合成气制乙二醇
合成气制乙二醇的偶联反应过程和机理分析赵永鲁

合成气制乙二醇的偶联反应过程和机理分析赵永鲁发布时间:2023-07-29T04:38:04.536Z 来源:《中国科技信息》2023年9期作者:赵永鲁[导读] 现今我国的偶联反应,偶联反应也就是合成气生产乙二醇工艺中的反应。
现今很多实验表明,在原定偶联反应的催化剂已经确定好的情况下,就可以选择效果最好最合适的草酸二甲酯来进行制备。
所以在偶联反应中要控制原料的杂质浓度,在反应中严格按照偶联反应所需的原材料以及相关比例,以及在反应中的实验操作,以保证反应过程的安全性也是草酸二甲酯制备中的关键环节。
河南省中原大化集团有限责任公司河南濮阳 457001摘要:现今我国的偶联反应,偶联反应也就是合成气生产乙二醇工艺中的反应。
现今很多实验表明,在原定偶联反应的催化剂已经确定好的情况下,就可以选择效果最好最合适的草酸二甲酯来进行制备。
所以在偶联反应中要控制原料的杂质浓度,在反应中严格按照偶联反应所需的原材料以及相关比例,以及在反应中的实验操作,以保证反应过程的安全性也是草酸二甲酯制备中的关键环节。
关键字:合成化气;乙二醇;偶联反映;酯化反映引言该工艺技术也在中国石化电子行业中受到了普遍重视。
目前,在我国国内的化学研究中,关于合成反映生产EG均使用气相法,在我国有很多相关科研人员进行了相关的研究,并在研究过程中,选择了不同的方向,也在各个方向中研发了很多新方面。
例如,就有研究人员研究了CO偶联制备草酸酯催化剂的工艺技术流程;还有科研人员研制了NOx和乙酰丙胺的工艺过程。
所以本文将对草酸二甲酯(DMO)在其形成过程中的偶联反映和形成亚硝酸甲酯(MN)的酯化反应对其反映速度等多方面进行比较,从而使人们可以比较完整、清晰地掌握偶联反应流程。
一、 MN偶联反应制 DMOMN制备:将计量好的软水、亚钠、甲醇在溶解釜中充分混合均匀,然后打入反应釜,滴加稀硝酸进行反应,产生亚硝酸甲酯提供给合成系统使用。
反应原理的主反应为:NaNO2 + HNO3 +CH3OH = NaNO3 + H20 + CH3ONO;副反应:2NaN02 + 2HNO3 = 2NaN03 + H20 + NO↑ + N02↑;6HNO3 + CH3OH = 5H20 + CO2↑ + 6N02↑;4HNO3 + CH3OH = 4H20 + CO↑ + 4N02↑。
合成气间接工艺制乙二醇技术

续表 3
项目
单位
循环水
t/h
脱盐水
t/h
电
kW·h/h
蒸汽:2.2MPa(G)(扣除副产)
t/h
1.6MPa(G)
t/h
0.9MPa(G)(副产蒸汽)
t/h
0.4MPa(G)(副产蒸汽)
t/h
0.9MPa(G)(副产蒸汽)
t/h
燃料消耗 (热值 41.9MJ/kg)
kg/h
仪表风 工艺空气 间断用量(吹扫用) 氮气 间断用量(吹扫用)
世界上拥有此项技术的公司主要有三家, 即 Shell、SD、DOW,采用这三家公司技术的生产 能力约占世界的 91%。国内规模化的乙二醇装置 全部为技术引进。
现以目前最先进的 Shell’s MASTER 为代表, 简单介绍如下:
采用纯氧与乙烯合成环氧乙烷,采用水合法 生产乙二醇,采用三效蒸发浓缩,经精制得产品。
前最有可能替代石油乙烯路线制乙二醇的方法 之一。
(收稿日期:2008- 10- 21)
太强的竞争力。 3 合成气间接工艺制乙二醇技术简介
戊正公司自 2002 年开始合成气间接工艺 乙二醇的研究,先后参与了模试装置、300t/a 装 置、1×104t/a 装置合成气间接工艺制乙二醇的工 程技术转化,进行了不同规模的计算机模拟并编
保障。但遗憾的是谷物粮食发酵生产乙醇与人争 粮,粮价随之上涨。目前国家严令限制谷物粮食
制了相应的工艺包。并在他人研究的基础上进行 了多项创新研究,申报了合成气间接法制乙二醇
发酵生产乙醇。现在以秸秆纤维素离解发酵因转 化率低及纤维素酶消耗的成本太高,也仅仅停留
在实验室及中试上。河南天冠、安徽丰原的中试 装置均以生产成本远远高于谷物粮食发酵的成
华东理工大学科技成果——合成气制乙二醇技术

华东理工大学科技成果——合成气制乙二醇技术项目简介目前乙二醇(EG)主要生产路线是石油路线,即石油裂解得到乙烯,乙烯氧化制得环氧乙烷(EO),环氧乙烷水合制乙二醇。
我国是一个缺油贫气,煤炭资源相对丰富的国家。
目前国内煤炭气化技术已经较成熟,煤气化产生的合成气可以经草酸二甲酯加氢合成乙二醇,该工艺路线具有反应条件温和,设备压力等级和材质要求低,催化剂对环境污染小等优点,具有较好的发展前景。
在石油价格不断上涨的形势下,这一技术的开发对我国的经济发展具有重要的战略意义,其经济性也明显优于石油路线。
合成气合成乙二醇新技术的工艺过程有三个反应,分两步进行:首先一氧化碳与亚硝酸甲酯(MN)羰化偶联合成草酸二甲酯(DMO),反应生成的一氧化氮与氧气和甲醇反应生成亚硝酸甲酯,在反应体系中循环;第一步反应的产物草酸二甲酯再加氢制乙二醇(EG)。
其中,亚硝酸甲酯羰化偶联和草酸二甲酯加氢两步反应通过气-固催化反应完成。
该技术反应自封闭循环,生产过程消耗CO、H2(经分离的合成气),及氧气,生成乙二醇产品和少量水,是原子经济性较高的绿色化工路线。
华东理工大学发挥化学工程专业优势,与上海浦景化工技术有限公司和安徽淮化集团合作,完成了从催化剂到工业流程的工程开发过程,年产1000吨/年的中试装置一次开车成功,各步反应的转化率和选择性均大于设计值,产品乙二醇质量指标达到优级品标准。
目前在国内处于领先地位。
项目成熟度产业化应用前景乙二醇是重要合成材料聚酯的主要合成原料之一,也用于冷冻剂、化妆品等的制备。
我国2011年的表观需求量约800万吨,国内产量约200万吨,进口量约600万吨,国内产品的自给率<30%。
知识产权及项目获奖情况是自主开发和研究的成果,具有核心技术及自主知识产权。
合作方式技术转让。
合成气制乙二醇介绍

三、煤制乙二醇发展现状
(一)工艺技术简介 1、国外工艺
1977年日本宇部提出的常压气相合成草酸酯技 术,以Pd/Al2O3为催化剂,在100℃下通入混合气 。草酸二甲酯的收率达到98%。甲醇和尾气中的 氧化氮在高温下用氧气氧化,合成亚硝酸甲酯, 循环使用。
2、国内工艺
(2)湖北化学研究院工艺 2009年9月,湖北省化学研究院完成了“煤制气合成聚
合级乙二醇新技术”中三项关键催化剂的研究。并通过了 小试成果鉴定。三项关键催化剂包括选择性脱氢、草酸二 甲酯合成和草酸二甲酯加氢。
2010年1月,由中国五环工程有限公司、湖北 省化学研究院、鹤壁宝马集团三方合作的煤制合 成气生产乙二醇中试基地项目开工仪式在鹤壁市 山城区宝马集团举行。将依托宝马集团现有的甲 醇装置和工程设施,建设年产300吨乙二醇中试 装置和5万吨级工业装置。
醇,从而开始了乙二醇大规模工业化生产的时 代。1958年美国Halcon-SD公司和美国shell公 司也开发了自己的SD空气法直接氧化技术, 建立了EO生产装置。
2、生物质资源路线法:
主要为以玉米淀粉为原料生产多元醇,多元醇加 氢合成二元醇。
目前核心技术路线为玉米淀粉为原料生产山梨醇 ,山梨醇加氢生产二元醇。 其主要反应为:
3、碳一路线法
目前报道的合成气制备乙二醇的路线,以 气相草酸酯法(氧化偶联法)最具有代表性。 该法首先由CO气体合成草酸二酯,再经催化 加氢制取乙二醇,通过后续的精制,可以获得 纯度较高的聚酯级乙二醇。该法对于工艺条件 的要求相对较低,反应条件相对温和,被认为 最可能实现大规模工业化的合成气制乙二醇路 线。
(1)、中国科学院福建物构所工艺
20世纪80年代初,国内也开始了C0催化合成草酸 酯及其衍生物产品草酸、乙二醇的研究。中国科学院 福建物构所与南靖合成氨厂合作,利用合成氨装置回 收的C0,在常压、150℃下催化偶联合成草酸二甲酯 ,然后以Cu/Cr为催化剂,进行草酸二甲酯的低压加 氢,转化率达95%~100%,乙二醇选择性为80%~90% 。
合成气制乙二醇技术

中科远东合成气制乙二醇技术中科远东合成气制乙二醇技术以宁波金远东石化工程技术有限公司、中国成达工程有限公司、山东华鲁恒升化工股份有限公司、中国科学院宁波材料技术与工程研究所为联合体,全权授予宁波金远东石化工程技术有限公司进行商业化推广,可为您提供乙二醇工艺包、核心催化剂、工程设计、员工技能培训及开车服务。
一、技术概况(一)发展历程宁波金远东石化工程技术有限公司自2007年开始进行一氧化碳催化偶联合成草酸酯及草酸酯加氢制乙二醇的研究工作。
2011年宁波金远东石化工程技术有限公司与中科院宁波材料所共同组建工程技术研究中心,在中科院宁波材料所新建科学试验及研发基地,由项裕桥、尹宏峰等16位科研人员组成核心技术团队,其中博士7位,硕士9位。
中心主要从事合成气制乙二醇工艺的研究开发。
历经八年的持续研究,在催化剂的研究开发、反应工程及机理研究、工艺过程研究、完整物性数据库的建立、物系分离系统研究等方面开展了详尽而又完善的实验工作,形成了CO合成草酸酯、草酸酯加氢等多项核心关键技术,包括:完善的物性数据库;酯化-羰化稳态封闭自循环关键技术;亚硝酸甲酯、一氧化碳及一氧化氮回收循环利用关键技术;草酸酯合成反应器及其工艺;草酸酯合成、加氢催化剂制备关键技术。
先后完成10吨/年的合成草酸酯及草酸酯加氢的模试研究,300吨/年合成草酸二甲酯及草酸二甲酯加氢的中试工作,并完成了万吨级CO偶联合成草酸酯、草酸酯加氢的工艺软件包。
工程技术研究中心投入巨资购买了国内外最先进的测试、评价、试验等装置平台,针对合成气制乙二醇关键技术、草酸二甲酯合成;酯化再生、草酸二甲酯加氢、乙二醇精制等主要工序开展系统性的技术攻关。
2014年4月至2015年5月,宁波金远东石化工程技术有限公司和中科院宁波材料所对华鲁恒升原有5万吨/年乙二醇装置进行工艺和催化剂改造。
2015年6月至今,装置高负荷连续、稳定、安全运行,产品质量优等品率达95%以上,生产成本低位运行,在市场低迷的情况下取得不菲的效益。
《合成气直接法制乙二醇反应基础研究》

《合成气直接法制乙二醇反应基础研究》篇一摘要:本文以合成气直接法制乙二醇反应为基础,探讨了该反应的基本原理、影响因素、反应动力学以及目前研究进展。
通过实验研究和理论分析,深入探讨了合成气直接法制备乙二醇的可行性及优化策略,为工业生产提供理论支持。
一、引言乙二醇作为一种重要的有机化工原料,广泛应用于化工、医药、纺织等领域。
传统的乙二醇生产方法多采用石油为原料,随着石油资源的日益紧缺,寻找替代的生物质资源或合成气资源成为研究热点。
合成气直接法制乙二醇作为一种新兴的工艺,具有原料来源广泛、环境友好等优势,成为当前研究的重点。
二、合成气直接法制乙二醇的基本原理合成气直接法制乙二醇的反应过程主要涉及一氧化碳(CO)和氢气(H2)在催化剂作用下,通过缩合、加氢等反应步骤,生成乙二醇。
该过程涉及到多个化学反应和反应中间体,反应机理复杂。
目前,研究者们通过实验和理论计算,对反应机理有了较为深入的认识。
三、影响合成气直接法制乙二醇的因素1. 原料气组成:原料气中CO和H2的比例对反应过程和产物分布有重要影响。
2. 反应温度和压力:反应温度和压力影响反应速率和产物选择性。
3. 催化剂:催化剂的种类和性质对反应过程起关键作用,不同催化剂对反应的促进效果不同。
4. 反应时间:反应时间影响产物的生成量和纯度。
四、反应动力学研究反应动力学研究是合成气直接法制乙二醇研究的重要组成部分。
通过动力学模型,可以描述反应过程中各组分的变化规律,预测反应结果。
研究者们通过实验数据和理论计算,建立了多种动力学模型,为优化反应条件提供了理论依据。
五、实验研究和优化策略通过实验研究,可以深入了解合成气直接法制备乙二醇的反应过程和影响因素。
研究者们采用不同的催化剂、反应条件和工艺流程,探究最佳的反应方案。
同时,通过优化催化剂、调整原料气组成、控制反应温度和压力等措施,可以提高乙二醇的产率和纯度。
六、目前研究进展与展望目前,合成气直接法制乙二醇的研究已取得一定进展,但仍存在诸多挑战。
天然气制乙二醇工艺流程反应式

关于天然气制乙二醇的工艺流程和反应式,通常是通过以下步骤进行:
1. 天然气净化:首先,将天然气进行净化处理,去除其中的硫化物、水分和其它杂质。
2. 气相合成:净化后的天然气与氧气(或空气)通过催化剂反应,在高温高压的条件下进行气相合成反应。
反应式如下:
CH4 + 2O2 →CO2 + 2H2O
3. 合成气处理:合成气中的一氧化碳(CO)和二氧化碳(CO2)经过处理,转化为一部分甲醇(CH3OH)。
4. 乙二醇合成:将甲醇与水蒸汽在催化剂作用下进行反应,生成乙二醇。
反应式如下:
2CH3OH →CH3OCH2OH + H2O
这只是一个大致的概述,实际的工艺流程和反应式可能因具体的工艺路线和催化剂的选择而有所不同。
如果您需要更详细或具体的信息,建议您咨询相关的化工专业人士或参考专业的文献资料。
合成气制乙二醇的偶联反应过程和机理分析

合成气制乙二醇的偶联反应过程和机理分析摘要:系统地论述了合成气制乙二醇工艺中的偶联反应过程和机理。
结果表明,在偶联催化剂确定的情况下,应选择适宜的反应条件以利于草酸二甲酯的生成。
关键词:合成气;乙二醇;偶联反应乙二醇(EG)是一种重要的基础有机化工原料,下游用途广泛,主要用于生产聚酯纤维(PET)和防冻剂,也可用于生产其他中间体及溶剂。
一、乙二醇的生产工艺乙二醇生产技术主要分为石化路线、生物质资源路线、煤化碳一路线。
1合成乙二醇方法概述。
(1)环氧乙烷直接水合法环氧乙烷直接水合法是目前国内外工业化生产乙二醇的主要方法,该工艺是在高温和加压条件下进行的。
通常是将环氧乙烷与水在管式反应器中以一定摩尔比混合,然后与离开水解反应器的乙二醇和水的混合物换热,预热到120~160℃后进入水解反应器,在190~200℃水解,停留时间约为30m in,操作压力约为2.23M Pa,过程为放热反应。
生成的乙二醇水溶液中乙二醇质量分数大约在10%左右,然后经过多效蒸发器脱水提浓和减压精馏分离得到乙二醇及副产物二乙二醇和三乙二醇等。
由于反应液中含有大量的水,需要设置多个蒸发器脱水,造成工艺流程长,设备多,能耗高,直接影响乙二醇的生产成本,这也是现行乙二醇工业生产方法的主要缺点。
基于石油路线的环氧乙烷直接水合法生产乙二醇的工艺路线存在如下问题。
乙烯是以石油为原料生产的,目前原油价格逐渐上涨,而且面临供应不足的趋势,经济性会逐渐降低。
乙烯氧化制环氧乙烷的选择性较低,理论选择性为85.7%,而且不可避免有大量副产物二氧化碳生成,工业上以乙烯计的乙二醇收率在70%左右。
环氧乙烷水合还会生成大量二乙二醇、三乙二醇等副产物,为了得到高收率的乙二醇,水合反应必需在较高的水比下进行,使生成物中乙二醇浓度很低,分离精制工艺复杂,能耗高。
(2)碳酸乙烯酯法碳酸乙烯酯法。
碳酸乙烯酯直接水合法是利用乙烯氧化生产环氧乙烷时排放的CO 2为原料,与EO在催化剂作用下生成碳酸乙烯酯,然后由碳酸乙烯酯水解生成乙二醇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合成气制乙二醇
工艺选择
目前,乙二醇制备技术路线有3种:石油路线、煤路线和生物路线。
1.石油路线生产乙二醇
石油路线法均以石油化工产品乙烯或其所制产品环氧乙烷为原料,再经不同反应过程制得乙二醇,国内工业生产实际应用的石油路线法为环氧乙烷直接水合法。
环氧乙烷直接水合法采用原料环氧乙烷与水在190~200 ℃、2.23 MPa 操作条件下,反应 0.5 h,生成乙二醇含量约 10%的乙二醇、二乙二醇、三乙二醇混合水溶液,再经分离制得乙二醇。
优点:技术成熟,应用面广,收率为90%。
缺点:依赖石油资源,水耗大,成本高,并且国内缺少自主产权技术,即工艺技术对外依赖程度高。
2.煤路线生产乙二醇
该工艺是以煤为原料,制得合成气后,通过直接合成法或间接合成法最终制成乙二醇。
目前国内合成气路线法乙二醇生产装置均采用间接法。
实际工程应用的间接法为草酸酯法。
即先制得合成气,然后再经催化反应生成草酸二甲酯(DMO),然后以 Cu/SiO2为催化剂,150 ℃条件下进行 DMO 的低压加氢制取乙二醇。
该方法转化率达 99.8%,乙二醇选择性 95.3%。
优点:成本低,能耗低,水耗低,适合我国缺油、少气、煤炭资
源相对丰富的资源国情。
缺点:技术不成熟,目前催化剂寿命较短,聚合级产品质量不稳定,工程放大存在风险。
3.生物路线生产乙二醇
自然界中的碳水化合物,无论是淀粉基的多糖类作物(如玉米、小麦等),还是单糖或多糖类农作物(如甜高粱、菊芋等)均可以作为生物路线生产乙二醇的原料。
中科院大连化学物理研究所研究人员首次尝试采用廉价的碳化钨催化剂应用于纤维素的催化转化,利用碳化钨
催化剂在涉氢反应中具有的类贵金属性质,可以替代价格昂贵的贵金属催化剂,将纤维素全部转化为多元醇,而且对乙二醇的生成表现出独特的选择性,尤其是在少量镍的促进作用下,乙二醇的收率可高达61%, 是一种极具工业应用前景的绿色工艺路线。
优点:不需要消耗大量的氧气,没有废气、废水排放,属于环境友好技术。
缺点:收率低,技术难度大,目前达不到工业化生产要求。
目前,国内外大型乙二醇的生产均为石油法,其主要原料为乙烯和氧气,用银催化剂,甲烷或氮气做致稳剂,乙烯直接氧化成环氧乙烷,然后再生成乙二醇。
全球环氧乙烷生产技术大部分使用的是英荷Shell 化学公司、美国科学设计公司 ( SD)和美国 UCC 3 家公司的技术。
国内乙二醇生产企业在实际生产中因存在原料采购、技术壁垒及
地域差异等问题,导致石油法乙二醇生产成本比富产石油的中东地区要高出35% 以上,比欧美等技术发达国家高 18% 左右。
随着工业的快速发展,国内对乙二醇的需求增加。
为减少对石油产品及原料的依赖,按照国内目前的发展趋势,从环境保护、能源领域和技术开发及推广等方面来考虑,应适度开发非石油法乙二醇技术,特别是煤制乙二醇生产技术的研究及开发。
气相草酸酯合成法是目前离大规模工业化生产最近的方法,由于其对于工艺条件的要求不高,反应条件也相对温和,在可以预见的将来,有可能将成为合成气合成乙二醇的重要方法。
虽然该方法还不是成熟的工艺,但对于本项目而言它是最佳的选择。
过程描述
技术方案:羰化、加氢两步法间接合成乙二醇
合成气制乙二醇生产分两部分,第一部分为合成气氧化羰化制草酸二甲酯,第二部分为草酸酯加氢制乙二醇。
具体反应流程为草酸二甲酯与氢气在催化剂存在下,反应生成乙二醇和甲醇的混合物,经过精馏,获得乙二醇产品,同时副产甲醇,甲醇返回草酸二甲酯装置循环利用。
图中:EG 乙二醇、 DMC 碳酸二甲酯、 DMO 草酸二甲酯、 MN 亚硝酸甲酯、 ME 甲醇、 BDO 1,4丁二醇、MG 乙醇酸甲酯、ET 乙醇。
草酸酯法反应式:
羰化: 2CH 3ONO+2CO → (COOCH 3)2+2NO 酯化再生: 2CH 3OH+2NO+2
1O 2 → 2CH 3ONO+H 2O 加氢:(COOCH 3)2+4H 2 → (CH 2OH)2+2CH 3OH 总反应:2CO+4H 2+2
1
O 2 → (CH 2OH)2+H 2O 羰化工段:
羰化单元以酯化单元来的合成气以及界区来的CO 为原料,在催化剂(Pd/Al 2O 3)的作用下,CO 与亚硝酸甲酯(MN )发生偶联反应,生产草酸二甲酯DMO ;粗DMO 经过进一步精制后,泵送至下游加氢工序。
反应副产物的蒸汽首先供装置内部自用,剩下蒸汽经空冷后送去界区,回收利用。
为维持系统内的惰性气体含量,所驰放的工艺气送
至尾气处理单元,经处理达标后,高点排放。
副产的碳酸二甲酯DMC,泵送至中间罐区。
酯化单元以羰化单元返回的循环气、氧气以及甲醇为原料,通过亚硝酸与醇的酯化反应,制备气体亚硝酸甲酯,送至下游的羰化单元,作为羰化反应中CO的中强度氧化剂。
副产物含硝酸废水,送至尾气处理单元,作为尾气的洗涤用水。
加氢工段:
草酸二甲酯与预热后的新鲜氢气及循环气进行混合,经换热后进入乙二醇合成塔。
在温度180~240℃,压力3.5MPag,铜系催化剂的作用下,草酸二甲酯与氢气进行气相加氢反应,生成气态乙二醇、甲醇和少量副产物如乙醇、乙醇酸甲酯、1,2-丁二醇等。
反应产物经过
与氢气换热回收热量后,通过冷却器冷却到40℃,进入高压分离器。
为了维持反应系统的惰性气平衡未反应的氢气从分离器顶部出来后分成两部分,一部分进入循环氢气压缩机,加压后返回反应进料系统,少量作为驰放气送出系统,维持系统惰性气平衡。
乙二醇和副产物乙醇等产品从分离器底部排出,进入低压闪蒸槽进一步释放溶解气后进入乙二醇精馏系统
草酸二甲酯加氢反应是个顺序反应,其反应方程式如下:(COOCH3)2+2H2 → HOCH2COOCH3+CH3OH
HOCH2COOCH3+2H2 →(CH2OH)2+CH3OH
(CH2OH)2+2H2 → CH3CH2OH+H2O
尾气处理:
利用加氢单元的含氢驰放气作为还原剂,将排放的含有一氧化氮、亚硝酸甲酯和甲醇等成分的尾气在尾气处理催化剂的作用下,发
生氧化还原反应,反应后的气体进入尾气吸收塔,以酯化单元来的含酸废液作为吸收液进行逆流接触吸收气相中的有机物,使得吸收塔顶高空排放尾气符合排放要求,吸收液经碱液中和后送至全厂污水厂处理。
设备清单
单元名称设备名称设备台数备注
羰化工段DMO合成反应
器
1台酯化反应器1台循环压缩机1台DMO洗涤塔1台DMO脱轻塔1台DMO脱重塔1台甲醇回收塔1台尾气处理塔1台
NaNO
3
转化器1台预热器2台
冷却器4台DMO汽化器1台DMO加氢反应
器
1台循环压缩机1台
加氢工段高压分离罐1台
低压分离罐1台
甲醇回收塔1台
脱水塔1台
产品塔1台
预热器1台
冷却器4台
换热器2台
设计工艺:合成气制乙二醇(草酸酯法)
生产能力:年产20万吨乙二醇
年产时间:330天/年
原料组成:CO、H2和O2
催化剂:Pd/Al2O3、Cu/SiO2
产品规格:乙二醇含量为99.8%,水含量0.1%。