基于51单片机的心电监测系统

合集下载

基于C8051F020的心电测量系统设计

基于C8051F020的心电测量系统设计

中图法分类号
T 72 4 H 7 .;
文献标志码

近 年来 , 随着 生 物 医 学 工 程 、 电子 技 术 及 计 算 机 技术 的迅 猛 发展 , 护 仪 器 的 功 能 日趋 复 杂 , 监 适 用 于各种 场 所 的各 类 监 护 仪 器 在 临 床 中得 到 了越 来越 广泛 的应 用 。为 了在 临 床 使 用 中更 准 确 地 采
第1 1卷
第 2期
21 0 1年 1 月








Vo. 1 N . J n 2 1 11 o 2 a .0 1
17一 1 1 (0 12 04 —5 6 l 85 2 1 ) -3 70
S inc c oo y a d En i e rn c e e Te hn lg n g n ei g
2 1 SiTc . n n. 0 c eh E g g 1 .
基 于 C 0 1 0 0的 心 电测 量 系 统 设 计 8 5 2 F
史 梦远 崔 骊 黄 殿 忠
( 四 军 医大 学 西 京 医 院 , 安 7 0 3 ) 第 西 10 2

要 为研制一种 能够在 临床上使用 的心 电测量系统 , C 0 10 0单片机为采集 控制 中心 , 以 85F2 运用模拟信 号采集和数字信
21 00年 7月 2 8日收到, 8月 1 8日修 改
5m V。在测 量 中 , 于 如 此 微 弱 的信 号 , 难 进 行 对 很
直接记 录或 处 理 , 须 通 过 放 大 器 适 当 放 大 , 必 同时
必须进 行滤 波等抗 干扰 处理 。
12 2 低 频特 性 ..

基于51单片机心率测量电路设计

基于51单片机心率测量电路设计

基于51单片机心率测量电路设计作者:蒋铁生来源:《科学导报·学术》2019年第10期1.1选题背景心率是人的重要的可被测量的生理指标。

在现代社会,随着人类社会生活水平的提高,人们的生活方式和饮食结构的改变,高血压,冠心病等心脏方面的疾病渐渐成为人们的常见病。

由有关数据显示,中国城市人口每五个成年人中就有一个人患有不同程度的心血管方面的疾病。

由于心脏不健康而导致的心肌梗塞,猝死等事件时有发生,并且心脏疾病方面发病率逐年提升,发病年龄也是下降趋势。

要减小心血管疾病给人们带来的健康危害,早期有效的测量設备与判断方法是十分重要的。

心率是人体十分重要有效的信息,是可以被检测的生物信号,它是反映心脏是否正常工作的一个重要参数,可以根据心率值判断一个人是否患有心率过速,早搏等几种常见的心脏病。

因此,设计一种简单,能显示心率的仪器十分有必要。

1.2 主要内容本心率测量电路设计是一个硬软件相结合的设计类题目。

要求设计一个基于51单片机的心率的检测电路。

可以实现与心率检测功能,整个系统电路的设计功能包括:1、使用MAX30102心率传感器模块进行心率采集;2、使用STC89C52芯片为控制核心;3、使用OLED液晶进行显示。

2 总体方案设计2.1整体设计思路本设计采用的是STC89C52芯片,通过STC89C52最小系统,心率模块、液晶屏,实现心率的测量与现实。

实时的心率显示在OLED液晶上。

由于STC89C52有较多的引脚数,能实现OLED液晶驱动以及实时心率测量等这些功能。

电源部分是通过USB线来外接可移动电源或电池供电。

2.2心率测量模块光电式传感器。

光电式传感器测量方法灵活多样,可测量参数较多,具有非接触,高精度,高分辨率,高可靠性,反映快等特点。

适合用来测量心率。

测量原理:随着心脏的跳动,人体组织半透明随之改变,当血液到达人体组织时,组织班透明度减小,当血液回流心脏时,组织的半透明度加大。

这种现象在人体组织较薄的地方比较明显,例如手指尖,耳垂部位。

基于单片机的心率测试仪设计

基于单片机的心率测试仪设计

基于单片机的心率测试仪设计心率测试仪是一种用来测量人体心率的设备,它使用单片机技术来实现数据处理和显示功能。

本文将介绍基于单片机的心率测试仪的设计原理、硬件组成以及软件实现。

一、设计原理心率测试仪的设计原理是通过测量人体的心电信号来计算心率。

心电信号是由心脏产生的微弱电流,可以通过电极贴在人体皮肤上进行测量。

传感器将心电信号转换为模拟电压信号,然后经过滤波处理和放大处理后,再经过A/D转换,转换为数字信号供单片机处理。

单片机通过计算心电信号的周期来得到心率值,并将结果显示在液晶屏上。

二、硬件组成1.单片机:选择一款适用的单片机,如STM32系列的单片机,具有高性能和丰富的外设接口,以满足心率测试仪的需求。

2.心电信号传感器:选择一款专门用于心电信号测量的传感器,如AD8232芯片,可以提供可靠的心电信号采集。

3.滤波器:使用滤波器对心电信号进行滤波处理,去除杂散信号,只保留心电信号的频率分量。

4.放大器:为了增强心电信号的幅度,需要使用放大器来对滤波后的信号进行放大处理,方便后续的A/D转换。

5.A/D转换器:将放大后的模拟信号转换为数字信号,供单片机进一步处理。

三、软件实现1.心电信号采集与处理:通过传感器采集心电信号,并经过滤波和放大处理,得到滤波后的模拟信号。

2.A/D转换:将模拟信号通过A/D转换器转换为数字信号,供单片机处理。

3.心率计算:单片机通过计算心电信号的周期来得到心率值,可以使用峰值检测算法或阈值判定算法来实现。

4.数据显示:将计算得到的心率值通过串口或并口发送到液晶屏上进行显示,可以设计显示界面,包括心率值、时间等信息。

总结:基于单片机的心率测试仪设计主要包括硬件组成和软件实现两个部分。

硬件组成包括单片机、心电信号传感器、滤波器、放大器、A/D 转换器和液晶屏等。

软件实现包括心电信号采集与处理、A/D转换、心率计算和数据显示等。

通过合理的设计和编程,可以实现一个功能完善的心率测试仪。

基于51单片机的心率体温检测系统设计

基于51单片机的心率体温检测系统设计

基于51单片机的心率体温检测系统设计随着科技的不断进步,智能化设备在日常生活中的应用越来越广泛。

心率体温检测系统作为一种应用广泛的智能设备,可以实时监测人体的心率和体温的变化情况,为人们的健康提供及时准确的数据支持。

本文将介绍一个基于51单片机的心率体温检测系统的设计方案。

一、系统概述本心率体温检测系统由硬件和软件两部分组成,硬件部分包括传感器模块、信号处理模块和显示模块,软件部分则是通过51单片机进行数据的采集和处理,并在显示模块上进行实时的结果显示。

二、硬件设计1. 传感器模块本系统采用心率传感器和体温传感器进行数据的采集。

心率传感器采集心率信号,体温传感器采集体温信号。

这两个传感器通过模拟信号将采集的数据传递给信号处理模块。

2. 信号处理模块信号处理模块对从传感器模块采集到的心率和体温信号进行滤波和放大处理,提高信号的精确性和可读性。

经过处理后的信号将被发送给显示模块进行实时显示。

3. 显示模块显示模块采用OLED显示屏,可以实时显示心率和体温的数值,以及相应的警报信息。

用户可以通过显示屏上的按键进行操作和设定。

三、软件设计1. 数据采集51单片机通过模拟输入引脚采集来自传感器模块的心率和体温信号。

通过定时中断的方式,可以实现对信号的连续采集。

2. 数据处理采集到的数据通过A/D转换进行数字化,并存储到内部RAM中。

通过计算和处理,可以得到心率和体温的准确数值。

3. 数据显示通过串行通信接口,将处理后的数据发送到显示模块,并通过OLED显示屏进行实时展示。

用户可以通过按键控制,实现不同数据的显示切换。

四、系统特点1. 精确性高本系统通过合理的传感器选择和信号处理,可以保证心率和体温数据的准确性,为用户提供可靠的健康数据支持。

2. 实时监测本系统能够实时监测心率和体温的变化情况,并将结果实时显示在屏幕上。

用户可以时刻关注自身的健康状况。

3. 便捷性基于51单片机的心率体温检测系统体积小巧,易于携带和使用。

用单片机实现三导联远程心电监护系统共11页

用单片机实现三导联远程心电监护系统共11页

用单片机实现三导联远程心电监护系统1 引言随着人们生活水平的提高、生活节奏的加快,心血管疾病的发病率迅速上升,已成为威胁人类身体健康的主要因素之一。

而心电图则是治疗此类疾病的主要依据,具有诊断可靠,方法简便,对病人无损害的优点,在现代医学中,变得越来越重要。

常规心电图是病人在静卧情况下由心电图仪记录的心电活动,历时仅为几s~1 m,只能获取少量有关心脏状态的信息,所以在有限时间内即使发生心率失常,被发现的概率也是很低的。

因此有必要通过相应的监护装置对患者进行长时间的实时监护,记录患者的心电数据。

又由于心脏病的发生具有突发性的特点,患者不可能长时间地静卧在医院,但又需实时得到医护人员的监护,所以研发相应的便携式无线心电监护产品就显得更加重要。

目前虽说国内已有成型的无线心电监护产品,但其采用的方案大都是“采集器+发送器(PDA或手机)”,这必然导致其价格昂贵,且PDA或手机的其他功能对于绝大部分患者完全没有必要,所以到目前为止国内实用的无线心电监护产品领域还是空白。

本文所述的远程心电监护系统是在医院的提案基础之上,进行充分调研之后设计的总体方案,主要实现如下功能:三导联心电信号采集;无线传输紧急情况下40 s的心电数据及诊断结果;24小时心电图连续记录;通过高速USB上传心电数据至PC机;紧急呼叫。

2 系统总体设计作为便携式手持远程移动终端,在设计时应充分考虑其体积小,功耗低,存储容量大和处理速度高的要求,因此在CPU的选择上十分慎重。

经过资料收集和反复比较,最终选择了Samsung公司推出的基于ARM920T内核的S3C2410处理器,该处理器资料丰富,性价比高。

采用RISC架构的ARM微处理器一般具有如下特点:体积小,功耗低,成本低,性能高;支持Thumb(16位)/ARM(32位)双指令集;大量使用寄存器,使指令执行速度更快;寻址方式灵活简单,执行效率高;指令长度固定。

可以看出基于ARM的嵌入式处理器是便携式手持终端的最佳选择,所以在设计系统方案时首先定位在该系列处理器上。

基于51单片机的心率计设计

基于51单片机的心率计设计

基于51单片机的心率计设计一、引言心率是反映心脏功能的重要指标之一,对于人体健康的监测具有重要意义。

本文将介绍一种基于51单片机的心率计设计方案,通过测量心电信号来实时监测心率变化,并将结果显示在液晶屏上。

二、硬件设计1. 传感器选择心电信号的采集是心率计设计的关键,常用的传感器有心电图传感器和心率带。

本设计选择心电图传感器作为采集装置,它能够直接测量心脏电活动,并将信号转化为模拟电压。

2. 信号放大与滤波由于心电信号较弱且容易受到干扰,需要对信号进行放大和滤波处理。

可以采用运算放大器进行信号放大,并通过滤波电路去除高频干扰和基线漂移。

3. 信号采样与转换经过放大和滤波处理的心电信号需要进行模数转换,将模拟信号转换为数字信号以便单片机处理。

可以选择12位的AD转换器进行采样,并通过SPI接口与单片机进行通信。

4. 单片机控制与显示选取51单片机作为控制核心,通过编程实现信号的采集、处理和显示功能。

使用GPIO口与AD转换器和液晶屏连接,通过串口通信实现与电脑的数据传输。

三、软件设计1. 信号采集与处理通过单片机的GPIO口实现对AD转换器的控制,进行心电信号的采集。

同时,通过软件滤波算法对信号进行滤波处理,去除噪声和干扰。

2. 心率计算心率的计算可以通过测量心跳的时间间隔来实现。

在信号处理过程中,可以设置一个阈值,当信号超过该阈值时,计数器加一。

根据连续心跳的次数和采样频率,可以计算出心率的值。

3. 数据显示与存储通过液晶屏显示心率的实时数值,并提供用户界面操作。

同时,可以通过串口将数据传输到电脑进行进一步的分析和存储。

四、实验结果与讨论本设计基于51单片机成功实现了心率计的功能。

通过实验验证,心率计能够准确地测量心率,并实时显示在液晶屏上。

通过与商用心率计进行对比,结果表明本设计具有较高的准确性和稳定性。

五、总结与展望本文介绍了一种基于51单片机的心率计设计方案。

通过对心电信号的采集、处理和显示,实现了心率的实时监测。

基于单片机的心电监护仪设计毕业论文设计40论文41

基于单片机的心电监护仪设计毕业论文设计40论文41

(此文档为word格式,下载后您可任意编辑修改!) 毕业设计(论文)题目:基于PC机的心电监控设计_目录题目:基于PC机的心电监控设计 (1)目录 (2)基于PC机的心电监控设计 (3)第一章绪论 (1)1.1 远程心电监护的意义 (1)1.2历史背景及国内外研究现状 (1)1.3具体要解决的关键问题 (2)第二章心电信号的特点及设计系统的整体构架 (2)2.1 心电信号的特点 (2)2.2 系统的整体设计 (3)第三章硬件和软件部分设计 (4)3.1心电信号处理放大模块设计 (4)3.1.1放大电路的要求 (4)3.1.2前端信号采集的设计 (4)3.1.3 前置放大部分 (5)3.1.4信号滤波处理 (6)3.1.5 后级放大部分及电平抬升 (8)3.2 AD转换的实现 (9)3.3无线发送与接收以及PC接收信号 (10)3.3.1 无线传输模块 (10)3.3.2 射频模块的简介 (11)第四章心电信号的显示 (14)第五章硬件测试和软件的调试 (15)5.1 硬件测试 (15)5.2软件调试 (15)第六章全文总结 (17)参考文献 (18)致谢 (18)摘要 (19)承诺书和授权书 (20)附录 (21)基于PC机的心电监控设计巫锡鸿三明学院 2009级电子科学与技术专业福建三明 365401摘要本设计是集信号采集、信号处理、传输和显示于一体的。

采集部分用心电5导联的方式来采集心电信号。

信号处理部分,根据大多数的ECG的设计要求,运用信号放大、滤波、抗干扰等一系列的处理电路来处理信号。

传输部分选用51系列的单片机作为主MCU 来控制AD转换和无线传输。

再将AD转换后的信号运用无线传输给PC机。

最后运用matlab 软件编辑程序及窗口界面显示出心电信号的图形。

文中对每个电路的设计都有详细的依据,能够让人理解起来简明易懂。

关键字心电信号放大滤波ADC器件无线matlab第一章绪论1.1 远程心电监护的意义时代的发展带来了人们生活水平的提高,同时导致心血管类疾病的病发数量的增加。

基于单片机智能健康监护仪设计报告

基于单片机智能健康监护仪设计报告

基于单片机智能健康监护仪设计一、研究意义随着生活水平的不断提高,人们对健康保健和常规检查越来越重视。

而且社会老龄化的不断加剧,老年人健康问题也成为了深受社会关注的问题。

但是目前的医疗设施水平还远远不能满足社会需求。

因此,研究一种新的医疗设备势在必行。

智能健康监护仪就成为解决上述问题的有效途径。

本文研究的智能健康监护仪可以实现对病人血压、体温、心电、心音、脉搏等参数的实时监护,具有良好的可扩展性和灵活性。

本智能健康监护仪可对多项人体生理参数(体温、血压、脉搏、心电、心音)进行采集和分析,从中得到关于用户健康状况的信息。

同时,本系统还可通过多种接口将信息传送至PC,并可以通过3G网络将信息发送至手机等移动式设备。

本产品扩展性强、便携、易用,在个人保健等方面有较好的发展前景。

二、研究内容在参阅大量相关文献的基础上,研制一款便携式的智能健康监护仪。

该智能健康监护仪能对患者进行实时监护,包括对心电、心音、脉搏、体温等生理信号的采集、显示、分析处理、网络传输等。

该监护仪能通过因特网实时的将数据传输到监护中心,以实现远程实时监护,监护中心端软件实现包括对各病人生理信号数据的接收、显示、管理、分析处理等。

本项目研究包括心电、血压、脉搏、体温、呼吸、脑电等生命指征信号提取、识别及传输方法;研制人体生命指征信号检测处理模块;开发基于远程医疗信息交互系统。

本项目采用3G技术,设计一种创新型的网络式监护装置,是一种创新型的智能健康监护仪。

智能健康监护仪由专用传感器构成,传感器对所需要监测的人体生理指标比如血压、脉搏、体温、心电、心音等数据进行采集。

通过Internet网络可以将数据传输至远程医疗监护中心,由专业医疗人员对数据进行统计观察,提供必要的信息反馈和咨询服务,实现智能健康监护。

此款智能健康监护仪具有外观精致,小巧玲珑,便于携带,操作方便、简单,检测准确,性价比高等特点。

它使得被监护人能够拥有较多的自由活动空间,在获得较准确的测量指标的同时,免除人们在家庭与医院之间奔波的劳苦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 引言
虚拟医学仪器充分利用计算机丰富的软硬件资源,仅增设少量专用软、硬件模块,便可实现传统仪器的全部功能及一些传统仪器无法实现的功能,同时缩短了研发周期。

本系统由两部分组成:以C8051F320单片机为核心的数据采集装置和以PC机为平台的分析处理系统。

设计中充分考虑数据采集装置体积小、功耗低、操作快捷的要求,因此全部采用SMT封装的元器件。

PC监护终端通过USB接口接收数据,传输速率高;采用图形编程语言LabVIEW编写显示、存储、分析处理等功能程序。

该系统可实时监护并提供心动周期,心率等参数,也可进行数据的存储回放,为心血管疾病的诊断提供依据。

系统的软件开发和硬件与上位机软件的集成测试表明,系统运行稳定可靠,取得了预期效果。

2 系统硬件设计
该系统由C8051F320数据采集模块和PC机两部分组成,如图1所示。

数据采集模块主要由心电采集电路和基于C8051F320单片机的DAQ接口卡构成,如图2所示。

该模块通过C8051F320片上A/D转换器采集经预处理的心电信号,再将其由USB总线传输至PC机显示。

PC机部分主要是软件设计,包括通过C8051F320单片机片上USB主机API函数和LabVIEW软件编写数据采集图形用户界面;实现接收、显示和处理由数据采集模块通过USB接口发送采集数据的程序。

LabVIEW应用程序和C8051F320应用程序均采用SILICon Laboratories公司的USB Xpress开发套件的API和驱动程序实现对底层USB器件的读写操作。

心电信号属于微弱信号,体表心电信号的幅值范围为1~10 mV。

在测量心电信号时存在很强的干扰,包括测量电极与人体之间构成的化学半电池所产生的直流极化电压,以共模电
压形式存在的50 Hz工频干扰.人体的运动、呼吸引起的基线漂移,肌肉收缩引起的肌电干扰等。

采用遥测HOLTER三导联线和一次性心电电极与人体接触,能很好地减小运动和呼吸引起的肌电干扰。

前端放大器采用具有极高共模抑制比(CMRR)的仪用AD620放大器,放大倍数约为50倍;并采用0.05~100 Hz的带通滤波器和50 Hz的陷波电路,抑制信号的基线漂移、高频噪声及工频干扰。

为了充分利用A/D转换的精度,在转换前先将信号放大到A /D转换电路参考电压的70%左右,考虑到信号中会附加直流成分,需在A/D转换电路前增加电平调节电路。

个体心电幅度的差异要求电路中设计程控放大电路,又为了便于心电信号的标定和考虑到实际器件放大倍数与理论值的偏差,在程控放大电路前设置一个手动可调的放大电路(1~10倍)。

综上分析,心电采集与程控放大部分应包括:AD620前端放大、0.05~100 Hz的带通滤波、50 Hz陷波、手动放大、程控放大和电平提升等电路。

其中程控放大功能利用CD4051电子开关的数字选通实现,具有1~50倍的调节范围。

为减少系统功耗,应采用低功耗、集成度高的器件。

该系统选用C8051F320单片机作为数据采集卡的核心部件。

该器件是完全集成的混合信号系统级器件,具有与8051兼容的高速CIP-51内核,与MCS-51指令集完全兼容,片内集成了数据采集和控制系统常用的模拟、数字外设及USB接口等其他功能部件。

外部电路简单,易于实现,如图3所示。

心电电极将得到的信号经滤波和可变增益放大器放大后送至C8051F320单片机,单片机将得到的模拟心电信号实时转换为数字信号,采集到的数据通过USB接口传给PC机,进一步分析处理信号数据。

3 系统软件设计
3.1 C8051F320单片机程序设计
C8051F320单片机程序包括:(1)A/D转换程序和程控放大控制程序;(2)基于USB器件的通信程序,接收从USB主机发送的用户指令并将采集的数据发送给USB主机。

3.1.1 A/D转换程序
衡量A/D转换性能主要有两个指标:采样分辨率(A/D转换器位数)和A/D转换速度。

设置A/D转换器的采样率为2 000 Hz,并采用定时器TIME2溢出中断触发转换,每次转换结束后1O位结果数据字被锁存到A/D转换器的数据寄存器中,供USB通讯子程序数据调用,图4为A/D转换流程。

A/D转换程序较简单,可通过设置C8051F320片上
定时器确定A/D转换器的采样周期,由定时器的溢出
周期性启动A/D转换器来采样被测数据。

USB设置
为块状传输模式与PC机进行数据通信。

将每64个数
据打成一个数据包。

以充分利用硬件资源并提高数据
传输效率。

3.1.2 基于USB器件的通信程序
整个程序流程以USB通信为主线,如图5所示。

图中所涉及的USB_CLOCk_Start()、USB_Int()等函
数均是SILICon Lab公司专为C8051F320单片机USB
功能开发的USB端API函数。

通过在C8051F320上层
应用程序中直接调用这些函数可方便快捷地访问USB 底层硬件。

3.2 PC机LabVIEW程序设计
PC机LabVIEW程序设计主要完成用户图形界面和基于USB主机通信程序两大功能,从而实现人机交互,将用户输入的指令和采集模块采集的数据通过USB总线在PC机和
C8051F320之间传递。

3.2.1 LabVIEW程序面板设计
开发USB设备驱动程序的工具使用USB Xpress Devel-opment Kit,主要有:SI_Open()函数;SI_Close()函数;SI_Read函数;SI_Write()函数;SI_GetNumDevICes()函数;
SI_CheckRX Queue()函数。

用户从设备读取数据将调用一个应用程序接口API。

SI_GetNumDevices()、SI_GetProductString()等函数均是SILicon Lab公司专为C8051F320单片机USB功能开发的USB主机端API函数。

LabVIEW提供调用链接库函数Call Librarv Function,本设计利用Silicon Lab公司的SiUSBXp.dll动态链接库来实现对USB底层硬件的访问。

通过调用SLGetNumDevices()甬数完成设备的通信初始化,生成函数返回驱动的设备号;该设备号用来在调用SI GetProductString()函数时生成设备描述字符串。

要读取一个设备,首先必须通过调用SI_GetNumDevices()函数生成的索引(设备号)来调用
SI_Open()函数。

SI_Open()函数将返回设备的句柄,该句柄将在随后的所有进程中被用到。

利用 SI_Write()和SI_Read()函数就可实现数据的输入和输出。

当完成数据的输入和输出操作后,可通过调用SI_Close()关闭设备。

图6为I/O接口驱动程序框图。

3.2.2 LabVIEW程序设计用户图形界面(前面板)设计
动态心电监护系统应用程序部分可实现心电信号的接收、实时显示、存储及回放功能;并可提供心动周期、心率等参数,为心率变异性分析和心血管疾病的诊断提供依据。

心电监护系统显示界面如图7所示。

4 结论
该设计不仅可实现传统测量仪器的全部功能,还能将实验数据存盘以进行反复观察分析。

基于虚拟仪器的心电监护系统使用灵活方便、测试功能丰富、成本低廉。

用户可根据实际需要,通过修改软件改变其功能和升级,实现一机多用。

实验结果表明:该系统具有较强的抑制基线漂移能力、低功耗、操作简单。

采用USB接口实时传输心电数据,并将心电数据采集模块设计为计算机外设,高速快捷。

由于全部采用SMT封装,数据采集模块尺寸仅为60 mmx60 mm,方便实用。

因此,该设计是一款实用的、低成本的、动态心电监护系统。

相关文档
最新文档