2022年暑期“八升九”数学《勾股定理》自主巩固练习卷

合集下载

2022年暑期“八升九”数学《《勾股定理》知识综合》自主巩固练习卷

2022年暑期“八升九”数学《《勾股定理》知识综合》自主巩固练习卷

2022年暑期“八升九”数学自主巩固练习卷07 第17章《勾股定理》知识综合一.选择题1.下列各组数是勾股数的是()A.1,2,3 B.3,4,5 C.4,5,6 D.6,7,82.下列四组数据不能作为直角三角形的三边长的是()A.3,4,5 B.,,C.6,8,10 D.2,4,63.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,则CD的值为()A.B.C.D.4.如图,为了求出分别位于池塘两岸的点A与点B的距离,小亮在点C处立一标杆,使∠ABC 是直角,测得AC的长为85m,BC的长为75m,则点A与点B的距离是()A.20m B.40m C.30m D.50m5.如图,数轴上的点A表示的数为﹣1,以1为边长的正方形的一个顶点在点A处,以点A 为圆心,正方形对角线AB长为半径画弧,交数轴正半轴于点P,则点P表示的数是()A.B.+1 C.﹣1 D.2﹣6.已知直角三角形的一条直角边长为,斜边长为2,则另一条直角边的长为()A.8 B.4C.4D.167.已知a,b,c是△ABC的三边长,且满足,则△ABC 是()A.以a为斜边的直角三角形B.以b为斜边的直角三角形C.以c为斜边的直角三角形D.以c为底边的等腰三角形8.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长度是为hcm,则h的取值范围是()A.5≤h≤12B.12≤h≤19C.11≤h≤12D.12≤h≤13二.填空题9.在Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为.10.一架云梯长2.5米,如图斜靠在一面墙上,梯子的底端离墙0.7米,如果梯子的顶端下滑了0.4米,那么梯子的底端在水平方向滑动了米.11.如图,在平面直角坐标系中,以O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的坐标为(﹣,0),点P的纵坐标为﹣1,则P点的坐标为.12.设Rt△ABC的周长为p,面积为S.若p,S为整数,且p=S,则Rt△ABC三边长为.13.如图,正方形ABCD的边长为1,其面积标记为S1,以AB为斜边向外作等腰直角三角形,再以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S7的值为.三.解答题14.如图,在△ABC中,AB=AC,BC=15,D是AB上一点,BD=9,CD=12.(1)求证:CD⊥AB;(2)求AC长.15.为了绿化环境,我县某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量,∠ADC=90°,CD=3米,AD=4米,AB=13米,BC=12米.(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要300元,问总共需投入多少元?16.如图,△ABC中,BC的垂直平分线DE分别交AB、BC于点D、E,且BD2﹣DA2=AC2.(1)求证:∠A=90°;(2)若BC2=56,AD:BD=3:4,求AC的长.17.沙尘暴是指强风将地面尘沙吹起使空气混浊,水平能见度很低的一种天气现象.人类在发展经济过程中大肆破坏植被,导致沙尘暴爆发频数增加.如图,某气象局监测到一个沙尘暴中心沿东西方向AB由A向B移动,已知点C为一城镇,且点C与直线AB上的两点A,B的距离分别为:AC=30km,BC=40km,AB=50km,以沙尘暴中心为圆心周围25km以内为受影响区域.(1)请通过计算说明城镇C会受到沙尘暴影响的原因;(2)若沙尘暴中心的移动速度为20km/h,则沙尘暴影响该城镇持续的时间有多长?18.如图△ABC中,∠ACB=90°,AC=12,BC=5.(1)求AB的长;(2)若动点P从点C开始以每秒1个单位的速度,按C→A→B的路径运动,设运动的时间为t秒,当t为何值时,△BCP为等腰三角形?。

2021-2022学年冀教版八年级数学上册《17-3勾股定理》期末复习自主提升训练(附答案)

2021-2022学年冀教版八年级数学上册《17-3勾股定理》期末复习自主提升训练(附答案)

2021-2022学年冀教版八年级数学上册《17.3勾股定理》期末复习自主提升训练(附答案)1.同学们都学习过“赵爽弦图”,如图所示,若大正方形的面积为5,小正方形的面积为1,则每个直角三角形的两直角边的乘积为()A.1B.2C.D.2.一个直角三角形两条直角边的长分别为6,8,则其斜边上的高为()A.B.13C.D.253.如图,在Rt△ABC中,∠ACB=90°,以△ABC的各边为边在△ABC外作三个正方形,S1,S2,S3分别表示这三个正方形的面积,若S1=3,S2=10,则S3=()A.5B.7C.13D.154.下列各组数中,不是勾股数的是()A.3,4,5B.30,40,50C.7,14,15D.5,12,135.下列数组中,不能构成直角三角形的一组是()A.3,4,5B.1,,C.6、8、10D.2、3、56.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件中,不能判断△ABC是直角三角形的是()A.a=3,b=4,c=5B.a=b,∠C=45°C.∠A:∠B:∠C=1:2:3D.a=,b=,c=27.三个顶点都在网格点上,且有一个角为直角的三角形称为网格直角三角形.在6×6的网格图中,若△ABC为网格直角三角形,则满足条件的C点个数有()A.6B.7C.13D.158.《九章算术》中的“折竹抵地”问题:今有竹高二丈,末折抵地,去根九尺,问折高者几何?意思是一根竹子,原高两丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处离竹子底部9尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x 尺,则可列方程为()A.x2﹣9=(20﹣x)2B.x2﹣92=(20﹣x)2C.x2+9=(20﹣x)2D.x2+92=(20﹣x)29.如图,高速公路上有A、B两点相距25km,C、D为两村庄,已知DA=10km,CB=15km.DA ⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则AE的长是()km.A.5B.10C.15D.2510.如图,桌面上的长方体长为8,宽为6,高为4,B为CD的中点.一只蚂蚁从A点出发沿长方体的表面到达B点,则它运动的最短路程为()A.B.C.10D.11.勾股定理a2+b2=c2本身就是一个关于a,b,c的方程,显然这个方程有无数解,满足该方程的正整数(a,b,c)通常叫做勾股数.如果三角形最长边c=2n2+2n+1,其中一短边a=2n+1,另一短边为b,如果a,b,c是勾股数,则b=(用含n的代数式表示,其中n为正整数)12.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,若a:b=3:4,c=20cm,则b=.13.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=20,AH=12,那么FG=.14.如图,△ABC的顶点A,B,C都在边长为1的正方形网格的格点上,CD⊥AB于点D,则CD的长为.15.三角形的两边长分别为1cm和2cm,要使这个三角形是直角三角形,则第三条边长是cm.16.如图所示,是一块由花园小道围成的边长为12米的正方形绿地,在离C处5米的绿地旁边B处有健身器材,为提醒居住在A处的居民爱护绿地,不直接穿过绿地从A到B,而是沿小道从A→C→B.小丽想在A处树立一个标牌“沿路多走■米,共建美丽家园”请问:小丽在标牌■填上的数字是.17.如图,秋千静止时,踏板离地的垂直高度BE=1m,将它往前推6m至C处时,水平距离CD=6m,踏板离地的垂直高度CF=4m,它的绳索始终拉直,则AC的长是m.18.如图,有互相垂直的两面墙OM,ON,梯子AB=6m,两端点A,B分别在两面墙上滑动(AB长度不变),P为AB的中点,柱子CD=4m,底端C到墙角O的距离为6m.在此滑动过程中,点D到点P的距离的最小值为m.19.有一块等腰三角形草地,测得腰CA=CB,AB=6m,腰比底边上的高多1米,求该草坪的面积?20.已知等腰三角形ABC的底边BC=2cm,D是腰AB上一点,且CD=4cm,BD=2cm.(1)求证:CD⊥AB;(2)求△ABC的面积.21.如图,某港口P位于东西方向的海岸线上.“综合执法1号”、“综合执法2号”轮船同时离开港口,各自沿一定方向执法巡逻,“综合执法1号”每小时航行16nmile,“综合执法2号”每小时航行12nmile,它们离开港口一个半小时后分别位于点Q,R处,且相距30nmile.(1)求PQ,PR的长度;(2)如果知道“综合执法1号”沿北偏东61°方向航行,能知道“综合执法2号”沿哪个方向航行吗?22.如图,在△ABC中,BC=a,AC=b,AB=c,若∠C为直角,如图1,则有结论:a2+b2=c2;当∠C为锐角(如图2)或钝角(如图3)时,请你完成下列探究:(1)分别猜想∠C为锐角或钝角这两种情况下a2+b2与c2的大小关系;(2)任选(1)中的一个猜想进行证明.23.满足a2+b2=c2的三个正整数,称为勾股数.(1)请把下列三组勾股数补充完整:①,8,10 ②5,,13 ③8,15,.(2)小敏发现,很多已经约去公因数的勾股数组中,都有一个数是偶数,如果将它写成2mn,那么另外两个数可以写成m2+n2,m2﹣n2,如4=2×2×1,5=22+12,3=22﹣12.请你帮小敏证明这三个数2mn,m2+n2,m2﹣n2是勾股数组.(3)如果21,72,75是满足上述小敏发现的规律的勾股数组,求m+n的值.24.用四个完全相同的直角三角形(如图1)拼成一大一小两个正方形(如图2),直角三角形的两条直角边分别是a、b(a>b),斜边长为ccm,请解答:(1)图2中间小正方形的周长,大正方形的边长为.(2)用两种方法表示图2正方形的面积.(用含a,b,c)①S=;②S=;(3)利用(2)小题的结果写出a、b、c三者之间的一个等式.(4)根据第(3)小题的结果,解决下面的问题:已知直角三角形的两条直角边长分为是a=8,b=6,求斜边c的值.参考答案1.解:如图,设两直角边为a,b,∵大正方形的面积为5,∴a2+b2=5,由题意4×ab+1=5,∴2ab=4,∴ab=2,故选:B.2.解:设h为斜边上的高,∵直角三角形的两条直角边的长分别为6和8,∴斜边为=10,∵三角形的面积=×6×8=×10h,∴h=.故选:C.3.解:由勾股定理得,AC2+BC2=AB2,∴AC2=10﹣3=7,∴S3=7,故选:B.4.解:A、32+42=52,能构成直角三角形,是整数,故是勾股数,此选项不符合题意;B、302+402=502,三边是整数,同时能构成直角三角形,故是勾股数,此选项不符合题意;C、72+142≠152,不是勾股数,此选项符合题意;D、52+122=132,是正整数,故是勾股数,此选项不符合题意.故选:C.5.解:A、32+42=52,能构成直角三角形,故本选项不符合题意;B、12+()2=()2,能构成直角三角形,故本选项不符合题意;C、62+82=102,能构成直角三角形,故本选项不符合题意;D、22+32≠52,不能构成直角三角形,故本选项符合题意;故选:D.6.解:A、由题意知,a2+c2=b2=25,则△ABC是直角三角形,故本选项不符合题意;B、由题意知,∠A=∠B=62.5°,则△ABC不是直角三角形,故本选项符合题意;C、由题意知∠A=45°,∠B=60°,∠C=90°,△ABC是直角三角形,故本选项不符合题意;D、由题意知,a2+c2=b2=7,则△ABC是直角三角形,故本选项不符合题意.故选:B.7.解:由勾股定理得:AB=,如图所示:故有13个,故选:C.8.解:如图,设折断处离地面的高度为x尺,则AB=(20﹣x)尺,BC=9尺,在Rt△ABC中,AC2+BC2=AB2,即x2+92=(20﹣x)2.故选:D.9.解:设AE=x,则BE=25﹣x,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=102+x2,在Rt△BCE中,CE2=BC2+BE2=152+(25﹣x)2,由题意可知:DE=CE,所以:102+x2=152+(25﹣x)2,解得:x=15(km),所以,AE=15km,故选:C.10.解:如图1所示,则AB==2;如图2所示,AB==10,故它运动的最短路程为10,故选:C.11.解:c=2n2+2n+1,a=2n+1∴b=2n2+2n,故答案为:2n2+2n12.解:∵a:b=3:4,∴设a=3x,b=4x,∵c=20cm,由勾股定理可得(3x)2+(4x)2=202,解得x=4,∴b=4×4=16cm,故答案为16cm.13.解:∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正方形,在直角三角形AHB中,由勾股定理得到:BH=.∴FG=GH=BH﹣BG=16﹣12=4,故答案为:4.14.解:∵由勾股定理得:AB==,∴s△ABC=×BC×3=AB×CD,∵5×3=×CD,∴CD=故答案为:.15.解:∵三角形的两边长分别为1cm和2cm,∴可设第三边为xcm,∵此三角形是直角三角形,∴当x是斜边时,x2=12+22,解得x=;当x是直角边时,x2+12=22,解得x=.故答案为:或.16.解:在Rt△ABC中,AB为斜边,∴==13米,少走的距离为AC+BC﹣AB=(12+5)﹣13(米)=4米答:小明在标牌■填上的数字是4.故答案为:4.17.解:设秋千绳索AB的长度为xm,由题意可得AC=AB=xm,四边形DCFE为矩形,BE=1m,DC=6m,CF=4m,DE=CF=4m,∴DB=DE﹣BE=3m,AD=AB﹣BD=(x﹣3)m,在Rt△ADC中,AD2+DC2=AC2,即(x﹣3)2+62=x2,解得x=7.5,即AC的长度为7.5m,故答案为:7.5.18.解:∵木棍的中点为P,△AOB为直角三角形,∴OP=AB=3m,即点P到点O的距离为3m,∴点P的轨迹为以O为圆心,3m为半径的弧上,如图,连接OD交⊙O于P,则D到P的距离最小.在弧上任取一点P′,连接OP′,DP′,∵OP′+DP′>OD=OP+DP,OP=OP′,∴DP′>DP,∴DP为最小值,在Rt△OCD中,OC=6,CD=4,∴OD===2,∴PD=OD﹣OP=(2﹣3)(m),故答案为:(2﹣3).19.解:过点C作CD⊥AB于点D,∵CA=CB∴,设CD为x m,则AC=(x+1)m,在Rt△ACD中,AC2=CD2+AD2,即(x+1)2=x2+33,解得:x=4,∴CD=4m,∴S△ABC=,∴该草坪的面积为12m2.20.(1)证明:∵BC=2cm,CD=4cm,BD=2cm,∴CD2=16,BC2=20,BD2=4,∴CD2+BD2=BC2,∴三角形BCD是直角三角形,∠BDC=90°,∴CD⊥AB.(2)解:设AD=x,则AB=x+2,∵△ABC为等腰三角形,且AB=AC,∴AC=x+2,在Rt△ACD中,AD2+CD2=AC2,∴x2+42=(x+2)2,解得:x=3,∴AB=5,∴S△ABC=×AB×CD=×5×4=10(cm²).21.解:(1)由题意可得:RP=12×1.5=18(海里),PQ=16×1.5=24(海里);(2)能,理由:∵RP=12×1.5=18海里,PQ=16×1.5=24海里,QR=30海里,∵182+242=302,∴△RPQ是直角三角形,∴∠RPQ=90°,∵“综合执法1号”沿北偏东61°方向航行,∴∠QPS=61°,∴∠SPR=90°﹣61°=29°,∴“综合执法2号”沿北偏西29°方向航行方向航行.22.解:(1)猜想:若∠C为锐角时,a2+b2>c2,若∠C为钝角时,a2+b2<c2;(2)当∠C为锐角时,a2+b2>c2,证明如下:如图,过点A作AD⊥CB于点D,设CD=x,则BD=a﹣x,在直角三角形ACD中,AD2=b2﹣x2,在直角三角形ABD中,AD2=c2﹣(a﹣x)2,∴b2﹣x2=c2﹣(a﹣x)2,即a2+b2=c2+2ax,∵a>0,x>0,∴a2+b2>c2,当∠C为钝角时,a2+b2<c2,证明如下:如图,过点A作BC的垂线交BC的延长线于点M,CM=y,则BM=a+y,在直角三角形ACM中,AM2=b2﹣y2,在直角三角形ABM中,AM2=c2﹣(a+y)2,∴b2﹣y2=c2﹣(a+y)2,即a2+b2=c2﹣2ay,∵a>0,y>0,∴a2+b2<c2.23.解:(1)①6,8,10;②5.12,13;③8,15,17.故答案为:6,12,17;(2)证明:∵(m2﹣n2)2+(2mn)2=m4+n4﹣2m2n2+4m2n2=m4+n4+2m2n2,(m2+n2)2=m4+n4+2m2n2,∴(m2﹣n2)2+(2mn)2=(m2+n2)2,∴m2﹣n2,m2+n2,2mn是勾股数;(3)化简得:7,24,25,∵偶数24=2×3×4,25=42+32,7=42﹣32,∴m=4,n=3,∴m+n=7.24.解:(1)图2中间小正方形的周长4c,大正方形的边长为(a+b),故答案为:4c;a+b;(2)图2正方形的面积S=(a+b)2或S=2ab+c2,故答案为:(a+b)2或2ab+c2;(3)∵(a+b)2=a2+2ab+b2,∴a2+b2=c2.故答案为:a2+b2=c2;(4)∵c2=a2+b2=82+62=100,∴c=10(负值不合题意,舍去)。

《勾股定理全章复习与巩固》(word版)巩固练习 人教初中数学八下(2022版)

《勾股定理全章复习与巩固》(word版)巩固练习 人教初中数学八下(2022版)

【巩固练习】 一.选择题1.如图,一棵大树被台风刮断,若树在离地面3m 处折断,树顶端落在离树底部4m 处,则树折断之前高( )A.5mB.7mC.8mD.10m2.如图,从台阶的下端点B 到上端点A 的直线距离为( )A.212B.310C.56D.583.下列命题中是假命题的是( )A.三个内角的度数之比为1:3:4的三角形是直角三角形;B.三个内角的度数之比为1:3:2的三角形是直角三角形;C.三边长度之比1:3:2的三角形是直角三角形;D.三边长度之比2:2:2的三角形是直角三角形;4. 如图所示,在△ABC 中,AB =AC =5,BC =6,点E 、F 是中线AD 上的两点,则图中阴影部分的面积是( ).A .6B .12C .24D .30 5.下列三角形中,是直角三角形的是( ) A.三角形的三边满足关系a b c += B.三角形的三边比为1∶2∶3 C.三角形的一边等于另一边的一半 D.三角形的三边为9,40,416.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( )A.450a 元B.225a 元C.150a 元D.300a 元7.(2020•江阴市模拟)如图,Rt △ABC 中,∠C=90°,AC=12,BC=5.分别以AB 、AC 、BC 为边在AB 的同侧作正方形ABDE 、ACFG 、BCIH ,四块阴影部分的面积分别为S 1、S 2、S 3、S 4. 则S 1+S 2+S 3+S 4等于( )A.90B.60C.169D.1448. 已知,如图长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A.32cm B.42cm C.62cmD.122cm二.填空题9.若一个三角形的三边长分别为6,8,10,则这个三角形中最短边上的高为______. 10.若等边三角形的边长为2,则它的面积为______.11.如图,B ,C 是河岸边两点,A 是对岸岸边一点,测得∠ABC =45°,∠ACB =45°,BC =60米,则点A 到岸边BC 的距离是______米.12.下列命题中,其逆.命题成立的是______________.(只填写序号) ①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a b c 、、满足222a b c +=,那么这个三角形是直角三角形.13.(2020•杭州模拟)如图,圆柱形容器中,高为120cm,底面周长为100cm,在容器内壁离容器底部40cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm 与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为cm.(容器厚度忽略不计)14.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.15.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若涂黑cm,则其中最大的正方形的边长为______cm.的四个小正方形的面积的和是10216.如图,△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与△ABC的BC边重叠为止,此时这个三角形的斜边长为__________.三.解答题17.若直角三角形两直角边的比是3:4,斜边长是20,求此三角形的面积.18.(2020春•安次区校级月考)甲乙两船从位于南北走向的海岸线上的港口A同时出发,甲以每小时30海里的速度向北偏东35°方向航行,乙船以每小时40海里的速度向另一方向航行,2小时后,甲船到C岛,乙船到达B岛,B、C两岛相距100海里,判断乙船所走方向,说明理由.19.如图,△ABC中,∠A=90°,AC=20,AB=10,延长AB到D,使CD+DB=AC+AB,求BD的长.20.如图,四边形ABCD 是边长为9的正方形纸片,B '为CD 边上的点,C B '=3.将纸片沿某条直线折叠,使点B 落在点B '处,点A 的对应点为A ',折痕分别与AD ,BC 边交于点M ,N .求BN 的长.【答案与解析】 一.选择题 1.【答案】C ;【解析】树高为22334358++=+=. 2.【答案】A ; 【解析】距离为()()22444282122+++++=.3.【答案】B ;4.【答案】A ;【解析】由题意BEF CEF S S =△△,∴ 13462ABD S S ==⨯⨯=△阴影. 5.【答案】D ; 6.【答案】C ;【解析】作高,求得高为15 m ,所以面积为120151502⨯⨯=2m .7.【答案】A ;【解析】解:过D 作BM 的垂线交BM 于N ,∵图中S 2=S Rt △DOI ,S △BOC =S △MND , ∴S 2+S 4=S Rt △ABC .可证明Rt △AGE ≌Rt △ABC ,Rt △DNB ≌Rt △BHD , ∴S 1+S 2+S 3+S 4 =S 1+S 3+(S 2+S 4),=Rt △ABC 的面积+Rt △ABC 的面积+Rt △ABC 的面积 =Rt △ABC 的面积×3 =12×5÷2×3 =90. 故选:A .8.【答案】C;【解析】设AE=x,则DE=BE=9-x,在Rt△ABE中,.二.填空题9.【答案】8;10.【答案】3;【解析】面积为1233 2⨯⨯=.11.【答案】30;12.【答案】①④;【解析】①的逆命题“两直线平行,同旁内角互补”显然正确;②的逆命题“如果两个角相等,那么它们是直角”很明显是错误的;③的逆命题“如果两个实数的平方相等,那么这两个实数相等”,两个实数可以互为相反数,所以该命题不正确;④的逆命题“如果三角形是直角三角形,那么三角形的三边长a b c、、满足222a b c+=”也是正确的,这是勾股定理的内容.13.【答案】130;【解析】解:如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC于F,则A′B即为最短距离.∵高为120cm,底面周长为100cm,在容器内壁离容器底部40cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm与蚊子相对的点A处,∴A′D=50cm,BD=120cm,∴在直角△A′DB中,A′B===130(cm).故答案是:130.14.【答案】132cm ;【解析】由题意()222111n n +=+,解得60n =,所以周长为11+60+61=132. 15.【答案】10;【解析】根据勾股定理,四个小正方形的面积和等于最大正方形的面积. 16.【答案】81; 三.解答题 17.【解析】解:设此直角三角形两直角边分别是3x ,4x ,由勾股定理得:()()2223420x x +=化简得:216x = ∴直角三角形的面积为:21346962x x x ⨯⨯==. 18.【解析】解:由题意得:甲2小时的路程=30×2=60海里,乙2小时的路程=40×2=80海里,∵602+802=1002, ∴∠BAC=90°,∵C 岛在A 北偏东35°方向, ∴B 岛在A 北偏西55°方向.∴乙船所走方向是北偏西55°方向.19.【解析】解:设BD =x ,则CD =30-x .在Rt △ACD 中根据勾股定理列出()222(30)1020x x -=++,解得x =5. 所以BD =5. 20. 【解析】解:点A 与点A ',点B 与点B '分别关于直线MN 对称, ∴AM A M '=,BN B N '=. 设BN B N x '==,则9CN x =-. ∵ 正方形ABCD , ∴ o 90C ∠=.∴ 222CN B C B N ''+=.∵ C B '=3, ∴ 222(9)3x x -+=.解得5x =. ∴ 5BN =.【巩固练习】 一.选择题1. 将方程37x y +=全部的解写成坐标(x ,y )的形式,那么用全部的坐标描出的点都在直线( )上. A .1733y x =- B .1733y x =+ C .1733y x =-+ D .1733y x =-- 2. 函数y ax b =+与函数y cx d =+的图象是两条直线,只有一个交点,则二元一次方程组y ax by cx d=+⎧⎨=+⎩有( )解.A.0个B.1个C.2个D.3个3. 如图,已知函数y ax b =+和y kx =的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组y ax by kx =+⎧⎨=⎩的解是( )A. 4.53x y =⎧⎨=⎩ B. 31x y =-⎧⎨=⎩ C. 13x y =⎧⎨=-⎩ D. 03x y =⎧⎨=⎩4. 若函数y x a =-+与41y x =-的图象交于x 轴上一点,则a 的值为( )A .4B .-4C .14D .±4 5.(2020•宜城市模拟)一次函数y=2x+4的图象与坐标轴交点的距离是( ) A .2B .2C .2D .46. 如图,过点A 的一次函数的图象与正比例函数2y x =的图象相交于点B ,能表示这个一次函数的解析式为( )A .230x y -+=B .30x y --=C .230y x -+=D .30x y +-=二.填空题7.若直线y kx b =+与x 轴交于(6,0)点,那么关于x 的方程0kx b +=的解为_________.8. 直线1y x =-和3y x =+的位置关系是________,由此可知方程组13y x y x =-⎧⎨=+⎩解的情况为________.9. 如果一次函数y ax b =+和y cx d =+在同一坐标系内的图象如图,并且方程组y ax b y cx d =+⎧⎨=+⎩的解x my n =⎧⎨=⎩,则m ,n 的取值范围是__________.10.(2020春•永安市校级月考)一次函数y=kx+b 的图象如图,看图填空: (1)当x=0时,y= ;当x= 时,y=0; (2)k= ,b= (把解答过程写在空白处); (3)一次函数的解析式为: ;(4)当x=5时,y= ;当y=6时,x= .11. 一次函数1y kx b =+与2y x a =+的图象如图,则方程kx b x a +=+的解是________.12.如图,点A的坐标可以看成是方程组_________的解.三.解答题13.已知:直线12.2y x=--(1)求直线122y x=--与x轴的交点B的坐标,并画图;(2)若过y轴上一点A(0,3)作与x轴平行的直线l,求它与直线122y x=--的交点M的坐标;(3)若过x轴上一点C(3,0)作与x轴垂直的直线m,求它与直线122y x=--的交点N的坐标.14.(2020•高青县模拟)直线y=x+2与x轴、y轴分别交于A、B两点,D是x轴上一点,坐标为(x,0),△ABD的面积为S.(1)求点A和点B的坐标;(2)求S与x的函数关系式;(3)当S=12时,求点D的坐标.15.甲、乙两人分别乘不同的冲锋舟同时从A地逆流而上前往B地.甲所乘冲锋舟在静水中的速度为1112千米/分钟,甲到达B地立即返回.乙所乘冲锋舟在静水中的速度为712千米/分钟.已知A、B两地的距离为20千米,水流速度为112千米/分钟,甲、乙乘冲锋舟行驶的距离y(千米)与所用时间x(分钟)之间的函数图象如图所示.(1)求甲所乘冲锋舟在行驶的整个过程中,y与x之间的函数关系式.(2)甲、乙两人同时出发后,经过多少分钟相遇?【答案与解析】 一.选择题1. 【答案】C ;【解析】将37x y +=变形为1733y x =-+. 2. 【答案】B ;【解析】函数所表示的直线的交点即为函数所组成的方程组的解,方程组有几个解就是要看有几个交点.3. 【答案】B ;【解析】方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.4. 【答案】C ;【解析】函数y x a =-+与41y x =-的图象交于x 轴上一点,令两方程中y =0,即x =a =14. 5. 【答案】B ;【解析】解:∵一次函数y=2x+4的图象与坐标轴交于A 、B 两点, 令y=0得,x=-2,令x=0得,y=4,∴A(0,4),B (﹣2,0), ∴OA=4,OB=2,∴AB==2故选B .6. 【答案】D ;【解析】过点A 的一次函数的图象过点A (0,3),与正比例函数2y x =的图象相交于点B (1,2),代入一次函数解析式,即可求出.二.填空题7. 【答案】x =6;8. 【答案】平行,无解;【解析】直线1y x =-和3y x =+的x 的系数相等,可以得出直线1y x =-和3y x =+的位置关系是平行,从而得出方程组解的情况. 9. 【答案】m >0,n >0;【解析】方程组的解实际上是两个一次函数图象的交点的横纵坐标,而交点在一象限,从而得到m ,n 的范围.10.【答案】(1)4,2;(2)﹣2,4;(3)y=﹣2x+4;(4)﹣6,﹣1.【解析】解:(1)根据图示知,当x=0时,y=4;当x=2时,y=0;故答案是:4,2;(2)根据图示知,该函数图象经过点(0,4),(2,0),则依题意,得,解得,.故答案是:﹣2,4;(3)由(2)知,k=﹣2,b=4.所以该直线的解析式为y=﹣2x+4.故答案是:y=﹣2x+4;(4)由(3)知,该直线的解析式为y=﹣2x+4.所以当x=5时,y=﹣2×5+4=﹣6.当y=6时,6=﹣2x+4,解得,x=﹣1.故答案是:﹣6,﹣1.11.【答案】3;【解析】一次函数1y kx b =+与2y x a =+的图象的交点的横坐标是3,故方程的解是:x =3.12.【答案】521y x y x =-+⎧⎨=-⎩【解析】由图象知:两个一次函数过A (2,3),再根据两个一次函数分别过(5,0),(0,-1),即可求出一次函数解析式,从而得出答案.三.解答题13.【解析】解:(1)令y =0,可得x =-4所以直线122y x =--与x 轴的交点B 的坐标为(-4,0). 图略.(2)令y =3,可得x =-10所以M 点的坐标为(-10,3)(3)令x =3,代入117232222y x =--=-⨯-=-. 所以N 点的坐标为(3,72-). 14.【解析】解:(1)令y=0,则x+2=0,解得x=﹣4,令x=0,则y=2,所以,点A ,B 的坐标分别为(﹣4,0)和(0,2);(2)∵A(﹣4,0),D (x ,0),∴AD=|x﹣(﹣4)|,∴S=AD•OB=|x ﹣(﹣4)|×2=|x+4|;(3)∵S=12,∴|x+4|=12,即x+4=12或x+4=﹣12,解得x=8或x=﹣16,所以,D 的坐标为(8,0)或(﹣16,0).15.【解析】 解:(1)甲由A 地到B 地的函数解析式是:1111212y x ⎛⎫=- ⎪⎝⎭,即56y x =; 甲到达B 地所用时间是:20÷1111212⎛⎫- ⎪⎝⎭=24分钟, 甲由B 地到A 地所用时间是:20÷1111212⎛⎫+⎪⎝⎭=20分钟, 设甲由B 地到A 地的函数解析式是:y kx b =+, ∵点(24,20)与(44,0)在此函数图象上, ∴2420440k b k b +=⎧⎨+=⎩,解得:144k b =-⎧⎨=⎩, ∴甲由B 地到A 地函数解析式是:44y x =-+,(2)乙由A 地到B 地的函数解析式是:711212y x ⎛⎫=- ⎪⎝⎭,即12y x =; 根据题意得:4412y x y x =-+⎧⎪⎨=⎪⎩, 解得:883x =, 则经过883分钟相遇.。

八年级初二数学 提高题专题复习勾股定理练习题及答案

八年级初二数学 提高题专题复习勾股定理练习题及答案

一、选择题1.如图,等腰直角△ABC 中,∠C =90°,点F 是AB 边的中点,点D 、E 分别在AC 、BC 边上运动,且∠DFE =90°,连接DE 、DF 、EF ,在此运动变化过程中,下列结论:①图中全等的三角形只有两对;②△ABC 的面积是四边形CDFE 面积的2倍;③CD +CE =2FA ;④AD 2+BE 2=DE 2.其中错误结论的个数有( )A .1个B .2个C .3个D .4个2.如图,在ABC 中,90A ∠=︒,6AB =,8AC =,ABC ∠与ACB ∠的平分线交于点O ,过点O 作⊥OD AB 于点D ,若则AD 的长为( )A .2B .2C .3D .43.如图,小红想用一条彩带缠绕易拉罐,正好从A 点绕到正上方B 点共四圈,已知易拉罐底面周长是12 cm ,高是20 cm ,那么所需彩带最短的是( )A .13 cmB .4cmC .4cmD .52 cm4.如图,设正方体ABCD-A 1B 1C 1D 1的棱长为1,黑、白两个甲壳虫同时从点A 出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA 1→A 1D 1→…,白甲壳虫爬行的路线是AB→BB 1→…,并且都遵循如下规则:所爬行的第n+2与第n 条棱所在的直线必须既不平行也不相交(其中n 是正整数).那么当黑、白两个甲壳虫各爬行完第2017条棱分别停止在所到的正方体顶点处时,它们之间的距离是( )A.0B.1C.3D.25.“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)()A.3 B.5 C.4.2D.46.如图,已知AB是线段MN上的两点,MN=12,MA=3,MB>3,以A为中心顺时针旋转点M,以点B为中心顺时针旋转点N,使M、N两点重合成一点C,构成△ABC,当△ABC为直角三角形时AB的长是()A.3 B.5 C.4或5 D.3或517.如图,正方体的棱长为4cm,A是正方体的一个顶点,B是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A爬到点B的最短路径是()A.9 B.210C.326D.128.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则BC的长是()A.32B.2 C.22D109.如图,是一张直角三角形的纸片,两直角边6,8AC BC ==,现将ABC 折叠,使点B 点A 重合,折痕为DE ,则BD 的长为( )A .7B .254C .6D .11210.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A =90°,BD =4,CF =6,设正方形ADOF 的边长为x ,则210x x +=( )A .12B .16C .20D .24二、填空题11.如图所示的网格是正方形网格,则ABC ACB ∠+∠=__________°(点A ,B ,C 是网格线交点).12.已知Rt △ABC 中,AC =4,BC =3,∠ACB =90°,以AC 为一边在Rt △ABC 外部作等腰直角三角形ACD ,则线段BD 的长为_____.13.已知,在△ABC 中,∠C=90°,AC=BC=7,D 是AB 的中点,点E 在AC 上,点F 在BC 上,DE=DF ,若BF=4,则EF=_______14.如图所示,“赵爽弦图”是由8个全等的直角三角形拼接而成的,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为123,,S S S ,已知12310S S S ++=,则2S 的值是____.15.如图,在△ABC 中,AB =AC ,∠BAC =120°,AC 的垂直平分线交 BC 于 F ,交 AC 于 E ,交 BA 的延长线于 G ,若 EG =3,则 BF 的长是______.16.如图,正方体的底面边长分别为2cm 和3cm ,高为5cm .若一只蚂蚁从P 点开始经过四个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为_____cm .17.如图,P 是等边三角形ABC 内的一点,且PA=3,PB=4,PC=5,以BC 为边在△ABC 外作△BQC ≌△BPA ,连接PQ ,则以下结论中正确有_____________ (填序号)①△BPQ 是等边三角形 ②△PCQ 是直角三角形 ③∠APB=150° ④∠APC=135°18.如图,小正方形的边长为1,连接小正方形的三个格点可得△ABC ,则AC 边上的高的长度是_____________.19.如图,在ABC 中,AB AC =,点D 在ABC 内,AD 平分BAC ∠,连结CD ,把ADC 沿CD 折叠,AC 落在CE 处,交AB 于F ,恰有CE AB ⊥.若10BC =,7AD =,则EF =__________.20.在Rt ABC 中,90A ∠=︒,其中一个锐角为60︒,23BC =,点P 在直线AC 上(不与A ,C 两点重合),当30ABP ∠=︒时,CP 的长为__________.三、解答题21.如图,△ABC 和EDC ∆都是等边三角形,7,3,2AD BD CD ===求:(1)AE 长;(2)∠BDC 的度数:(3)AC 的长.22.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.23.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在ABC 中,AB AC >(如图),怎样证明C B ∠>∠呢?分析:把AC 沿A ∠的角平分线AD 翻折,因为AB AC >,所以,点C 落在AB 上的点C '处,即AC AC '=,据以上操作,易证明ACD AC D '△△≌,所以AC D C '∠=∠,又因为AC D B '∠>∠,所以C B ∠>∠.感悟与应用:(1)如图(a ),在ABC 中,90ACB ∠=︒,30B ∠=︒,CD 平分ACB ∠,试判断AC 和AD 、BC 之间的数量关系,并说明理由;(2)如图(b ),在四边形ABCD 中,AC 平分BAD ∠,16AC =,8AD =,12DC BC ==,①求证:180B D ∠+∠=︒;②求AB 的长.24.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.25.如图所示,已知ABC ∆中,90B ∠=︒,16AB cm =,20AC cm =,P 、Q 是ABC ∆的边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为ts .(1)则BC =____________cm ;(2)当t 为何值时,点P 在边AC 的垂直平分线上?此时CQ =_________?(3)当点Q 在边CA 上运动时,直接写出使BCQ ∆成为等腰三角形的运动时间.26.如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为k . (1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题?(2)已知ABC 为优三角形,AB c =,AC b =,BC a =,①如图1,若90ACB ∠=︒,b a ≥,6b =,求a 的值.②如图2,若c b a ≥≥,求优比k 的取值范围.(3)已知ABC 是优三角形,且120ABC ∠=︒,4BC =,求ABC 的面积.27.如图1,△ABC 中,CD ⊥AB 于D ,且BD : AD : CD =2 : 3 : 4,(1)试说明△ABC 是等腰三角形;(2)已知S △ABC =40cm 2,如图2,动点M 从点B 出发以每秒2cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以每秒1cm 速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止. 设点M 运动的时间为t (秒),①若△DMN 的边与BC 平行,求t 的值;②若点E 是边AC 的中点,问在点M 运动的过程中,△MDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.图1 图2 备用图28.已知n组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.29.(1)如图1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,且点D在BC边上滑动(点D不与点B,C重合),连接EC,①则线段BC,DC,EC之间满足的等量关系式为;②求证:BD2+CD2=2AD2;(2)如图2,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD 的长.30.已知:四边形ABCD是菱形,AB=4,∠ABC=60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD的顶点A重合,两边分别射线CB、DC相交于点E、F,且∠EAP=60°.(1)如图1,当点E是线段CB的中点时,请直接判断△AEF的形状是.(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】结论①错误,因为图中全等的三角形有3对;结论②正确,由全等三角形的性质可以判断;结论③错误,利用全等三角形和等腰直角三角形的性质可以判断;结论④正确,利用全等三角形的性质以及直角三角形的勾股定理进行判断.【详解】连接CF,交DE于点P,如下图所示结论①错误,理由如下:图中全等的三角形有3对,分别为△AFC≌△BFC,△AFD≌△CFE,△CFD≌△BFE.由等腰直角三角形的性质,可知FA=FC=FB,易得△AFC≌△BFC.∵FC⊥AB,FD⊥FE,∴∠AFD=∠CFE.∴△AFD≌△CFE(ASA).同理可证:△CFD≌△BFE.结论②正确,理由如下:∵△AFD≌△CFE,∴S△AFD=S△CFE,∴S四边形CDFE=S△CFD+S△CFE=S△CFD+S△AFD=S△AFC=12S△ABC,即△ABC的面积等于四边形CDFE的面积的2倍.结论③错误,理由如下:∵△AFD≌△CFE,∴CE=AD,∴2FA.结论④正确,理由如下:∵△AFD≌△CFE,∴AD=CE;∵△CFD ≌△BFE ,∴BE=CD .在Rt △CDE 中,由勾股定理得:222CD CE DE +=,∴222AD BE DE += .故选B .【点睛】本题是几何综合题,考查了等腰直角三角形、全等三角形和勾股定理等重要几何知识点,综合性比较强.解决这个问题的关键在于利用全等三角形的性质.2.B解析:B【分析】过点O 作OE ⊥BC 于E ,OF ⊥AC 于F ,由角平分线的性质得到OD=OE=OF ,根据勾股定理求出BC 的长,易得四边形ADFO 为正方形,根据线段间的转化即可得出结果.【详解】解:过点O 作OE ⊥BC 于E ,OF ⊥AC 于F ,∵BO,CO 分别为∠ABC ,∠ACB 的平分线,所以OD=OE=OF ,又BO=BO,∴△BDO ≌△BEO,∴BE=BD.同理可得,CE=CF.又四边形ADOE 为矩形,∴四边形ADOE 为正方形.∴AD=AF.∵在Rt △ABC 中,AB=6,AC=8,∴BC=10.∴AD+BD=6①,AF+FC=8②,BE+CE=BD+CF=10③,①+②得,AD+BD+AF+FC=14,即2AD+10=14,∴AD=2.故选:B.【点睛】此题考查了角平分线的定义与性质,以及全等三角形的判定与性质,属于中考常考题型.3.D解析:D【分析】本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决..要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】如图,由图可知,彩带从易拉罐底端的A处绕易拉罐4圈后到达顶端的B处,将易拉罐表面切开展开呈长方形,则螺旋线长为四个长方形并排后的长方形的对角线长,设彩带最短长度为xcm,∵∵易拉罐底面周长是12cm,高是20cm,∴x2=(12×4)2+202∴x2=(12×4)2+202,所以彩带最短是52cm.故选D.【点睛】本题考查了平面展开−−最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,4.D解析:D【分析】先确定黑、白两个甲壳虫各爬行完第2017条棱分别停止的点,再根据停止点确定它们之间的距离.【详解】根据题意可知黑甲壳虫爬行一圈的路线是AA1→A1D1→D1C1→C1C→CB→BA,回到起点.乙甲壳虫爬行一圈的路线是AB→BB1→B1C1→C1D1→D1A1→A1A.因此可以判断两个甲壳虫爬行一圈都是6条棱,因为2017÷6=336…1,所以黑、白两个甲壳虫各爬行完第2017条棱分别停止的点都是A1,B.2,故选D.【点睛】此题考查了立体图形的有关知识.注意找到规律:黑、白甲壳虫每爬行6条边后又重复原来的路径是解此题的关键.解析:C【分析】根据题意结合勾股定理得出折断处离地面的长度即可.【详解】解:设折断处离地面的高度OA 是x 尺,根据题意可得:x 2+42=(10-x )2,解得:x=4.2,答:折断处离地面的高度OA 是4.2尺.故选C .【点睛】此题主要考查了勾股定理的应用,根据题意正确应用勾股定理是解题关键.6.C解析:C【分析】设AB =x ,则BC =9-x ,根据三角形两边之和大于第三边,得到x 的取值范围,再利用分类讨论思想,根据勾股定理列方程,计算解答.【详解】解:∵在△ABC 中,AC =AM =3,设AB =x ,BC =9-x ,由三角形两边之和大于第三边得:3939x x x x +-⎧⎨+-⎩>>, 解得3<x <6,①AC 为斜边,则32=x 2+(9-x )2,即x 2-9x +36=0,方程无解,即AC 为斜边不成立,②若AB 为斜边,则x 2=(9-x )2+32,解得x =5,满足3<x <6,③若BC 为斜边,则(9-x )2=32+x 2,解得x =4,满足3<x <6,∴x =5或x =4;故选C .【点睛】本题考查三角形的三边关系,勾股定理等,分类讨论和方程思想是解答的关键.7.B【分析】将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可.【详解】解:如图,AB =22(24)2210++=.故选:B .【点睛】此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了.8.D解析:D【分析】根据条件可以得出∠E =∠ADC =90°,进而得出△CEB ≌△ADC ,就可以得出AD =CE ,再利用勾股定理就可以求出BC 的值.【详解】解:∵BE ⊥CE ,AD ⊥CE ,∴∠E =∠ADC =90°,∴∠EBC +∠BCE =90°.∵∠BCE +∠ACD =90°,∴∠EBC =∠DCA .在△CEB 和△ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CEB ≌△ADC (AAS ),∴CE =AD =3,在Rt △BEC 中,2222BC=BE +CE =1+3=10,故选D .【点睛】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解题的关键.9.B解析:B由折叠的性质得出AD=BD,设BD=x,则CD=8-x,在Rt△ACD中根据勾股定理列方程即可得出答案.【详解】解:∵将△ABC折叠,使点B与点A重合,折痕为DE,∴AD=BD,设BD=x,则CD=8-x,在Rt△ACD中,∵AC2+CD2=AD2,∴62+(8-x)2=x2,解得x= 25 4∴BD=254.故选:B.【点睛】本题考查了翻折变换的性质、勾股定理等知识,熟练掌握方程的思想方法是解题的关键.10.D解析:D【分析】设正方形ADOF的边长为x,在直角三角形ACB中,利用勾股定理可建立关于x的方程,整理方程即可.【详解】解:设正方形ADOF的边长为x,由题意得:BE=BD=4,CE=CF=6,∴BC=BE+CE=BD+CF=10,在Rt△ABC中,AC2+AB2=BC2,即(6+x)2+(x+4)2=102,整理得,x2+10x﹣24=0,∴x2+10x=24,故选:D.【点睛】本题考查了正方形的性质、全等三角形的性质、勾股定理等知识;熟练掌握正方形的性质,由勾股定理得出方程是解题的关键.二、填空题11.45【分析】如下图,延长BA至网络中的点D处,连接CD. ABC ACB DAC∠+∠=∠,只需证△ADC是等腰直角三角形即可【详解】如下图,延长BA至网络中的点D处,连接CD设正方形网络每一小格的长度为1则根据网络,555BC=5,∴5其中BD、DC、BC边长满足勾股定理逆定理∴∠CDA=90°∵AD=DC∴△ADC是等腰直角三角形∴∠DAC=45°故答案为:45°【点睛】本题是在网格中考察勾股定理的逆定理,解题关键是延长BA,构造处△ABC的外角∠CAD 12.72965【分析】分三种情形讨论:(1)如图1中,以点C所在顶点为直角时;(2)如图2中,以点D所在顶点为直角时;(3)如图3中,以点A所在顶点为直角时.【详解】(1)如图1中,以点C所在顶点为直角时.∵AC=CD=4,BC=3,∴BD=CD+BC=7;(2)如图2中,以点D所在顶点为直角时,作DE⊥BC与E,连接BD.在Rt△BDE中DE=2,BE=5,∴BD2229DE BE+(3)如图3中,以点A所在顶点为直角时,作DE⊥BC于E,在Rt△BDE中,DE=4.BE=7,∴BD2265DE BE+故答案为:72965【点睛】本题考查了勾股定理、等腰直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.13.322或11或5或109 5【分析】分别就E,F在AC,BC上和延长线上,分别画出图形,过D作DG⊥AC,DH⊥BC,垂足为G,H,通过构造全等三角形和运用勾股定理作答即可.【详解】解:①过D作DG⊥AC,DH⊥BC,垂足为G,H∴DG∥BC,∠CDG=∠CDH=45°又∵D是AB的中点,∴DG=12 BC同理:DH=12 AC又∵BC=AC∴DG=DH在Rt△DGE和Rt△DHF中DG=DH,DE=DF∴Rt△DGE≌Rt△DHF(HL )∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=GC -GE=CH-HF=CF=AB-BF=3 ∴EF=223332+=②过D 作DG⊥AC,DH⊥BC,垂足为G ,H∴DG∥BC,∠CDG=∠CDH=45°又∵D 是AB 的中点,∴DG=12BC 同理:DH=12AC 又∵BC=AC∴DG=DH 在Rt△DGE 和Rt△DHF 中DG=DH,DE=DF ∴Rt△DGE≌Rt△DHF(HL )∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=CF=AC+AE=AB+BF=7+4=11221111112+=③如图,以点D 为圆心,以DF 长为半径画圆交AC 边分别为E 、E ',过点D 作DH⊥AC 于点H ,可知DF DE DE '==,可证△EHD≌△E HD ',CE D CFD '≌,△DHC 为等腰直角三角形,∴∠1+∠2=45°∴∠EDF=2(∠1+∠2)=90°∴△EDF 为等腰直角三角形可证AED CFD △△≌∴AE=CF=3,CE=BF=4∴2222435EF CE CF =+=+=④有第③知,EF=5,且△EDF 为等腰直角三角形,∴ED=DF=522,可证△E CF E DE ''∆∽,2223y x +=525222x =+综上可得:25x =∴2222E F DE DF DE '''''=+=1095E F ''= 【点睛】本题考查了全等三角形和勾股定理方面的知识,做出辅助线、运用数形结合思想是解答本题的关键.14.103. 【分析】 根据八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形,得出CG=NG ,CF=DG=NF ,再根据()21S CG DG =+,22S GF =,()23S NG NF =-,12310S S S ++=,即可得出答案.【详解】∵八个直三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形∴CG=NG ,CF=DG=NF∴()2222122S CG DG CG DG CG DG GF CG DG =+=++=+ 22S GF =()22232S NG NF NG NF NG NF =-=+-∴2222212322310S S S GF CG DG GF NG NF NG NF GF ++=+⋅+++-⋅== ∴2103GF =故2103S = 故答案为103. 【点睛】 本题主要考查了勾股定理的应用,用到的知识点由勾股定理和正方形、全等三角形的性质. 15.4【分析】根据线段垂直平分线得出AE=EC ,∠AEG=∠AEF=90°,求出∠B=∠C=∠G=30°,根据勾股定理和含30°角的直角三角形性质求出AE 和EF ,即可求出FG ,再求出BF=FG 即可【详解】∵AC 的垂直平分线FG ,∴AE=EC ,∠AEG=∠AEF=90°,∵∠BAC=120°,∴∠G=∠BAC-∠AEG=120°-90°=30°,∵∠BAC=120°,AB=AC ,∴∠B=∠C=12(180°-∠BAC )=30°, ∴∠B=∠G ,∴BF=FG ,∵在Rt △AEG 中,∠G=30°,EG=3,∴AG=2AE ,即(2AE )2=AE 2+32,∴即同理在Rt △CEF 中,∠C=30°,CF=2EF ,(2EF )2=EF 2+2,∴EF=1(负值舍去),∴BF=GF=EF+CE=1+3=4,故答案为4.【点睛】本题考查了勾股定理,含30°角的直角三角形性质,等腰三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.16.55【解析】【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.【详解】展开图如图所示:由题意,在Rt △APQ 中,PD=10cm ,DQ=5cm ,∴蚂蚁爬行的最短路径长2222105PD QD +=+5cm ),故答案为:5【点睛】本题考查了平面展开﹣最短路径问题,解答此类问题时要先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.17.①②③【解析】【详解】解:∵△ABC 是等边三角形,60ABC ∴∠=,∵△BQC ≌△BPA ,∴∠BPA =∠BQC ,BP =BQ =4,QC =PA =3,∠ABP =∠QBC ,60PBQ PBC CBQ PBC ABP ABC ∴∠=∠+∠=∠+∠=∠=,∴△BPQ 是等边三角形,①正确.∴PQ =BP =4,2222224325,525PQ QC PC +=+===,222PQ QC PC ∴+=,90PQC ∴∠=,即△PQC 是直角三角形,②正确. ∵△BPQ 是等边三角形,60PBQ BQP ∴∠=∠=,∵△BQC ≌△BPA ,∴∠APB =∠B QC ,6090150BPA BQC ∴∠=∠=+=,③正确.36015060150APC QPC QPC ∴∠=---∠=-∠,90PQC PQ QC ∠=≠,,45QPC ∴∠≠,即135APC ∠≠,④错误.故答案为①②③.18.355 【详解】 四边形DEFA 是正方形,面积是4; △ABF,△ACD 的面积相等,且都是 ×1×2=1. △BCE 的面积是:12×1×1=12. 则△ABC 的面积是:4﹣1﹣1﹣12=32. 在直角△ADC 中根据勾股定理得到:AC=222+1=5.设AC 边上的高线长是x .则12AC•x=5x=32, 解得:x=355.355. 19.4913【解析】【分析】如图(见解析),延长AD ,交BC 于点G ,先根据等腰三角形的三线合一性得出AG BC ⊥,再根据折叠的性质、等腰三角形的性质(等边对等角)得出2345∠+∠=︒,从而得出CDG ∆是等腰直角三角形,然后根据勾股定理、面积公式可求出AC 、CE 、CF 的长,最后根据线段的和差即可得.【详解】如图,延长AD ,交BC 于点G AD 平分BAC ∠,,10AB AC BC ==,B ACB AG BC ∴∠=∠⊥,且AG 是BC 边上的中线 1123,52B CG BC ∴∠=∠+∠+∠== 由折叠的性质得12,CE AC ∠=∠=123223B ∠=∠+∠+∠=∠+∠∴CE AB ⊥,即90BFC ∠=︒390B ∴∠+∠=︒230239+∴∠∠=∠+︒,即2345∠+∠=︒CDG ∴∆是等腰直角三角形,且5DG CG ==7512AG AD DG ∴=+=+=在Rt ACG ∆中,222251213AC CG AG =+=+=13CE AB AC ==∴=由三角形的面积公式得1122ABC S BC AG AB CF ∆=⋅=⋅ 即1110121322CF ⨯⨯=⨯⋅,解得12013CF = 12049131313EF CE CF ∴=-=-= 故答案为:4913.【点睛】本题是一道较难的综合题,考查了等腰三角形的判定与性质、勾股定理等知识点,通过作辅助线,构造一个等腰直角三角形是解题关键.20.23或2或4【分析】根据题意画出图形,分4种情况进行讨论,利用含30°角直角三角形与勾股定理解答.【详解】解:如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC 是等边三角形,∴23CP BC ==;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°-30°=30°,∴PC=PB , ∵23BC =, ∴222213,(23)(3)32AB BC AC BC AB ===-=-=, 在Rt △APB 中,根据勾股定理222AP AB BP +=, 即222()AC PC AB PC -+=, 即222(3)(3)PC PC -+=,解得2PC =,如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°, ∴∠PBC=60°+30°=90°,∴12BP PC = 在Rt △BCP 中,根据勾股定理222BP BC PC +=,即2221()(23)2PC PC +=,解得PC=4(已舍去负值).综上所述,CP 的长为232或4.故答案为:32或4.【点睛】本题考查含30°角直角三角形,等边三角形的性质和判定,勾股定理.理解直角三角形30°角所对边是斜边的一半,并能通过勾股定理去求另外一个直角边是解决此题的关键. 三、解答题21.(132)150°;(313【分析】(1)根据等边三角形的性质可利用SAS 证明△BCD ≌△ACE ,再根据全等三角形的性质即得结果;(2)在△ADE 中,根据勾股定理的逆定理可得∠AED =90°,进而可求出∠AEC 的度数,再根据全等三角形的性质即得答案;(3)过C 作CP ⊥DE 于点P ,设AC 与DE 交于G ,如图,根据等边三角形的性质和勾股定理可得PE 与CP 的长,进而可得AE =CP ,然后即可根据AAS 证明△AEG ≌△CPG ,于是可得AG =CG ,PG =EG ,根据勾股定理可求出AG 的长,进一步即可求出结果.【详解】解:(1)∵△ABC 和△EDC 都是等边三角形,∴BC =AC ,CD =CE =DE =2,∠ACB =∠DCE =60°,∴∠BCD =∠ACE ,在△BCD 与△ACE 中,∵BC =AC ,∠BCD =∠ACE ,CD =CE ,∴△BCD ≌△ACE ,∴AE =BD =3; (2)在△ADE 中,∵7,3,2AD AE DE ===, ∴DE 2+AE 2=()()222237+==AD 2, ∴∠AED =90°,∵∠DEC =60°,∴∠AEC =150°,∵△BCD ≌△ACE ,∴∠BDC =∠AEC =150°;(3)过C 作CP ⊥DE 于点P ,设AC 与DE 交于G ,如图,∵△CDE 是等边三角形,∴PE =12DE =1,CP 22213-=,∴AE =CP ,在△AEG 与△CPG 中,∵∠AEG =∠CPG =90°,∠AGE =∠CGP ,AE =CP ,∴△AEG ≌△CPG ,∴AG =CG ,PG =EG =12,∴AG =()222211332AE EG ⎛⎫+=+= ⎪⎝⎭, ∴AC =2AG =13.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、勾股定理及其逆定理等知识,熟练掌握上述知识、灵活应用全等三角形的判定与性质是解题的关键.22.(1)213;(2)83;(3)5.5秒或6秒或6.6秒【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ;③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒,222246213()PQ BQ BP cm =+=+=;(2)解:根据题意得:BQ BP =,即28t t =-,解得:83t =; 即出发时间为83秒时,PQB ∆是等腰三角形; (3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒,90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B 点作BE AC ⊥于点E , 则68 4.8()10AB BC BE cm AC ⨯=== 22 3.6CE BC BE cm ∴=-=,27.2CQ CE cm ∴==,13.2BC CQ cm ∴+=,13.22 6.6t ∴=÷=秒.由上可知,当t 为5.5秒或6秒或6.6秒时,BCQ ∆为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.23.(1)BC−AC =AD ;理由详见解析;(2)①详见解析;②AB=14【分析】(1)在CB 上截取CE =CA ,连接DE ,证△ACD ≌△ECD 得DE =DA ,∠A =∠CED =60°,据此∠CED =2∠CBA ,结合∠CED =∠CBA +∠BDE 得出∠CBA =∠BDE ,即可得DE =BE ,进而得出答案;(2)①在AB 上截取AM =AD ,连接CM ,先证△ADC ≌△AMC ,得到∠D =∠AMC ,CD=CM,结合CD=BC知CM=CB,据此得∠B=∠CMB,根据∠CMB+∠CMA=180°可得;②设BN=a,过点C作CN⊥AB于点N,由CB=CM知BN=MN=a,CN2=BC2−BN2=AC2−AN2,可得关于a的方程,解之可得答案.【详解】解:(1)BC−AC=AD.理由如下:如图(a),在CB上截取CE=CA,连接DE,∵CD平分∠ACB,∴∠ACD=∠ECD,又CD=CD,∴△ACD≌△ECD(SAS),∴DE=DA,∠A=∠CED=60°,∴∠CED=2∠CBA,∵∠CED=∠CBA+∠BDE,∴∠CBA=∠BDE,∴DE=BE,∴AD=BE,∵BE=BC−CE=BC−AC,∴BC−AC=AD.(2)①如图(b),在AB上截取AM=AD,连接CM,∵AC平分∠DAB,∴∠DAC=∠MAC,∵AC=AC,∴△ADC≌△AMC(SAS),∴∠D=∠AMC,CD=CM=12,∵CD=BC=12,∴CM=CB,∴∠B=∠CMB,∵∠CMB+∠CMA=180°,∴∠B+∠D=180°;②设BN=a,过点C作CN⊥AB于点N,∵CB=CM=12,∴BN=MN=a,在Rt △BCN 中,2222212CN BC BN a --==,在Rt △ACN 中,2222216(8)CN AC AN a --+==, 则22221216(8)a a --+=,解得:a =3,即BN =MN =3,则AB =8+3+3=14,∴AB=14.【点睛】本题考查了四边形的综合题,以及全等三角形的判定与性质、勾股定理、等腰三角形的判定与性质;本题有一定难度,需要通过作辅助线证明三角形全等才能得出结果.24.(1)①详见解析;②详见解析;(2)DE 2= EB 2+AD 2+EB ·AD ,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD ,∠DCF=90°,再根据已知条件即可证明△ACD ≌△BCF ;②连接EF ,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE ≌△FCE 得到EF=DE 即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD ,DE ,BE 之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD ,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD ≌△BCF②证明:连接EF ,由①知△ACD ≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD ,BF=AD∴∠EBF=90°∴EF 2=BE 2+BF 2,∴EF 2=BE 2+AD 2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF ,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF,3∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF,CE=CE∴△ECF≌△ECD∴EF=ED在Rt△EFG中,EF2=FG2+EG2又∵EG=EB+BG∴EG=EB+12 BF,∴EF2=(EB+12BF)2+(32BF)2∴DE2=(EB+12AD)2+3)2∴DE2=EB2+AD2+EB·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.25.(1)12;(2)t=12.5s 时,13 cm ;(3)11s 或12s 或13.2s【分析】(1)由勾股定理即可得出结论;(2)由线段垂直平分线的性质得到PC = PA =t ,则PB =16-t .在Rt △BPC 中,由勾股定理可求得t 的值,判断出此时,点Q 在边AC 上,根据CQ =2t -BC 计算即可;(3)用t 分别表示出BQ 和CQ ,利用等腰三角形的性质可分BQ =BC 、CQ =BC 和BQ =CQ 三种情况,分别得到关于t 的方程,可求得t 的值.【详解】(1)在Rt △ABC 中,BC 2222212016AC AB =-=-=(cm ).故答案为:12;(2)如图,点P 在边AC 的垂直平分线上时,连接PC ,∴PC = PA =t ,PB =16-t . 在Rt △BPC 中,222BC BP CP +=,即2221216)t t +-=(, 解得:t =252. ∵Q 从B 到C 所需的时间为12÷2=6(s ),252>6, ∴此时,点Q 在边AC 上,CQ =25212132⨯-=(cm );(3)分三种情况讨论:①当CQ =BQ 时,如图1所示,则∠C =∠CBQ .∵∠ABC =90°,∴∠CBQ +∠ABQ =90°,∠A +∠C =90°,∴∠A =∠ABQ ,∴BQ =AQ ,∴CQ =AQ =10,∴BC +CQ =22,∴t =22÷2=11(s ).②当CQ =BC 时,如图2所示,则BC +CQ =24,∴t =24÷2=12(s ).③当BC =BQ 时,如图3所示,过B 点作BE ⊥AC 于点E ,则BE 121648205AB BC AC ⋅⨯===, ∴CE 2222483612()55BC BE =-=-==7.2. ∵BC =BQ ,BE ⊥CQ ,∴CQ =2CE =14.4,∴BC +CQ =26.4,∴t =26.4÷2=13.2(s ).综上所述:当t 为11s 或12s 或13.2s 时,△BCQ 为等腰三角形.【点睛】本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t 表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.26.(1)该命题是真命题,理由见解析;(2)①a 的值为92;②k 的取值范围为13k ≤<;(3)ABC ∆. 【分析】 (1)根据等边三角形的性质、优三角形和优比的定义即可判断;(2)①先利用勾股定理求出c 的值,再根据优三角形的定义列出,,a b c 的等式,然后求解即可;②类似①分三种情况分析,再根据三角形的三边关系定理得出每种情况下,,a b c 之间的关系,然后根据优比的定义求解即可;(3)如图(见解析),设BD x =,先利用直角三角形的性质、勾股定理求出AC 、AB 的长及ABC ∆面积的表达式,再类似(2),根据优三角形的定义分三种情况分别列出等式,然后解出x 的值,即可得出ABC ∆的面积.【详解】(1)该命题是真命题,理由如下:设等边三角形的三边边长为a则其中两条边的和为2a ,恰好是第三边a 的2倍,满足优三角形的定义,即等边三角形为优三角形又因该两条边相等,则这两条边的比为1,即其优比为1故该命题是真命题;(2)①90,6CB b A ∠=︒=c ∴=根据优三角形的定义,分以下三种情况:当2a b c +=时,6a +=,整理得24360a a -+=,此方程没有实数根当2a c b +=时,12a =,解得92a =当2b c a +=时,62a =,解得86a =>,不符题意,舍去综上,a 的值为92; ②由题意得:,,a b c 均为正数 根据优三角形的定义,分以下三种情况:(c b a ≥≥)当2a b c +=时,则1b k a=≥ 由三角形的三边关系定理得b a c a b -<<+。

第17章勾股定理巩固卷2021--2022学年人教版数学八年级下册

第17章勾股定理巩固卷2021--2022学年人教版数学八年级下册

第17章勾股定理(巩固卷)-2022年人教新版数学八年级下册一.选择题1.如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,分别以AC,BC,AB为一边在△ABC外面做三个正方形,记三个正方形的面积依次为S1,S2,S3,已知S1=4,则S3为()A.8B.16C.4D.4+42.以下四组代数式作为△ABC的三边,能使△ABC为直角三角形的有()①3n,4n,5n(n为正整数);②n,n+1,n+2(n为正整数);③n2﹣1,2n,n2+1(n≥2,n为正整数);④m2﹣n2,2mn,m2+n2(m>n,m,n为正整数).A.1组B.2组C.3组D.4组3.已知△ABC中,a、b、c分别为∠A、∠B、∠C的对边,则下列条件中:①a2﹣b2=c2;②a2:b2:c2=1:3:2;③∠A:∠B:∠C=3:4:5;④∠A=2∠B=2∠C.能判断△ABC是直角三角形的有()A.1个B.2个C.3个D.4个4.若△ABC为直角三角形,AC=BC=4,以BC为直径画半圆如图所示,则阴影部分的面积为()A.4B.5C.6D.75.国庆假期间,妍妍与同学去玩寻宝游戏,按照藏宝图,她从门口A处出发先往东走9km,又往北走3km,遇到障碍后又往西走7km,再向北走2km,再往东走了4km,发现走错了之后又往北走1km,最后再往西走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.3km B.10km C.6km D.km6.如图,在四边形ABCD中,AD=4,BC=1,∠B=90°,∠A=30°,∠ADC=120°,则CD 的长为()A.2B.1.5C.3D.2.57.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端7米,消防车的云梯最大升长为25米,则云梯可以达该建筑物的最大高度是()A.16米B.20米C.24米D.25米8.在海面上有两个疑似漂浮目标.接到消息后,A舰艇以12海里/时的速度离开港口O,向北偏西50°方向航行.同时,B舰艇在同地以16海里/时的速度向北偏东方向行驶,如图所示,离开港口1.5小时后两船相距30海里,则B舰艇的航行方向是()A.北偏东60°B.北偏东50°C.北偏东40°D.北偏东30°9.下列六种说法正确的个数是()①无限小数都是无理数;②实数分为正实数和负实数;③立方根等于它本身的数是±1和0;④直角三角形的两边分别为6和8,则第三边为10;⑤任何数都有两个平方根;⑥﹣1是1的平方根.A.1B.2C.3D.410.有一个面积为1的正方形,经过一次“生长”后,在它的左右肩上“生长”出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图所示的形状图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了888次后形成的图形中所有的正方形的面积和是()A.445B.887C.888D.889二.填空题11.在平面直角坐标系中,点A坐标为(4,3),点B在x轴上,若△AOB是直角三角形,则OB的长为.12.如图,一架秋千静止时,踏板离地的垂直高度DE=0.5m,将它往前推送1.5m(水平距离BC=1.5m)时,秋千的踏板离地的垂直高度BF=1m,秋千的绳索始终拉直,则绳索AD 的长是m.13.△ABC中,AB=,AC=10,BC边上的高AD=6,则BC边长为.14.在△ABC中,BC边上的高为4,AB=5,AC=2,则BC=..如图是一款上铺的收纳挂篮(如图1),其侧截面可看作直角梯形,现有一长方体形状的物体放置在该挂篮中,当物体如图2放置时,AB∥PQ.正方形DMEC为露出挂篮部分,此时S正方形DMEC=400cm2,当物体如图3放置时,B'与Q重合,四边形为D′FNC′露出挂篮部分,此时S四边形D′C′NF=200cm2,且D′F=C′N=MF,则D′到PQ的距离为.三.解答题15.如图是俱乐部新打造的一款儿童游戏项目,工作人员告诉小敏,该项目AB段和BC段均由不锈钢管材打造,总长度为26米,长方形ADCG和长方形DEFC均为木质平台的横截面,点G在AB上,点C在GF上,点D在AE上,经过现场测量得知:CD=1米,AD=15米.(1)小敏猜想立柱AB段的长为10米,请判断小敏的猜想是否正确?如果正确,请写出理由,如果错误,请求出立柱AB段的正确长度;(2)为加强游戏安全性,俱乐部打算再焊接一段钢索BF,经测量DE=3米,请你求出要焊接的钢索BF的长.(结果不必化简成最简二次根式)16.一架云梯长25m,如图那样斜靠在一面墙上,云梯顶端离地面24m.(1)这架云梯的底端距墙角有多远?(2)如果云梯的顶端下滑了4m,那么它的底部在水平方向滑动了多少m?17.2021年10月10日是辛亥革命110周年纪念日.为进一步弘扬辛亥革命中体现的中华民族的伟大革命精神,社区开展了系列纪念活动.如图,有一块四边形空地,社区计划将其布置成展区,陈列有关辛亥革命的历史图片.现测得AB=AD=26m,BC=16m,CD=12m,且BD=20m.(1)试说明∠BCD=90°;(2)求四边形展区(阴影部分)的面积.18.笔直的河流一侧有一旅游地C,河边有两个漂流点A,B.其中AB=AC,由于某种原因,由C到A的路现在已经不通,为方便游客决定在河边新建一个漂流点H(A,H,B在同一直线上),并新修一条路CH,测得BC=5千米,CH=4千米,BH=3千米.(1)判断△BCH的形状,并说明理由;(2)求原路线AC的长.19.如图,在一条绷紧的绳索一端系着一艘小船.河岸上一男孩拽着绳子另一端向右走,绳端从C移动到E,同时小船从A移动到B,且绳长始终保持不变.回答下列问题:(1)根据题意可知:AC BC+CE(填“>”、“<”、“=”).(2)若CF=5米,AF=12米,AB=9米,求小男孩需向右移动的距离.(结果保留根号)。

(完整版)八年级勾股定理典型练习题含答案

(完整版)八年级勾股定理典型练习题含答案

八年级勾股定理典型练习题含答案一、选择题1、下列各组数中,能构成直角三角形的是A:4,5,B:1,1:6,8,11 D:5,12,22、在Rt△ABC中,∠C=90°,a=12,b=16,则c的长为 A:26B:1 C:20D:213、在平面直角坐标系中,已知点P的坐标是,则OP 的长为 A:3B:4C:5D:74、在Rt△ABC中,∠C=90°,∠B=45°,c=10,则a的长为 A: B:C:5D:、等边三角形的边长为2,则该三角形的面积为A、、、36、若等腰三角形的腰长为10,底边长为12,则底边上的高为A、 B、C、8D、9、已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为A、3cmC、6cm22B、4cm D、12cm228、若△ABC中,AB?13cm,AC?15cm,高AD=12,则BC 的长为 A、1 B、 C、14或4D、以上都不对二、填空题1、若一个三角形的三边满足c?a?b,则这个三角形是2、木工师傅要做一个长方形桌面,做好后量得长为80cm,宽为60cm,对角线为100cm,则这个桌面。

3、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。

2224、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为。

5、如右图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF=___________。

E6、一只蚂蚁从长为4cm、宽为cm,高是cm的FC长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是____________cm。

7、将一根长为15㎝的筷子置于底面直径为5㎝,高为12㎝的圆柱形水杯中,设筷子露在杯子外面的长为h㎝,则h的取值范围是________________。

八年级数学勾股定理全章复习与巩固(提高)巩固练习

八年级数学勾股定理全章复习与巩固(提高)巩固练习

【巩固练习】 一.选择题1. 在△ABC 中,若1,2,122+==-=n c n b n a ,则△ABC 是( )A. 锐角三角形B. 钝角三角形C. 等腰三角形D. 直角三角形2. 如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( ) A .90° B .60° C .45° D .30°3.在下列说法中是错误的( ) ¥A .在△ABC 中,∠C =∠A 一∠B ,则△ABC 为直角三角形.B .在△ABC 中,若∠A :∠B :∠C =5:2:3,则△ABC 为直角三角形. C .在△ABC 中,若35a c =,45b c =,则△ABC 为直角三角形. D .在△ABC 中,若a :b :c =2:2:4,则△ABC 为直角三角形.4.如图,一牧童在A 处牧马,牧童家在B 处,A 、B 处距河岸的距离AC 、BD 的长分别为500m 和700m ,且C 、D 两地的距离为500m ,天黑前牧童从A 点将马牵引到河边去饮水后,再赶回家,那么牧童至少要走( )A . ?2900mB . 1200mC . 1300mD . 1700m5. 直角三角形的两条直角边长为a ,b ,斜边上的高为h ,则下列各式中总能成立的是( ) %A .ab =h 2B .a 2+b 2=h 2C .111a b h += D .222111a b h+= 6.如图,Rt △ABC 中,∠C =90°,CD ⊥AB 于点D ,AB =13,CD =6,则(AC +BC)2等于( )7. 已知三角形的三边长为a b c 、、,由下列条件能构成直角三角形的是( ) A.()()2222221,4,1a m b m c m =-==+B.()()222221,4,1a m b m c m =-==+ C.()()222221,2,1a m b m c m =-==+|D.()()2222221,2,1a m b m c m =-==+8. 勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( )A . 90B . 100!C .110 D . 121二.填空题9. 如图,AB =5,AC =3,BC 边上的中线AD =2,则△ABC 的面积为______./10.如图所示,有一块直角三角形纸片,两直角边AB =6,BC =8,将直角边AB 折叠使它落在斜边AC 上,折痕为AD ,则BD =______.11.已知:△ABC 中,AB =15,AC =13,BC 边上的高AD =12,BC =_______.12.如图,E 是边长为4cm 的正方形ABCD 的边AB 上一点,且AE=1cm ,P 为对角线BD 上的任意一点,则AP+EP 的最小值是 cm .13.如图,长方体的底面边长分别为1cm 和2cm,高为4cm,点P在边BC上,且BP=14 BC.如果用一根细线从点A开始经过3个侧面缠绕一圈到达点P,那么所用细线最短需要cm.14.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为1米,∠B=90°,BC=4米,AC=8米,当正方形DEFH运动到什么位置时,即当AE=米时,有DC2=AE2+BC2.:15. 已知长方形OABC,点A、C的坐标分别为OA=10,OC=4,点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,CP的长为________.16. 如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,∠BAD=________.三.解答题17.如图所示,已知D、E、F分别是△ABC中BC、AB、AC边上的点,且AE=AF,BE=BD,CF=CD,AB=4,AC=3,32BDCD,求:△ABC的面积.》18.如图等腰△ABC的底边长为8cm,腰长为5cm,一个动点P在底边上从B向C以s的速度移动,请你探究,当P运动几秒时,P点与顶点A的连线PA与腰垂直.19. 有一块直角三角形纸片,两直角边AC =6cm,BC =8cm, ①如图1,现将纸片沿直线AD折叠,使直角边AC落在斜边AB上,且与AB重合, 则CD =_________.图1 图2】②如图2,若将直角∠C沿MN折叠,使点C落在AB中点H上,点M、N分别在AC、BC 上,则2AM、2BN与2MN之间有怎样的数量关系并证明你的结论.20. 如图1,四根长度一定....的木条,其中AB=6cm,CD=15cm,将这四根木条用小钉绞合在一起,构成一个四边形ABCD(在A、B、C、D四点处是可以活动的).现固定AB边不动,转动这个四边形,使它的形状改变,在转动的过程中有以下两个特殊位置.位置一:当点D在BA的延长线上时,点C在线段AD上(如图2);位置二:当点C在AB的延长线上时,∠C=90°.(1)在图2中,若设BC的长为x,请用x的代数式表示AD的长;(2)在图3中画出位置二的准确..图形;(各木条长度需符合题目要求)(3)利用图2、图3求图1的四边形ABCD中,BC、AD边的长.)ABHMNAC B(D【答案与解析】 一.选择题1.【答案】D ;【解析】因为()()2222221111c a n n n n -=++-+-+=422n b =,所以222c a b -=,222a b c +=,由勾股定理的逆定理可知:△ABC 是直角三角形.2.【答案】C ; ?【解析】连接AC ,计算AC 2=BC 2=5,AB 2=10,根据勾股定理的逆定理,△ABC 是等腰直角三角形,∴∠ABC =45°. 3.【答案】D ;【解析】D 选项222224+≠,故不是直角三角形.4.【答案】C ;【解析】作A 点关于河岸的对称点A′,连接BA′交河岸与P ,则PB+PA=PB+PA′=BA′最短,如图,BB′=BD+DB′=1200,B′A′=500,BA′=1300(m ).5.【答案】D ; (【解析】解:根据直角三角形的面积可以导出:abc h=.再结合勾股定理:a 2+b 2=c 2.进行等量代换,得a 2+b 2=222a b h .两边同除以a 2b 2,得222111a b h +=.6.【答案】B ;【解析】()222222AC BC AC BC AC BC AB AB CD +=++⋅=+⋅=169+2×13×6=325.7.【答案】B ;【解析】()()22141m m m -+=+.8.【答案】C ;【解析】如图,延长AB 交KF 于点O ,延长AC 交GM 于点P ,所以,四边形AOLP 是正方形,边长AO=AB+AC=3+4=7,所以,KL=3+7=10,LM=4+7=11,因此,长方形KLMJ 的面积为10×11=110.故选C .—二.填空题 9.【答案】6;【解析】延长AD 到E ,使DE =AD ,连结BE ,可得△ABE 为直角三角形. 10.【答案】3;【解析】设点B 落在AC 上的E 点处,设BD =x ,则DE =BD =x ,AE =AB =6,CE =4,CD =8-x ,在Rt △CDE 中根据勾股定理列方程. 11.【答案】14或4;【解析】当△ABC 是锐角三角形时,BC =9+5=14;当△ABC 是钝角三角形时,BC =9-5=4. 12.【答案】5 }【解析】作E 点关于直线BD 的对称点E′,连接AE′,则线段AE′的长即为AP+EP 的最小值5.13.【答案】5【解析】∵长方体的底面边长分别为1cm 和2cm ,高为4cm ,点P 在边BC 上,且BP=14BC ,∴AC=4cm ,PC=34BC=3cm ,根据两点之间线段最短,AP=5.14.【答案】4916【解析】连接CD ,假设AE=x ,可得EC=8﹣x .∵DE=1,∴DC 2=DE 2+EC 2=1+(8﹣x )2,AE 2+BC 2=x 2+16,∵DC 2=AE 2+BC 2,∴1+(8﹣x )2=x 2+16,x =4916. 15.【答案】3,2, 8; :【解析】以O 为等腰三角形的顶点,作等腰三角形1OPD ,因为1OP =5,114PH OC ==,所以由勾股定理求得13OH =,所以13CP =,同理,以D 为等腰三角形的顶点,可求出232,8CP CP ==.如图所示.16.【答案】90°;【解析】延长AD 到M ,使DM =AD ,易得△ABD ≌△MCD .∴ CM =AB =5 AM =2AD =12在△ACM 中22251213+= 即222CM AM AC +=∴∠AMC =∠BAD=90°三.解答题 17.【解析】 解:∵32BD CD =,设BD =3x ,则CD =2x ,由AE =AF ,BE =BD ,CF =CD , ^即AF =3-2x ,AE =4-3x ,PHNMCBA ∴ 3-2x =4-3x ,解得x =1.∴ BC =3x +2x =5 又∵ 222345+=,即222AC AB BC += ∴ △ABC 是直角三角形,∠A =90°. ∴ 1143622ABC S AB AC ==⨯⨯=△ 18.【解析】解:如图,作AD ⊥BC ,交BC 于点D , ∵BC=8cm , 《∴BD=CD=BC=4cm , ∴AD=3,分两种情况:当点P 运动t 秒后有PA ⊥AC 时, ∵AP 2=PD 2+AD 2=PC 2﹣AC 2,∴PD 2+AD 2=PC 2﹣AC 2,∴PD 2+32=(PD+4)2﹣52∴PD=, ∴BP=4﹣==, ∴t=7秒,当点P 运动t 秒后有PA ⊥AB 时,同理可证得PD=, ~∴BP=4+==, ∴t=25秒,∴点P 运动的时间为7秒或25秒.19. 【解析】 解:①3;② 2AM +2BN =2MN证明:过点B 作BP ∥AC 交MH 延长线于点P ,连接NP , .∴∠A =∠PBH在△AMH 和△BPH 中 ∠A =∠PBH AH =BH∠AHM =∠BHP ∴△AMH ≌△BPH ∴AM =BP ,MH =PH 又∵NH ⊥MP 。

八年级数学下册勾股定理全章复习与巩固(基础)巩固练习及答案解析

八年级数学下册勾股定理全章复习与巩固(基础)巩固练习及答案解析

勾股定理全章复习与巩固(基础)巩固练习一.选择题1.如图,一棵大树被台风刮断,若树在离地面3m处折断,树顶端落在离树底部4m处,则树折断之前高( )A.5mB.7mC.8mD.10m2.如图,从台阶的下端点B到上端点A的直线距离为( )A.21012 B.3C.586 D.53.下列命题中是假命题的是()A.三个内角的度数之比为1:3:4的三角形是直角三角形;B.三个内角的度数之比为1:3:2的三角形是直角三角形;C.三边长度之比1:3:2的三角形是直角三角形;D.三边长度之比2:2:2的三角形是直角三角形;4. 如图所示,在△ABC中,AB=AC=5,BC=6,点E、F是中线AD上的两点,则图中阴影部分的面积是().A.6 B.12 C.24 D.305.下列三角形中,是直角三角形的是( )A.三角形的三边满足关系a b c+= B.三角形的三边比为1∶2∶3C.三角形的一边等于另一边的一半D.三角形的三边为9,40,416.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要( )A.450a元B.225a元C.150a元D.300a元7.(2018•江阴市模拟)如图,Rt△ABC中,∠C=90°,AC=12,BC=5.分别以AB、AC、BC为边在AB的同侧作正方形ABDE、ACFG、BCIH,四块阴影部分的面积分别为S1、S2、S3、S4.则S1+S2+S3+S4等于()A.90B.60C.169D.1448. 已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.32cmcm D.122cm B.42cm C.62二.填空题9.若一个三角形的三边长分别为6,8,10,则这个三角形中最短边上的高为______.10.若等边三角形的边长为2,则它的面积为______.11.如图,B,C是河岸边两点,A是对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC=60米,则点A到岸边BC 的距离是______米.12.下列命题中,其逆.命题成立的是______________.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a b c、、满足222+=,那么这个三a b c角形是直角三角形.13.(2018•杭州模拟)如图,圆柱形容器中,高为120cm,底面周长为100cm,在容器内壁离容器底部40cm的点B 处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为cm.(容器厚度忽略不计)14.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.15.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若涂黑的四个小正方形的面积的和是102cm,则其中最大的正方形的边长为______cm.16.如图,△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与△ABC的BC边重叠为止,此时这个三角形的斜边长为__________.三.解答题17.若直角三角形两直角边的比是3:4,斜边长是20,求此三角形的面积.18.(2018春•安次区校级月考)甲乙两船从位于南北走向的海岸线上的港口A同时出发,甲以每小时30海里的速度向北偏东35°方向航行,乙船以每小时40海里的速度向另一方向航行,2小时后,甲船到C岛,乙船到达B岛,B、C两岛相距100海里,判断乙船所走方向,说明理由.19.如图,△ABC中,∠A=90°,AC=20,AB=10,延长AB到D,使CD+DB=AC+AB,求BD的长.20.如图,四边形ABCD是边长为9的正方形纸片,B'为CD边上的点,CB'=3.将纸片沿某条直线折叠,使点B落在点B '处,点A 的对应点为A ',折痕分别与AD ,BC 边交于点M ,N .求BN 的长.【答案与解析】 一.选择题 1.【答案】C ;【解析】树高为3358=+=.2.【答案】A ;=3.【答案】B ; 4.【答案】A ;【解析】由题意BEF CEF S S =△△,∴ 13462ABD S S ==⨯⨯=△阴影.5.【答案】D ;6.【答案】C ;【解析】作高,求得高为15 m ,所以面积为120151502⨯⨯=2m .7.【答案】A ;【解析】解:过D 作BM 的垂线交BM 于N ,∵图中S 2=S Rt △DOI ,S △BOC =S △MND ,∴S2+S4=S Rt△ABC.可证明Rt△AGE≌Rt△ABC,Rt△DNB≌Rt△BHD,∴S1+S2+S3+S4=S1+S3+(S2+S4),=Rt△ABC的面积+Rt△ABC的面积+Rt△ABC的面积=Rt△ABC的面积×3=12×5÷2×3=90.故选:A.8.【答案】C;【解析】设AE=x,则DE=BE=9-x,在Rt△ABE中,. 二.填空题9.【答案】8;10.;⨯=2211.【答案】30;12.【答案】①④;【解析】①的逆命题“两直线平行,同旁内角互补”显然正确;②的逆命题“如果两个角相等,那么它们是直角”很明显是错误的;③的逆命题“如果两个实数的平方相等,那么这两个实数相等”,两个实数可以互为相反数,所以该命题不正确;④的逆命题“如果三角形是直角三角形,那么三角形的三边长a b c、、满足222+=”也是a b c正确的,这是勾股定理的内容.13.【答案】130;【解析】解:如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC于F,则A′B即为最短距离.∵高为120cm,底面周长为100cm,在容器内壁离容器底部40cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm与蚊子相对的点A处,∴A′D=50cm,BD=120cm,∴在直角△A′DB中,A′B===130(cm).故答案是:130.14.【答案】132cm ;【解析】由题意()222111n n +=+,解得60n =,所以周长为11+60+61=132. 15.【答案】【解析】根据勾股定理,四个小正方形的面积和等于最大正方形的面积. 16.【答案】81;三.解答题 17.【解析】解:设此直角三角形两直角边分别是3x ,4x ,由勾股定理得: ()()2223420x x +=化简得:216x =∴直角三角形的面积为: 21346962x x x ⨯⨯==.18.【解析】解:由题意得:甲2小时的路程=30×2=60海里,乙2小时的路程=40×2=80海里,∵602+802=1002, ∴∠BAC=90°,∵C 岛在A 北偏东35°方向, ∴B 岛在A 北偏西55°方向. ∴乙船所走方向是北偏西55°方向.19.【解析】解:设BD =x ,则CD =30-x .在Rt △ACD 中根据勾股定理列出()222(30)1020x x -=++, 解得x =5. 所以BD =5. 20. 【解析】解:点A 与点A ',点B 与点B '分别关于直线MN 对称, ∴AM A M '=,BN B N '=. 设BN B N x '==,则9CN x =-. ∵ 正方形ABCD , ∴ o 90C ∠=. ∴ 222CN B C B N ''+=.∵ C B '=3, ∴ 222(9)3x x -+=.解得5x =.∴5BN .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022年暑期“八升九”数学自主巩固练习卷
17.1 勾股定理
一.选择题
1.如图,在△ABD中,∠D=90°,CD=3,AD=4,∠ACD=2∠B,则BD的长是()
A.5 B.6 C.7 D.8
2.如图,三角形是直角三角形,四边形是正方形,已知正方形A的面积是64,正方形B的面积是100,则半圆C的面积是()
A.4.5πB.9πC.36 D.18π
3.如图,在每个小正方形的边长为1的网格中,点A,B,C均在网格的格点上,CD⊥AB于点D,则CD的长为()
A.2 B.C.D.2
4.如图,将一块直角三角板的直角边AB贴在直线l上,∠CAB=30°,以点A为圆心,斜边AC长为半径向右画弧,交直线l于点D.若BC=1,则BD的长为()
A.B.C.D.
5.直角三角形的两边长分别为6和10,那么它的第三边的长度为()
A.8 B.10 C.8或2D.10或2
6.如图,在四边形ABDE中,AB∥DE,AB⊥BD,点C是边BD上一点,BC=DE=a,CD =AB=b,AC=CE=c.下列结论:①△ABC≌△CDE;②∠ACE=90°;③四边形ABDE 的面积是;④;⑤该图可以验证勾股定理.其中正确的结论个数是()
A.5 B.4 C.3 D.2
二.填空题
7.如图,该图形是由直角三角形和正方形构成,其中最大正方形的边长为7,则正方形A、B、
C、D的面积之和为.
8.若一个等腰三角形的腰长为10,底边长为12,则其底边上的高为.
9.直角三角形的一直角边长4cm,斜边长5cm,则其斜边上的高是cm.
10.如图,四边形ABCD,连接BD,AB⊥AD,CE⊥BD,AB=CE,BD=CD.若AD=5,CD =7,则BE=.
11.如图所示的是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,若AB=13,BE=5,则HF的长为.
12.如图,《九章算术》中有这样一道古题:今有一竖直着的木柱,在木柱的上端系有绳索,绳索从木柱的上端顺木柱下垂后堆在地面的部分有三尺(绳索比木柱长3尺),牵着绳索退行,在距木柱底部8尺(BC=8)处时而绳索用尽,则木柱长为尺.
三.解答题
13.如图,在△ABC中,∠ACB=90°,AC=20,BC=15,CD⊥AB于点D.求:(1)CD的长;
(2)BD的长.
14.如图,在Rt△AOB和Rt△COD中,AB=CD=25,OB=7,AC=4.(1)求OC的长;
(2)求BD的长.
15.湖的两岸有A,B两棵景观树,数学兴趣小组设计实验测量两棵景观树之间的距离,他们在与AB垂直的BC方向上取点C,测得BC=30米,AC=50米.
求:(1)两棵景观树之间的距离;
(2)点B到直线AC的距离.
16.如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的顶点处.(1)求AB的长;
(2)求点C到AB边距离.
17.森林火灾是一种常见的自然灾害,危害很大,随着中国科技、经济的不断发展,开始应用飞机洒水的方式扑灭火源.如图,有一台救火飞机沿东西方向AB,由点A飞向点B,已知点C为其中一个着火点,且点C与直线AB上两点A,B的距离分别为600m和800m,又AB=1000m,飞机中心周围500m以内可以受到洒水影响.
(1)着火点C受洒水影响吗?为什么?
(2)若飞机的速度为10m/s,要想扑灭着火点C估计需要13秒,请你通过计算判断着火点C能否被扑灭?
18.如图①,美丽的弦图,蕴含着四个全等的直角三角形.
(1)弦图中包含了一大,一小两个正方形,已知每个直角三角形较长的直角边为a.较短的直角边为b,斜边长为c,结合图①,试验证勾股定理;
(2)如图②,将这四个直角三角形紧密地拼接,形成飞镖状,已知外围轮廓(粗线)的周长为24,OC=3,求该飞镖状图案的面积;
(3)如图③,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1、S2、S3,若S1+S2+S3=16,则S2=.。

相关文档
最新文档