部阻力损失。

因此,在风道布置长度允许的条件下,应采用渐扩或渐缩管道,使局部阻力损失和噪音减小。

一般渐扩管中心角≤14°,渐缩管中心角<40°为宜(如图)。

图 风道截面突变角度
② 风道应尽量减少转弯
由于空气流过弯管时,气流主流会因流向突变而脱离管壁表面,使局部区域出现真空,气流会在局部区域回旋,造成能量损失,而且产生噪音。

为了减小转弯处的局部阻力系数,可以减小转弯处的曲率半径和减少弯管过渡的节数。

矩形风道的弯头,除了减小曲率半径之外,还可在弯头内部设置导流板来减小局部阻力系数。

在处理竖直风管与车内纵向风管的接头时,两者截面应尽量接近,并尽可能地增大90°弯头的圆角半径,若增设导流板,风阻可明显减小(如图)。

在紧靠弯头的后面气流还未稳定(如图),不宜设置出风口,如果必须设置出风口,应在弯头或风口处加导流板。

图 风道弯头
③处理好局部管件的形成与连接
局部管件不仅涉及局部阻力而且关系到噪音,如果处理不好局部管件的形成和连接,涡流的生成可能性大大增加。

则不仅会大大增加局部阻力,而且会使局部管件成为噪声源。

增设导流板和合理确定弯曲半径会改善局部管件的连接情况。

(如图)
图风道局部管件设计举例
④风道与风机连接应合理
气流在进出风机处要求均匀分布,不要有流向和流速的突然变化。

气流出口的连接管应保持直管段,长度最好不小于出口边长的~倍,如果受空间限制,出口管必须折弯时,应在弯管中增设导流板,而且转弯的方向要顺着风机叶轮转动的方向(如图)。

风机进口接管的连接要注意涡流,由于设计不好,涡流损失大,使风量减少,加装导流板后,风量损失就减少到5%(如图)。

图风道与风机连接方式优劣对比
⑤出风口的局部阻力
为了减小出风口的局部阻力系数,应尽量降低出风口的出口流速。

气流从风道排出时,当出口处无阻挡时,能量损失等于出口动压。

当有阻挡,例如网罩、百叶、风球等,能量损失将大于出口动压,即局部阻力系数会大于1。

因此,只有局部阻力系数大于1的部分才是出口局部阻力损失,等于1的部分是出口动压损失。

将出口做成扩散作用较小的渐扩管,以减小局部阻力系数(如图,ζ<)。

图风道出风口的阻力系数
⑥进风口的局部阻力
气流进入风道时,由于产生气流与风道内壁分离和涡流而造成局部阻力。

不同的进口形式,其局部阻力系数相差很大(如图),因此,选择风道进口形式非常重要。

图风道进风口的阻力系数
⑦风道的截面要与车身总布置及内饰造型相协调
对于不同的车型,通过考虑内饰造型和车身总布置等因素,将风道截面设计成不同的形状。

对于公共汽车类空调客车,往往采用榄核形截面的送风管道,能产生宽敞车厢的效果;对于长途空调客车,采用矩形截面的送风管道,有利于与车内行李架的紧密配合,与车厢内装饰更为协调(如图)。

图风道截面形状
在确定了风道的基本形状后,根据空调设备的出风量和选定的风道内空气流速,参考车厢内装饰的要求,即可定出风道截面的具体尺寸。

对于矩形断面的风道,当风道截面一定时,应尽量减小长宽比,以减小风道的阻力。

相关文档
最新文档